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Abstract 25 

 26 

Gut microbiome diversity plays an important role in host health and fitness, in part 27 

through the diversification of gut metabolic function and pathogen protection. Elevations 28 

in glucocorticoids (GCs) appear to reduce gut microbiome diversity in experimental 29 

studies, suggesting that a loss of microbial diversity may be a negative consequence of 30 

increased GCs. However, given that ecological factors like food availability and 31 



2 

population density may independently influence both GCs and microbial diversity, 32 

understanding how these factors structure the GC-microbiome relationship is crucial to 33 

interpreting its significance in wild populations. Here, we used an ecological framework 34 

to investigate the relationship between GCs and gut microbiome diversity in wild North 35 

American red squirrels (Tamiasciurus hudsonicus). We found that higher GCs predicted 36 

lower gut microbiome diversity and an increase in metabolic taxa. In addition, we 37 

identified a loss of potentially pathogenic bacteria with increasing GCs. Both dietary 38 

heterogeneity and an upcoming food masting event exhibited direct effects on gut 39 

microbiome diversity, whereas conspecific density and host reproductive activity 40 

impacted diversity indirectly via changes in GCs. Together, our results suggest that GCs 41 

coordinate the effects of ecological change and host biology on gut microbiome 42 

diversity, and highlight the importance of situating the GC-microbiome relationship 43 

within an ecological framework. 44 

 45 

Introduction 46 

 47 

The intimate symbiosis between animals and their microbiomes has become a major 48 

area of focus for animal behavior, ecology, and evolution research over the last decade. 49 

In vertebrates, the gut microbiome in particular appears to interact strongly with other 50 

host physiological systems [1]. Gut microbiota are sensitive to changes in host immune 51 

function [2], brain development and behavior [3,4], circadian rhythms [5], and 52 

metabolism [6]. Beyond these effects, the gut microbiome also responds to the host 53 

endocrine system. In wild female primates, reproductive hormones like estrogen and 54 

progesterone are associated with differences in gut microbiome composition [7,8]. In 55 

humans, both androgens and estrogens, as well as metabolic hormones like insulin, are 56 

linked to variation in gut microbiota [9,10]. Such connections reflect a larger “gut-brain 57 

axis” through which the gut microbiota and nervous system communicate [11]. 58 

  59 

Recently, glucocorticoids (GCs) have emerged as a central component of the gut-brain 60 

axis [12]. GCs are metabolic hormones produced via the activation of the hypothalamic-61 

pituitary-adrenal axis. They are involved in energy regulation and the physiological 62 
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stress response [13], and can induce adaptive phenotypic plasticity in response to 63 

environmental change [14]. For example, elevated GCs can enhance fitness by 64 

facilitating transitions between life history stages [15], supporting the energetic demands 65 

of reproduction [16], and improving survival in response to fluctuating temperatures and 66 

food availability [17]. GCs may also induce adaptive plasticity in the gut microbiome, a 67 

host microbial community that responds rapidly to changes in ecology. Shifts in gut 68 

microbiome composition can regulate energy balance as ambient temperatures rise and 69 

fall [18], and can enhance digestion efficiency as an animal’s energetic demands 70 

increase (e.g., during reproduction) or as resource availability fluctuates [19–21]. 71 

  72 

One measure of gut microbiome composition - alpha diversity, a measure of the 73 

taxonomic diversity within a community - appears particularly sensitive to changes in 74 

host GCs. A taxonomically diverse microbiome confers community stability and 75 

resilience, whereas a loss of diversity is presumed to have detrimental consequences 76 

via increased host susceptibility to pathogenic infection [22,23]. Animal studies in which 77 

GCs have been experimentally elevated have documented reduced gut microbiome 78 

diversity in response to elevated GCs [24,25], while studies in unmanipulated 79 

populations have found no relationship [26,27]. This inconsistency may indicate that the 80 

link between GCs and gut microbiome diversity is modified by ecological factors (Figure 81 

1), yet these are rarely included in such analyses (Table 1). For example, an increase in 82 

food availability can cause transient elevations in GCs if conspecific density also 83 

increases due to that elevation in food availability [28]. If elevated density results in 84 

more frequent social interactions, it may enhance microbiome diversity directly via 85 

increased microbial transmission among conspecifics [29]. Such environmental 86 

covariance may drive the absence of a relationship between GCs and microbiome 87 

diversity in unmanipulated populations (Figure 1) [30–32], necessitating a more 88 

nuanced approach to determine how GCs impact the gut microbiome in wild animals. 89 
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 90 
Figure 1. Conceptual model demonstrating how ecological factors may structure 91 

the relationship between glucocorticoids and the gut microbiome. (A) 92 

Environmental covariance results in direct effects on both variables and diminishes a 93 

detectable effect of GCs on gut microbiome diversity. (B) Ecology does not influence 94 

either variable and a direct effect of GCs on gut microbiome diversity is preserved. (C) 95 

Ecological factors influence gut microbiome diversity indirectly via host GCs. Note that 96 

the three scenarios are not mutually exclusive, such that a combination of direct (A) and 97 

indirect (B) effects may result in the appearance or absence of a relationship between 98 

GCs and gut microbiome diversity. 99 

  100 
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 101 

Study Species N GCs Effect 
Ecological 

factors 
included? 

