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Abstract: Habitat loss and fragmentation represent a major threat to biodiversity, however, the 12 

modulation of its effects by the non-habitat matrix surrounding habitat patches is still undervalued. 13 

The landscape matrix might change community assembly in different ways. For example, low-14 

quality matrices can accentuate environmental filtering by reducing resource availability and/or 15 

deteriorating abiotic conditions but they may also over limit dispersal of organisms and make 16 

communities more prone to ecological drift. To understand how matrix quality modulates the 17 

effects of habitat loss, we quantified the relative importance of environmental filter and ecological 18 

drift in bird occurrences across both local and landscape gradients of habitat loss embedded in low- 19 

and high-quality matrices. We used a trait-based approach to understand habitat loss filtering effects 20 

on birds. We found that low-quality matrices, composed mainly of low-productive pasturelands, 21 

increased the severity of habitat loss filtering effects for forest specialist birds, but only at the 22 

landscape scale. Bird occurrence was in general higher in high-quality matrices, i.e., more 23 

heterogeneous and with low-contrasting edges, indicating the role of the matrix quality on 24 

attenuating species extinction risks at the landscape scale probably due to mass effect. Moreover, 25 

forest specialists presented a strong negative response to habitat loss filtering across different 26 

functional traits, while generalists presented a high variability in traits response to habitat loss. We 27 

raised evidence in supporting that landscape habitat loss filtering may be relaxed or reinforced 28 

depending on the quality of the matrix, evidencing that matrix quality has a strong impact in 29 

modulating community assembly processes in fragmented landscapes. In practical terms, it means 30 

that improving matrix quality may help in maintaining the high diversity of birds even without any 31 

increase in native forest cover.  32 
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Introduction 33 

Anthropogenic habitat change is one of the most important drivers of biodiversity loss (Díaz 34 

et al. 2019). The division of habitats into smaller and more isolated fragments, separated by a non-35 

habitat matrix of human-transformed land cover, alters not only the quantity but also the quality of 36 

the habitats in the landscape (Fischer & Lindenmayer 2007; Haddad et al. 2015). Much has been 37 

studied on how habitat loss and fragmentation impact biodiversity in terms of the community and 38 

species deterministic responses (environmental filtering) and random demographic events leading to 39 

stochastic changes in community composition (ecological drift) (Baselga et al. 2015; Pardini et al. 40 

2017; Henckel et al. 2019). Nevertheless, the role of the landscape matrix in altering these 41 

deterministic and random assembly processes and thus the outcome of habitat loss on community 42 

composition is still unclear (Kupfer et al. 2006; Pardini et al. 2017).  43 

The outcome of habitat loss and fragmentation on biodiversity may depend on how the 44 

matrix changes the relative importance of the assembly processes in the remaining habitat patches 45 

and the landscape (metacommunities sensu Leibold et al. (2004)). This knowledge is critical for 46 

mitigating the negative effects of global environmental change (Tscharntke et al. 2012; Kohli et al. 47 

2018), especially given the vast diversity of ways humans modify landscapes and create different 48 

matrix contexts. However, it faces two main challenges: how to disentangle community assembly 49 

processes at different spatial scales, and how to characterize the matrix context in landscapes. First, 50 

community assembly processes in acting differently at local and landscape scales may result in 51 

different metacommunity arrangements (Leibold et al. 2004), which evidence the foreseen patterns 52 

of multidimensionality and scale-dependency of species richness (Chase et al. 2019) and 53 

biodiversity changes (Chase et al. 2018). One approach to disentangle community assembly 54 

processes is the use of species traits to elucidate mechanisms by which communities respond to 55 

environmental gradients (McGill et al. 2006; Cadotte et al. 2015). Such trait-environment 56 
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associations proved to be critical in understanding how ecological processes affect biodiversity 57 

across scales (Newbold et al. 2013, 2014; Gilroy et al. 2015; Suárez-Castro et al. 2018). Therefore, 58 

trait-focused approaches may show how local environments and landscapes constrain diversity 59 

(Tscharntke et al. 2012), for example when the matrix influences trait diversity in habitat patches 60 

(Boesing et al. 2018a).  61 

Second, a prolific way to characterize matrix context is by its quality for a target group of 62 

organisms. Matrix quality is context-dependent, since each species may perceive the matrix 63 

differently, but in general, it may be assumed as the structural similarity of the matrix with the 64 

native habitat (Prevedello & Vieira 2010). For instance, landscapes with high-quality matrices can 65 

maintain greater amounts and diversity of resources (Dunning et al. 1992; Pardini et al. 2009) 66 

which can be used occasionally by species living in patches (spillover; Blitzer et al. 2012). High-67 

quality matrices can also facilitate species movement across the landscape leading to higher 68 

landscape connectivity (Antongiovanni & Metzger 2005; Fahrig 2007). Consequently, landscapes 69 

with high-quality matrices may support more species than the ones with matrices of lower quality 70 