Noguera et al., 
2018 

Gulls 
(Larus 

michahellis) 

29 Experiment
al  

↓ ɑ-diversity No 

Stothart et al., 
2019 

gray squirrels 
(Sciurus 

carolinensis) 

29 Natural No effect No 

Uren Webster 
et al., 2020 

Atlantic salmon 
(Salmo salar) 

168 Experiment
al  

↓ ɑ-diversity No  

Vlčková et al., 
2018 

Gorillas 
(Gorilla gorilla 

gorilla) 

42 Natural No effect No 

 102 
Table 1. Prior experimental and correlational studies on the relationship between 103 
glucocorticoids and gut microbiome alpha diversity in captive and wild vertebrates. 104 
 105 

In this study, we test the hypothesis that ecological factors structure the relationship 106 

between GCs and gut microbiome diversity in wild North American red squirrels 107 

(Tamiasciurus hudsonicus) living in the Yukon, Canada. Red squirrels are highly 108 

territorial animals that experience dramatic shifts in food availability and population 109 

density as a result of fluctuations in their preferred food source, seeds from white 110 

spruce trees (Picea glauca) [33]. Squirrels incorporate other food sources into their diet 111 

when seasonally available (e.g., fungi, bark, leaves, flowers) [34], resulting in changes 112 

in dietary diversity that may directly impact gut microbiome diversity. However, spruce 113 

seeds comprise the majority of their diet [34] despite their episodic availability. Masting 114 

events occur every 4-6 years in white spruce, resulting in the production of a 115 

superabundance of cones containing seeds that become available in the autumn. By 116 

contrast, few to no cones are available in non-mast years [33,35]. In anticipation of an 117 

upcoming spruce mast, squirrels exhibit an extended breeding season and concomitant 118 
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behavior changes: territoriality breaks down and conspecific interactions are expected 119 

to increase due to increased breeding frequency and infanticidal behavior [36,37]. An 120 

upcoming spruce mast may thus exert direct positive effects on gut microbiome diversity 121 

via more frequent social interactions, which leads to greater horizontal microbial 122 

transmission [29]. 123 

  124 

Squirrel densities also fluctuate in parallel with food pulses, with densities at their lowest 125 

in the months prior to a mast and highest in the spring following a mast [28,38]. 126 

Although sociality is expected to increase gut microbiome diversity in group-living 127 

animals [29], this effect may not occur in territorial species [39]. For example, elevated 128 

conspecific densities result in increased frequency of long-range territorial vocalizations 129 

emitted by red squirrels in our study population [40], which can in turn reduce interaction 130 

frequency by deterring territorial intrusions [39,41]. Indeed, conspecific interactions in 131 

squirrels do not appear to vary with density, and the number of territorial intruders has 132 

been both negatively correlated [40] and unrelated [41] to density. Given that both 133 

actual and perceived increases in density cause GC elevations in red squirrels [28,42], 134 

density may have indirect rather than direct effects on microbiome diversity due to the 135 

psychosocial stress of anticipating greater competition [28]. 136 

  137 

In line with prior studies (Table 1), we predicted to find an overall negative association 138 

between GCs and gut microbiome alpha diversity, along with an increase in pathogenic 139 

taxa and taxa involved in host metabolism with increasing GCs. We then used a 140 

multivariate structural equation modeling approach [43,44] to integrate GCs, gut 141 

microbiome diversity, and ecological variables into a single causal network [45]. We 142 

tested a set of a priori hypothesized relationships related to the direct and indirect 143 

effects of dietary heterogeneity, an upcoming spruce mast, and conspecific density on 144 

both GCs and gut microbiome diversity (Figure S1). We expected to find that dietary 145 

heterogeneity and an upcoming spruce mast would have direct positive effects on gut 146 

microbiome diversity. Conversely, we predicted that density would have an indirect 147 

negative effect on diversity by way of GC elevations. We additionally included biological 148 

factors (reproductive activity, sex, age) in our analysis, given their potential effects on 149 
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GCs and microbiome composition [46–48]. We predicted that reproductive activity had 150 

positive direct effects on both GCs and gut microbiome diversity, as a result of 151 

increased energetic demands [49,50] and conspecific interactions, respectively. In line 152 

with prior studies, we expected that older age would predict lower microbiome diversity, 153 

and that males would exhibit greater microbiome diversity due to travel across territories 154 

for multiple mating in the breeding season [51]. 155 

 156 

Results 157 

 158 

1. Gut microbiome diversity is negatively associated with glucocorticoids 159 

 160 

Both gut microbiome alpha diversity and GCs were highly variable across seasons in 161 

each of our sampling years, with gut microbial diversity reaching its maxima during the 162 

summer months of July and August (Figure 2A), coinciding with increased dietary 163 

diversity [34,52]. GCs were highest in early spring (March), with the exception of the 164 

mast year of 2010 in which GCs steadily increased across the first part of the year 165 

(Figure 2A). Consistent with our predictions and in line with prior studies in which GCs 166 

were experimentally manipulated (Table 1), GCs were negatively associated with gut 167 

microbiome alpha diversity. Individuals with greater GC concentrations exhibited 168 

relatively lower taxonomic diversity (i.e. species richness, Chao1: estimate ± SE: -75.05 169 

± 25.91, t = -2.90, P < 0.01; Figure 2B). Greater GCs were also associated with lower 170 

Shannon Indices, a composite measure of species richness and evenness (Shannon: -171 

77.64 ± 36.00, t = -2.16, P < 0.05, Figure 2C), as well as lower phylogenetic diversity in 172 

the gut microbial community (Faith’s PD: -69.51 ± 26.59, t = -2.61, P < 0.01, Figure 2D). 173 

The negative relationship between GCs and gut microbiome alpha diversity was robust 174 

to individual variation in GC production, with higher individually-averaged GCs similarly 175 

predicting lower species richness (estimate ± SE: -0.027 ± 0.011, t = -2.45, P < 0.05). 176 

 177 
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 178 
Figure 2. Host production of glucocorticoids is negatively associated with gut 179 

microbiome alpha diversity. (A) Boxplot and line graph showing the opposing 180 

relationship between mean fecal glucocorticoid metabolites (GCs, scaled) and median 181 

gut microbiome diversity (Chao1 richness) across each month of the three sampling 182 

years. Outliers removed from plot for visualization purposes. (B) Partial residual plots 183 

(points represent individual samples) showing the relationship between gut microbiome 184 

taxonomic richness (Chao1), (C) taxonomic richness and evenness (Shannon Index), 185 

and (D) phylogenetic diversity (Faith’s Phylogenetic Diversity) and matched fecal 186 

glucocorticoid concentrations (GCs) (N = 227). 187 

 188 

 189 
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2. Glucocorticoids predict variation in gut microbiome composition at the 190 

taxonomic level 191 

 192 

We constructed a series of negative binomial linear mixed-effects models to determine 193 

how reduced gut microbiome alpha diversity is reflected in changes at the taxonomic 194 

level and identify taxa whose relative abundances changed with increasing GCs. We 195 

found that elevated GCs were associated with changes in gut microbiome composition 196 

at both the family (Figure 3A) and genus (Figure 3B) levels. Increased GCs predicted 197 

shifts in the relative abundance of 15 bacterial families, predominantly a decrease in 198 

rare bacterial families (i.e. taxa that contribute < 0.01% relative abundance to the 199 

microbial community) (Figure 3A; Table S1). An exception was a reduction in 200 

Elusimicrobiaceae, which contributed an average of 0.13% relative abundance to the 201 

gut microbiome community (estimate = -0.81, PFDR < 0.0001). By contrast, elevated 202 

GCs were associated with an increase in Coriobacteriaceae (estimate = 0.57, PFDR < 203 

0.01), Streptococcaceae (estimate = 1.0, PFDR < 0.0001), and Dermabacteraceae 204 

(estimate = 2.81, PFDR < 0.0001), and Ruminococcaceae (estimate = 0.12, PFDR < 0.02) 205 

(Figure 3A). Ruminococcaceae, a family of largely cellulolytic and fibrolytic bacteria, is 206 

an abundant (~25% relative abundance) and core taxa in the red squirrel gut 207 

microbiome (Ren et al., 2017). 208 

  209 

At the genus level, the relative abundance of 22 bacterial genera was significantly 210 

reduced with increasing GCs. Similar to changes at the family level, the majority of 211 

bacterial genera reductions were rare taxa (Figure 3B) with the exception of Brochothrix 212 

(mean 0.02% relative abundance). Contrary to our predictions but in line with a prior 213 

study on birds (Noguera et al., 2018), we found that two potentially pathogenic genera -- 214 

Yersinia (estimate = -1.09, PFDR < 0.001) [53] and Salmonella (estimate = -10.98, PFDR < 215 

0.0001) [54] -- decreased in relative abundance with increasing host GCs. Conversely, 216 

a greater proportion of abundant taxa were found to increase with increasing GCs 217 

(Figure 3B). Greater host GCs predicted greater relative abundances of Clostridium 218 

(estimate = 0.28, PFDR < 0.01), Butyricicoccus (estimate = 0.35, PFDR < 0.01), 219 
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Oscillospira (estimate =0.60, PFDR < 0.0001), YRC22 (estimate = 0.65, PFDR < 0.01), and 220 

Lachnospira (estimate = 0.67, PFDR < 0.01). 221 

 222 

 223 
Figure 3. 224 

 225 

Figure 3. Increased glucocorticoids predict the loss and gain of bacterial taxa in 226 

the red squirrel gut microbiome. Barplots depict bacterial families (A) and genera (B) 227 

whose relative abundance was significantly (Benjamini-Hochberg adjusted P < 0.05) 228 

predicted by changes in host glucocorticoid concentrations. Bold taxa exhibited a mean 229 

relative abundance > 0.01%. Effects of GCs reflect model estimates generated by 230 

negative binomial mixed models testing the effect of GCs on the relative abundance of 231 

each bacterial taxa, controlling for collection date, food supplementation status, and 232 

individual ID. Black bars represent a decrease in relative abundance with increasing 233 
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GCs; grey bars represent an increase with increasing GCs. Taxa depicted at the bottom 234 

of Panel B (Kribbella, Propionibacterium) exhibited model estimates ~10x larger than 235 

the rest of the taxa and are therefore separated from the main plot solely for 236 

visualization purposes. 237 

 238 

To determine how ecological and host factors contributed to the effects of GCs on gut 239 

microbiome alpha diversity, we fit a structural equation model (SEM) based on a set of a 240 

priori hypothesized pathways (Figure S1). The SEM was constructed to test the relative 241 