(Carrara et al. 2015; Reider et al. 2018; Stjernman et al. 2019). Even though there is evidence that 71 

landscapes with matrices of better quality (e.g., more heterogeneous, less contrasting) permit higher 72 

species and trait diversity (Boesing et al. 2018a), the specific mechanisms are still unclear.  73 

The matrix may change how habitat loss and fragmentation modulate community assembly 74 

processes through its effects on (1) organismal movements (Fahrig 2007; Watling et al. 2011; Biz et 75 

al. 2017), (2) the availability of supplementary or complementary resources in the landscape 76 

(Dunning et al. 1992; Boesing et al. 2021), and (3) abiotic edge conditions of habitat patches (edge 77 

effects, Saunders et al. 1991, Pardini et al. 2009, Pfeifer et al. 2017). When movements of 78 

organisms among habitat patches are heavily limited by the matrix, dispersal (sensu Vellend 2010) 79 

may be limited and, together with habitat loss, will lead to small and functionally isolated 80 
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communities, which are more prone to ecological drift (Horváth et al. 2019; Siqueira et al. 2020). 81 

When matrix decreases resource availability in the landscape and/or accentuate unfavorable abiotic 82 

condition inside habitat patches (edge effects), habitat loss may be an even more severe 83 

environmental filter, selecting only those species able to persist under these harsher conditions 84 

(Chase 2007). By modulating these 3 mechanisms, matrix quality changes how habitat loss and 85 

fragmentation alter the relative importance of the assembly processes of dispersal (potentially 86 

leading to ecological drift) and environmental filtering. Moreover, given the scale-dependent nature 87 

of ecological communities (Chase et al. 2018), only a multiscale combined with a trait-based 88 

approach (Suárez-Castro et al. 2018) may help to identify the relative strength of such processes 89 

across both local and landscape scales. 90 

In this study, we investigated whether and how matrix quality modulates the relative 91 

importance of assembly processes in bird communities across gradients of habitat loss. First, we 92 

hypothesize that the relative contribution of the assembly processes of habitat loss filtering and 93 

ecological drift will depend on (1) how dispersal is limited and (2) the harshness of the 94 

environmental filtering by matrices of different qualities. If bird dispersal is heavily limited by low-95 

quality matrices, habitat loss will create small and isolated communities more prone to drift, which 96 

in turn will relatively decrease the importance of habitat loss filtering compared to landscapes with 97 

high-quality matrices. However, if the main effects of a low-quality matrix are in decreasing 98 

resource availability and/or deteriorating abiotic conditions in habitat patches, habitat loss will be an 99 

even more severe filter, increasing the relative importance of habitat loss filtering compared to 100 

high-quality matrix landscapes. Second, given that matrix quality is an element of the landscape, we 101 

expect that the effects of habitat loss filtering on species traits will be stronger at the landscape scale 102 

than at the local scale (hypothesis of landscape moderation of trait selection; Tscharntke et al. 103 

2012). We compared results between forest specialist and forest generalist birds. Since specialists 104 
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are considered more sensitive to habitat loss (Pardini et al. 2009; Carrara et al. 2015), habitat loss 105 

filtering should be stronger and negative for them. As forest generalists are commonly less affected 106 

by habitat loss or can even increase in abundance (Devictor et al. 2008; Nordberg & Schwarzkopf 107 

2018), we predict a positive or null relationship of their traits to habitat loss. 108 

To test our hypotheses and predictions, we modeled the occurrence of bird species in 109 

landscapes with different matrix quality using hierarchical models that are commonly used to 110 

analyze trait-environment associations (Pollock et al. 2012; Jamil et al. 2013; ter Braak 2019) and 111 

for disentangling scale-dependent community assembly processes (Ovaskainen et al. 2017; 112 

Poggiato et al. 2021). We used variance partitioning of the models (Nakagawa & Schielzeth 2013) 113 

to compare the relative importance of processes across assemblages. Habitat loss effects across 114 

scales were investigated by both habitat loss overall effect in birds’ occurrences and trait filtering 115 

effects. We also evaluated how much of the species response to habitat loss is explained by their 116 

traits, to understand how species traits are filtered in landscapes under different matrix contexts. 117 