direct and indirect effects of three ecological factors (dietary heterogeneity, an 242 

upcoming spruce mast, and conspecific density) and three host factors (reproductive 243 

activity, age, and sex) on GCs and gut microbiome diversity. Overall, the SEM revealed 244 

direct and indirect pathways by which ecological and host factors exert cascading 245 

effects on microbial diversity. In line with our predictions, dietary heterogeneity and the 246 

presence of an upcoming spruce mast both exhibited direct effects on gut microbiome 247 

diversity, such that a more heterogeneous diet (standardized 𝞫 = 0.26, P < 0.001) and 248 

an upcoming spruce masting event (standardized 𝞫 = 0.71, P < 0.001) led to greater 249 

microbial diversity. Tests of directed separation revealed that there was no effect of 250 

either dietary heterogeneity or an upcoming spruce mast on host GCs. By contrast, 251 

conspecific density and reproductive activity indirectly, but not directly, affected gut 252 

microbiome diversity via changes to host GCs. Higher densities (standardized 𝞫 = 0.26, 253 

P < 0.01) and reproductive activity (standardized 𝞫 = 0.47, P < 0.001) predicted greater 254 

GC concentrations, which in turn reduced microbial diversity (standardized 𝞫 = -0.18, P 255 

< 0.05). There was no effect of age or sex on gut microbiome diversity, and tests of 256 

directed separation similarly found no effect of age or sex on host GCs. 257 
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   258 
Figure 4. Ecology and host biology influence gut microbial diversity via 259 

glucocorticoids. Structural equation model assessing direct and indirect effects of 260 

ecological and host factors on glucocorticoids (GCs) and gut microbiome alpha diversity 261 

(Chao1 richness). Solid black arrows represent significant positive paths; solid red 262 

arrows represent significant negative paths; dotted arrows represent non-significant 263 

paths. Text labels indicate standardized beta estimates (i.e., effect sizes) and 264 

significance (P < 0.05 *, P < 0.01 **, P < 0.001 ***) for each of the predicted pathways 265 

tested in the SEM. 266 

 267 
Discussion 268 

 269 
Determining if ecological factors structure the relationship between glucocorticoids 270 

(GCs) and gut microbiome alpha diversity is crucial to interpreting the adaptive value of 271 

the GC-microbiome connection in wild animals. We show that elevated GCs robustly 272 
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predict reduced gut microbiome diversity in wild red squirrels living in an ecosystem 273 

characterized by fluctuations in food and conspecific density. Greater host GCs were 274 

associated with reductions in rare and pathogenic taxa, and a gain of commensal 275 

bacteria involved in butyrate production and cellulose metabolism, suggesting reduced 276 

diversity may reflect reorganization of gut metabolic function. Incorporating ecological 277 

and host factors into a single causal network revealed a cascade of direct and indirect 278 

effects on gut microbiome diversity, and the retention of a significant negative 279 

relationship between diversity and GCs. Together, our results demonstrate that the link 280 

between GCs and gut microbiome alpha diversity is robust to ecological factors that 281 

directly influence the gut microbiome in wild populations. Further, our findings suggest 282 

that GCs may integrate changes in ecology and host biology to induce gut microbiome 283 

plasticity. 284 

  285 

Red squirrel gut microbiome alpha diversity varied across seasons and peaked in 286 

summer, coinciding with the period of greatest dietary heterogeneity [34,52] (Figure 2A). 287 

GCs exhibited greater variability overall: GCs reached their peak in the early spring in 288 

non-mast years (2008, 2009), but in summer of the mast year (2010) (Figure 2A). 289 

Despite this variability, there was a significant negative association between GCs and 290 

gut microbiome diversity such that individuals with greater GCs exhibited lower alpha 291 

diversity across three separate measures (species richness, evenness, and 292 

phylogenetic diversity) (Figure 2B-D). Though prior studies in unmanipulated 293 

populations did not detect a relationship between GCs and gut microbiome alpha 294 

diversity (Table 1), but see [55] for oral microbiome), our results align with experimental 295 

studies in which GCs were manipulated. This suggests that gut-brain axis 296 

communication, particularly between GCs and gut microbiome composition, is under 297 

strong selection in our population. 298 

  299 

As GCs increased, the taxa that decreased in the gut microbiome were overwhelmingly 300 

rare taxa that contributed < 0.01% in relative abundance to the overall community (e.g., 301 

Odoribacteriaceae, Sporichthyaceae) (Figure 3). This finding aligns with expectations 302 

about the effects of disturbances on gut microbiome composition from an ecological 303 
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perspective [56]. Resilience to microbial disturbances is greater among abundant taxa 304 

than non-abundant taxa [57], likely due to divergent patterns of colonization and 305 

succession. Abundant taxa retain their position in microbial communities via selective 306 

filtering and by occupying core niches [56]. By contrast, rare taxa are incorporated into 307 

the microbiome largely via stochastic processes, though they contribute significantly to 308 

community alpha diversity measures [58]. A reduction in rare taxa with increasing GCs 309 

in our population may therefore indicate that the effects of elevated GCs on rare 310 

bacteria in the gut mimic those expected by broader microbial disturbances (e.g., 311 

antibiotics, infection) [59]. 312 

  313 

A decrease in the relative abundance of rare bacteria may also serve to reorganize host 314 

metabolic priorities through replacement by core taxa that can better support changes in 315 

host energetic demands. Overall, we found that increases in host GCs were 316 

accompanied by increases in microbial taxa involved in host metabolism (Figure 3). 317 

Both Oscillospira, which correlates with the consumption of spruce buds in the late 318 

spring [52], and Coriobacteriaceae, a common rodent gut microbe involved in energy 319 

metabolism [60], increased in relative abundance with increasing GCs. In experimental 320 

settings, housing stress caused an increase in Coriobacteriaceae [61], suggesting that it 321 

may similarly contribute to maintaining energy balance in wild rodents facing 322 

challenging environmental conditions. We additionally found that individuals with 323 

elevated GCs exhibited greater relative abundances of Ruminococcaceae, a bacterial 324 

family of cellulolytic and fibrolytic bacteria involved in acclimating to dietary changes in 325 

wild animals [20,62]. Together, our results suggest that in our study population, GCs 326 

may coordinate adaptive shifts in gut microbiome composition in response to increased 327 

energetic demands, seasonal changes in diet, or both. 328 

  329 

Resistance to pathogens has been proposed as one of the major evolutionary 330 

advantages conferred by host microbial communities [63]. Butyrates, compounds 331 

produced via fermentation by microbiota in the large intestine [64], are particularly 332 

critical to preventing intestinal pathogen invasion [65]. We found that the butyrate-333 

producing bacteria Butyriciococcus (family Ruminococcaceae) and Clostridium were 334 
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elevated in the red squirrel gut microbiome as GCs increased (Figure 3). Moreover, 335 

elevated GCs were associated with lower relative abundances of two potentially 336 

pathogenic genera: Salmonella and Yersinia. Salmonella are rod-shaped, Gram-337 

negative bacteria that can cause gastroenteritis in both rodents and humans upon 338 

infection [66]. Similarly, Yersinia, which includes Y. pestis, Y. pseudotuberculosis, and 339 

Y. enterocolitica, are commonly harbored in the gut microbiota of wild rodents and lead 340 

to enteric and systemic disease [54,67], though we note there is currently no evidence 341 

of Yersinia disease in our population. While a loss of these taxa with increasing GCs 342 

contradicts theoretical expectations of pathogen susceptibility as microbial diversity 343 

decreases, our findings align with a prior study in free-living birds in which elevated GCs 344 

similarly reduced the relative abundance of intestinal pathogens [24], and in piglets in 345 

which GCs reduced Salmonella, specifically [68]. Together, these data suggest that 346 

elevations in GCs may confer short-term protection against gastrointestinal pathogens, 347 

potentially through transient increases in gut immune function or butyrate production. 348 

However, the pathogenicity of these taxa can only be confirmed by a strain-level 349 

genomic analysis beyond the analysis performed in this study, and determining 350 

differences in production of butyrates with variation in host GCs requires gene functional 351 

data. We thus encourage future studies to implement high resolution bioinformatic 352 

approaches (e.g., shotgun sequencing, metabolomics) whenever possible to better 353 

understand these patterns. 354 

  355 

To disentangle the effects of ecological and host factors on the relationship between 356 

GCs and the gut microbiome, we constructed a structural equation model (SEM) based 357 

on a set of causal a priori hypothesized pathways (Figure S1) [43,69]. As predicted, an 358 

upcoming spruce mast had a direct positive effect on gut microbiome diversity, and this 359 

path was the strongest path in the SEM (standardized 𝞫 = 0.71; Figure 4). An increase 360 

in gut microbiome diversity in the mast year of 2010, compared to the non-mast years of 361 

2008 and 2009, aligns with our expectation of territorial breakdown and increased social 362 

interactions due to an extended breeding season in the months leading up to a masting 363 

event [36,37]. Given that the positive link between sociality and gut microbiome diversity 364 

is well-supported at least in some taxa [8,29,70], squirrels may exhibit increased gut 365 
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microbiome diversity due to greater horizontal transmission of microbes between 366 

conspecifics as social interactions become more frequent. 367 

  368 

Similar to the effects of an upcoming spruce mast, dietary heterogeneity had a direct 369 

positive effect on microbial diversity, though this effect was approximately 2.5x weaker 370 

than that of the upcoming mast (standardized 𝞫 = 0.26). Gut microbiome alpha diversity 371 

was greatest in the months in which the food available to red squirrels was most 372 

heterogeneous (e.g., fungi, buds, and seeds) [34]. Indeed, a varied diet is expected to 373 

increase microbiome diversity through greater substrate selection for diverse ecological 374 

niches [71]. This effect of dietary heterogeneity on gut microbiome diversity, coupled 375 

with prior work on the relationship between diet and gut microbiome composition in this 376 

population [52], suggests that the red squirrel gut microbiome responds rapidly to shifts 377 

in food availability. 378 

  379 

By contrast, conspecific density indirectly, but not directly, impacted gut microbiome 380 

diversity by way of GCs, lending support to previous findings that the frequency of social 381 

interactions (and thus horizontal transmission) is not related to squirrel density in this 382 

population [40]. In line with our expectations, elevated conspecific densities predicted 383 

increased host production of GCs (standardized 𝞫 = 0.26) [28], which in turn predicted 384 

reduced gut microbiome diversity (standardized 𝞫 = -0.18) (Figure 4). Red squirrels are 385 

highly sensitive to changes in density, and signals of both actual and perceived elevated 386 

density lead to GC increases independent of other ecological factors that covary with it 387 