 118 

Methods 119 

Study areas 120 

The study was carried out in the Atlantic Forest of southeastern Brazil (Figure 1). Currently, 121 

the entire region detains less than 30% of the original forest cover (Rezende et al. 2018), and most 122 

of the forest is confined in small patches (< 50 ha) in different stages of regeneration (Ribeiro et al. 123 

2009). Our study landscapes were constrained across two regions (far apart 90 km) detaining 124 

similar biophysical characteristics and bird species pool, but with different agricultural matrix 125 

compositions (details in Boesing et al. 2018). The northwest region (henceforth ‘high-quality 126 

matrix’) is mainly composed of a mosaic of sun-coffee, sugar cane plantations, and pastures, 127 
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resulting in a more heterogeneous matrix. Coffee plantations cover around 46% of the matrix and it 128 

is usually located adjacent to forest edges, creating low-contrasting edges at the patch-scale (Figure 129 

1A). The southeast region (henceforth ‘low-quality matrix’) is largely dominated by low-productive 130 

pastures and low diversity of other land use types, and so it is composed by a more homogeneous 131 

matrix. Additionally, the huge structural difference between pastures and forests creates high-132 

contrasting edges at the patch scale (Figure 1B). 133 

 134 

Figure 1: Location of the study area (left upper panel) within the Brazilian Atlantic Forest biome 135 

(in green) with 23 studied landscapes in southeastern Brazil (left lower panel). We show in (A) a 136 

landscape with 27% of native forest cover and high-quality matrix, which is more heterogeneous 137 

and have a high proportion of sun coffee plantations; and in (B) a landscape with the same forest 138 

cover but low-quality matrix mostly composed by low-productive pastures. Buffers of 400 m radios 139 

around sampling sites (black dots) composed the local scale, while the focal 2 km landscape with 4 140 

sampling points composed the landscape scale.  141 
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We selected landscapes that span a gradient of landscape-level forest cover (2 km radius, 142 

1256 ha each), while controlling for potentially confounding factors, following Pasher et al. (2013). 143 

We selected 10 and 13 focal landscapes in the high-quality (ranging from 7-46% of forest cover) 144 

and low-quality matrix (12-55% of forest cover) regions, respectively. In each landscape, we placed 145 

4 sampling sites (total 96 sites) in forest patches in a way to cover different ranges of local forest 146 

cover inside the same landscape. See Appendix 1 and Boesing et al. (2018a) for more details about 147 

the area selection procedure. 148 

Bird sampling and traits selection   149 

In each sampling site, we performed a 50 m fixed radius point count (Bibby et al. 2000) and 150 

recorded all bird species detected visually or aurally during a 15 min sampling period. Each point 151 

count was visited four times, between January–April and August–November of 2014 (N=368). Both 152 

regions were sampled simultaneously. See Appendix 1 for more descriptions about the bird 153 

sampling and community. 154 

Bird traits selection was similar to the framework proposed by Luck et al. (2012). First, we 155 

listed the potential traits based on current knowledge on bird traits related to extinction-proneness 156 

due to habitat loss, land use, or environmental change (references in Appendix 2). Then, we 157 

selected the traits based on the (1) data availability (considering mainly Wilman et al. 2014, 158 

Boesing et al. 2018, Rodrigues et al. 2019); (2) experts’ knowledge (ALB); and (3) the empirical 159 

relationship among traits (correlations). Finally, we selected four groups of response traits (sensu 160 

Violle et al. 2007) that are known to affect individual fitness by influencing growth, reproduction, 161 

or survival of the species on human-modified landscapes: body size, nest type, diet, and foraging 162 

stratum. These traits were represented by seven operational variables described in detail in 163 

Appendix 2. 164 



9 

 

 

The classification of the species concerning their habitat specialization (forest specialists 165 

and forest generalists, henceforth just specialists and generalists) could be also considered a life 166 

history trait (e.g., Newbold et al. 2013). However, because habitat specialization is very important 167 

for understanding the effects of habitat loss and fragmentation (Owens & Bennett 2000; Pandit et 168 

al. 2009; Kupsch et al. 2019), we kept separate analyses for specialists and generalists. Moreover, 169 

as both groups of species presented the same range of trait values on our data (Appendix 2), we also 170 

investigated if the same trait differs in response to habitat loss depending on species habitat 171 

specialization. 172 

Modeling 173 

To test our hypotheses and predictions, we modeled bird occurrences with hierarchical 174 

linear models commonly used to analyze trait-environment associations and disentangle scale 175 

dependency in community assembly processes (Pollock et al. 2012; Jamil et al. 2013; ter Braak 176 