(e.g., food) [28]. That elevated density reduced gut microbiome diversity via increasing 388 

GCs aligns with our understanding of the regulation of the gut-brain axis by the social 389 

environment, stress, and psychological state in laboratory rodents [72]. In the wild, 390 

vocalizations can buffer individuals from physical interactions with conspecifics even in 391 

times of high densities in highly territorial animals like red squirrels. Our results suggest 392 

that the indirect effects of increased density on gut microbiome diversity likely reflect the 393 

psychosocial stress of increased competition, demonstrating a novel link between social 394 

stress and the gut-brain axis in a wild mammal. 395 

  396 
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Reproductive state was the only host factor to exhibit an effect on gut microbiome 397 

diversity, and the effect was indirect and the strongest path to GCs in the model 398 

(standardized 𝞫 = 0.47). As predicted, being reproductively active (e.g., scrotal for 399 

males, and breeding, gestating, or lactating for females) predicted greater GCs, and in 400 

turn a reduction in microbial diversity (standardized 𝞫 = -0.18). In both males and 401 

females, reproduction increases host metabolic demands broadly [50]and, in females in 402 

our population, GCs specifically [49]. A consequent reduction in microbiome diversity 403 

may therefore better support host energy balance by increasing the relative abundance 404 

of core microbiota at the expense of rare taxa that contribute less to the metabolic 405 

functions of the community. Contrary to our predictions, we found no effect of sex or 406 

age on microbial diversity, and the SEM did not identify an effect of either on GCs via 407 

tests of directed separation [69]. Studies in humans and other mammals have found 408 

mixed effects of age on both GCs and microbial diversity [48,73,74]. Sex effects on 409 

microbiome composition related to hormones and behavior have been documented in 410 

experimental rodent models [47,75], but studies in wild populations have not typically 411 

found sex differences in gut microbiome composition [76]. Our results, coupled with 412 

inconsistent findings in other animals, suggest that the effects of age and sex on gut 413 

microbiome alpha diversity are likely species-specific, and/or that the effects of other 414 

factors (e.g., reproductive state, diet) may overwhelm the effects age and sex on 415 

microbial diversity. 416 

  417 

While the mechanisms by which GCs impact gut microbiome diversity are not well 418 

understood, a number of potential pathways may explain how host GCs impact gut 419 

microbiota. First, GCs can alter lipid metabolism, leading to lipid accumulation in the gut 420 

[77]. Increased lipid metabolism reduces taxonomic diversity in the gut microbiome of 421 

laboratory rodents as some bacteria exhibit sensitivity to lipid accumulation [78]. 422 

Second, GCs may impact microbial diversity via circadian rhythm dysregulation. 423 

Elevated GCs can disrupt host circadian rhythms in laboratory settings [78], and 424 

circadian disruption directly reduces gut microbiome alpha diversity in mice [79]. Finally, 425 

increased GCs can result in a decrease in the synthesis of mucins, proteins that make 426 

up the mucosal layer of the gut in which microbiota live. The mucosal layer is integral to 427 
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the stability of the gut microbiome and largely determines its composition [80]. A down-428 

regulation of mucin synthesis as a result of elevated GCs may therefore disrupt gut 429 

microbiome stability by reducing the resilience of the mucosal layer, leading to a 430 

reduction in non-core bacteria and an overall loss of community diversity [81]. 431 

  432 

Of note is the bidirectionality of the gut-brain axis demonstrated in laboratory rodent 433 

studies [82,83], and thus the potential bidirectionality of the GC-microbiome relationship 434 

in wild animals. Here, we focused on the unidirectional effects of GCs on gut 435 

microbiome diversity similar to prior studies (Table 1). However, gut microbiota can 436 

themselves regulate the hypothalamic-pituitary-adrenal axis, such that shifts in gut 437 

microbiome composition may directly modulate host production of GCs [84] and 438 

contribute to a feedback loop between the two systems [85]. Statistical constraints 439 

inherent to structural equation modeling prevented us from incorporating a bidirectional 440 

relationship between GCs and microbial diversity into this study [69]. Nonetheless, the 441 

bidirectionality of the gut-brain axis has important implications for the evolution of the 442 

relationship between GCs and microbial diversity in wild mammals [11]. We encourage 443 

future research on wild populations to implement experimental frameworks when 444 

possible to better characterize the complexity and adaptive value of the GC-gut 445 

microbiome relationship. 446 

 447 

Methods 448 

 449 
Ethics Statement 450 

All methods were carried out in accordance with relevant guidelines and regulations. All 451 

research methods and protocols were conducted under animal ethics approvals from 452 

Michigan State University (AUF#04/08-046-00), University of Guelph (AUP#09R006), 453 

and University of Michigan (PRO00005866). All authors complied with the ARRIVE 454 

guidelines. 455 

 456 

Study population 457 
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Subjects for this study were wild North American red squirrels (Tamiasciurus 458 

hudsonicus) inhabiting a natural environment in southwest Yukon, Canada (61°N, 459 

138°W). All subjects were continuously monitored as part of the Kluane Red Squirrel 460 

Project, a long-term field study that has been conducting a combination of live-trapping, 461 

focal behavioral observations, sampling, and experimental manipulations in the area 462 

since 1987 [38,86]. Individual squirrels are marked with small metal ear tags and unique 463 

combinations of colored wire threaded through the ear tags. Individuals are monitored 464 

from birth to death in each year of study, roughly from March to October, using live-465 

trapping and behavioral observations [38]. Individuals included in our study lived on one 466 

of three grids (Agnes or AG, Kloo or KL, Sulphur or SU). On AG, individuals were 467 

supplemented with peanut butter from October to May in each year for a separate 468 

experiment focused on experimentally increasing squirrel population density [28,38]. On 469 

KL and SU, no food supplementation was provided. All models controlled for food 470 

supplementation status given its potential impacts on gut microbiome composition. 471 

  472 

Sampling 473 

We collected 227 samples from 88 individuals across three years (2008-2010). When 474 

individuals were captured, they were handled such that their unique identity could be 475 

determined (by reading ear tags), sexed, and their reproductive condition could be 476 

recorded. Fecal samples were collected opportunistically during live-trapping from 477 

underneath the traps using forceps. Following capture and handling of squirrels, fresh 478 

fecal samples were collected from underneath the traps, kept on wet ice until they could 479 

be frozen at -20 C within 5 hrs of collection in the field. Samples contaminated with 480 

urine were not collected and all samples were kept at -20 C until analysis. We removed 481 

one fecal pellet from each sample using sterilized forceps for microbiome sequencing 482 

and then used the rest of the sample to measure fecal GC metabolites. 483 

  484 

Age 485 

The age of each squirrel was known as individual squirrels were uniquely tagged in their 486 

natal nest when they were ~25 days of age and age is accordingly recorded at each 487 

trapping event [38]. 488 
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  489 

Reproductive activity 490 

Squirrels were live-trapped regularly and handled using visualization to determine 491 

reproduction state. During each trapping event simultaneous with the collection of 492 

microbiome and hormone samples, the reproductive state of the individual was 493 

determined via abdominal palpation [86]. Males were considered reproductively active if 494 

their testes were scrotal, and not reproductively active if testes were abdominal. For 495 

females, pregnancy status was assessed via abdominal palpation for fetuses as well as 496 

by examining nipple condition. Females were determined to be reproductively active if 497 

they were gestating, lactating, or breeding based on nipple condition. We have 498 

previously found that females that are reproductively active (pregnant or lactating) have 499 

higher fecal GC metabolites than those that were not reproductively active whereas 500 

there were no differences in the effects of reproductive activity (presence or absence of 501 

scrotal testes) in males [49]. 502 

  503 

Dietary heterogeneity 504 

Although red squirrels consume primarily white spruce seeds, they also consume a 505 

number of other foods (e.g., spruce bark and needles, willow leaves and buds, fungi, 506 

and bearberry flowers) and thus experience varying levels of seasonal dietary 507 

heterogeneity [34]. We coded dietary heterogeneity by ranking the availability of these 508 

different foods across seasons from greatest (3) to least (1). Samples collected prior to 509 

June of each year were ranked as 1, while samples collected in the month of June and 510 

late summer (July-August) were ranked as 2 and 3, respectively. 511 

  512 

Conspecific density 513 

Densities (expressed as squirrels per hectare) for each grid of the study (KL, SU, AG) 514 

were calculated separately for each year (2008, 2009, 2010) across the dataset using 515 

census data. In May of each year, we determined the number of squirrels owning a 516 

territory on our study areas using a combination of live-trapping and behavioral 517 

observations. Because squirrels are diurnal, regularly exhibit territorial calls, and their 518 
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territories are visually conspicuous, we were able to completely enumerate all squirrels 519 

living in our study areas. 520 

 521 

Sequencing and bioinformatics 522 

Microbiome data used in this study are a subset of previously published data [52]. DNA 523 

extraction and sequencing was performed as described in Ren et al. 2017. Briefly, the 524 

V1-V3 hypervariable region of the 16S rRNA bacterial gene was amplified using two 525 

universal primers: 27F (5’-ARGGTTTGATCMTGGCTCAG-3’) and 534R (5’-526 

TTACCGCGGCTGCTGGCAC-3’). Samples were barcoded for PCR amplification, 527 

pooled, gel purified, and then sequenced on an Illumina MiSeq using 300 bp paired-end 528 

sequences. Sequences were then filtered, quality controlled, and reads were 529 

successfully merged using QIIME [87]. Chimeras were removed using USEARCH [88] 530 

and sequences determined to be non-chimeric by both de novo and reference-based 531 

algorithms were retained. Reads were clustered to OTUs using UCLUST [89] with an 532 

identity threshold of 97% (genus-level). Mitochondria and chloroplast were removed, 533 

and samples were rarefied to 4000 reads per sample. 534 

 535 

Hormone metabolite analysis 536 

The time period from collection in the field to freezing (~5 hrs) did not impact fecal GC 537 

metabolites [49]. We measured fecal GC metabolites using previously validated 538 

protocols [49,90]. Briefly, samples were lyophilized for 14-16 hrs, bathed in liquid 539 

nitrogen, and pulverized using a mortar and pestle. A subsample (0.05 g) was then 540 

extracted using 80% methanol where the samples were vortexed at 1450 RPM for 30 541 

min followed by centrifuging for 15 min at 2500 g [49]. The supernatant was then used 542 

in an enzyme-immunoassay that employed an antibody that measures GC metabolites 543 

with a 5α-3β,11β-diol structure [91]. We have previously validated this assay and shown 544 

that the antibody can accurately measure increases in adrenal production of GCs [49]. 545 

We have also shown that our measures of fecal GC metabolites are comparable across 546 

assays [92]. Using pooled samples that were run repeatedly on different plates (n = 547 

115) in our laboratory show that the estimates of optical density for these pooled 548 

samples were highly repeatable (R = 0.851, 95% CI = 0.543-0.925). Using a linear 549 
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mixed-effects model, we partitioned the variance in the optical density recorded for the 550 

pooled samples that were run across these different plates and found that most of the 551 

variance was due to the sample itself (85.1%) with little of it being explained by intra-552 

assay variation as all samples were run in duplicate (4.9%) or by inter-assay variation 553 

(9.9%). 554 

  555 

Statistical analysis 556 

All statistical analyses were conducted in R (v. 3.5.2.) (R. Core Team, 2015). OTU and 557 

taxonomy tables were imported into R and merged into a phyloseq object for 558 

downstream analyses using the ape [93] and phyloseq [94] packages. All figures were 559 

created in R, with the exception of the conceptual model (Figure 1) and the structural 560 

equation model figures (Figures 4 and S1), which were created in bioRender 561 

(www.biorender.com). 562 

  563 

Alpha diversity 564 

The estimate_richness() function in the phyloseq package was used to calculate the 565 

observed richness (Chao1) and Shannon Index of alpha diversity. Faith’s Phylogenetic 566 

Distances were calculated using the pd() function on the phyloseq object in picante [95]. 567 

Linear mixed-effects models were used to assess the relationship between bacterial 568 

diversity and fecal glucocorticoid metabolites (GCs), including individual ID as a random 569 

intercept, and collection date and food supplementation as fixed effects. GCs 570 

concentrations were log-transformed to improve model fit. Shannon Indices were Tukey 571 

transformed prior to analysis to achieve residual normality. All models were assessed 572 

for multicollinearity among predictor variables by calculating variance inflation factors 573 

(VIF < 5). 574 

  575 

Differential abundance testing 576 

To identify the bacterial taxa whose relative abundances were significantly associated 577 

with changes in host GCs, we constructed negative binomial mixed models and 578 

implemented our analysis using the NBZIMM package [96]. Negative binomial models 579 

outperform other traditional differential abundance methods (e.g. DESeq) because they 580 
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are better equipped to handle the zero-inflation and sparsity common to microbiome 581 

count data [96]. Taxa included in differential abundance testing were filtered with a 582 

liberal threshold of > 0.001% relative abundance to the overall microbiome community 583 

to avoid excluding rare taxa as they contribute substantially to measures of community 584 

diversity [58,97]. Models included the read count of each bacterial taxa as the 585 

dependent variable, GCs (logged) as a fixed effect, controlling for collection date (fixed), 586 

food supplementation (fixed), and individual id (random). Taxa whose negative binomial 587 

models did not converge due to a high presence of zeroes were modeled instead with 588 

zero-inflated negative binomial models using the glmer.zinb() function in the same 589 

package (NBZIMM). We controlled the false discovery rate by applying a Benjamini-590 

Hochberg FDR correction to all p-values. Adjusted p-values < 0.05 were considered 591 

statistically significant. 592 

  593 

Structural Equation Modelling 594 

To integrate ecological and host variables into our model framework investigating the 595 

relationship between GCs and gut microbiome diversity, we constructed a structural 596 

equation model using (SEM) using the piecewiseSEM package [69]. SEM is an effective 597 

way to evaluate direct and indirect effects of multiple variables within complex 598 

ecological systems [43]. Unlike traditional variance covariance-based SEM, piecewise 599 

SEM approaches allow for the inclusion of random effects, the construction of a single 600 

causal network from multiple separate models, and the ability to handle small sample 601 

sizes and compare models using Akaike information criterion (AIC) [69]. 602 

  603 

Using piecewiseSEM, we investigated whether the relationship between GCs and gut 604 

microbiome diversity (endogenous variables, i.e., variables of interest) was moderated 605 

by host and/or ecological factors (exogenous variables, i.e., variance outside of the 606 

model structure). All categorical variables were converted to numeric variables prior to 607 

modeling. To build the SEM, we first constructed two component linear mixed models. 608 

The first model tested the effects of conspecific density, reproductive activity, dietary 609 

heterogeneity, and an upcoming mast on GCs. The second model tested the effects of 610 

reproductive activity, dietary heterogeneity, an upcoming mast, age, and GCs on gut 611 
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microbiome diversity (Chao1 richness). Both component models included sample 612 

collection date and food supplementation status as a fixed effect and individual ID as a 613 

random effect. However, food supplementation did not affect GCs or gut microbiome 614 

diversity in either of the component models (effect on GCs: estimate ± SE -4.86 ± 3.08, t 615 

= -1.58, P = 0.12; effect on gut microbiome alpha diversity: estimate ± SE -29.14 ± 616 

79.13, t = -0.37, P = 0.71), and was therefore removed from the SEM to improve model 617 

fit (AICc) and refine the standardized beta estimates. The overall fit of the SEM was 618 

evaluated using Shipley’s test of d-separation Fisher’s C statistic and AICc. 619 

 620 
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