2019; Poggiato et al. 2021). We used a binomial generalized linear mixed model (logit link 177 

function) with the number of detections of each of n species (four visits) in each of m sites as 178 

response variable (Miller et al. 2018). In each species-site combination (𝑌𝑖, where i goes from 1 to n 179 

x m observations), we assigned predictors of the n species-level trait and the m site- and landscape-180 

level forest cover (Miller et al. 2018). Following the convention of mixed models (Gelman et al. 181 

2007; Miller et al. 2018), our model is described by: 182 

𝑌𝑖 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(4, 𝑝) 183 

𝑙𝑜𝑔𝑖𝑡(𝑝) = (𝛼 + 𝑎𝑠𝑝𝑝[𝑖] + 𝑏𝑠𝑖𝑡𝑒[𝑖] + 𝑐𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖]) + (𝛽1 + 𝑑𝑠𝑝𝑝[𝑖])𝑓𝑜𝑟𝑒𝑠𝑡_𝑐𝑜𝑣𝑒𝑟𝑠𝑖𝑡𝑒[𝑖] + 184 

         (𝛽2 + 𝑒𝑠𝑖𝑡𝑒[𝑖] + 𝑓𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖])𝑡𝑟𝑎𝑖𝑡𝑠𝑝𝑝[𝑖] + 𝛽12𝑡𝑟𝑎𝑖𝑡𝑠𝑝𝑝[𝑖] × 𝑓𝑜𝑟𝑒𝑠𝑡_𝑐𝑜𝑣𝑒𝑟𝑠𝑖𝑡𝑒[𝑖] +         (1) 185 

 𝑔𝑠𝑖𝑡𝑒[𝑖]×𝑠𝑝𝑝[𝑖] + ℎ𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖]∗𝑠𝑝𝑝[𝑖] 186 
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where 𝑌𝑖 is the observed occurrence for each of the 𝑖 species-site combination (species n in site m). 187 

Fixed effects are represented in Greek and random effects in Latin letters. All random effect terms 188 

are represented by a normal distribution with mean zero and their respective estimated variances 189 

(𝜎𝑎
2, 𝜎𝑏

2,  𝜎𝑐
2, 𝜎𝑑

2, 𝜎𝑒
2, 𝜎𝑓

2, 𝜎𝑔
2, 𝜎ℎ

2). Terms with random intercept and slope have additional 190 

parameters denoting the correlation between them (𝜌𝑎𝑑 , 𝜌𝑏𝑒 , 𝜌𝑐𝑓). The model’s formula syntax the 191 

lme4 R package (Bates et al. 2015) is: 192 

Y ~ trait*forest_cover + (forest_cover|species) + (trait|site) + 193 

(trait|landscape) + (1|landscape:species) + (1|landscape:site) 194 

The fixed effects in the logit link function are the main effects of habitat loss (represented by 195 

forest cover) and trait (𝛼, 𝛽1, 𝛽2) and habitat loss filtering effects through traits (interaction term 196 

𝛽12). We used the percentage of forest cover at both local and landscape scales as response 197 

variables to denote habitat loss and we found no collinearity between these variables (Appendix 2). 198 

We are particularly interested in: (1) the main effects of habitat loss, i.e., how steep is the decrease 199 

in occurrence probability of all birds when habitat is lost, and (2) the interaction effect of habitat 200 

loss with traits, i.e., how species with different traits will respond to habitat loss. However, these 201 

effects are not statistically easily separable from the effects of trait values in terms of variance 202 

explained (R2, Johnson 2014). As we show below, we kept the whole structure of fixed effects in 203 

interpreting marginal R2 as a general interpretation of habitat loss effects. Nevertheless, we also 204 

compared the estimates of habitat loss main effects among assemblages and across scales and 205 

calculated the importance of the traits in explaining habitat loss filtering (equation 2, below) to 206 

interpreting habitat loss filtering effects through traits. 207 

Species random effects are the variation among species in their overall abundances (random 208 

intercept, 𝑎𝑠𝑝𝑝[𝑖]) and response to habitat loss (random slope, 𝑑𝑠𝑝𝑝[𝑖];) regardless of its trait values. 209 
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They mean the idiosyncratic response of each species to habitat loss and their differences in overall 210 

abundances. Trait-site and trait-landscape random interactions (random intercepts: 𝑏𝑠𝑖𝑡𝑒[𝑖], 211 

𝑐𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖], and slopes: 𝑒𝑠𝑖𝑡𝑒[𝑖], 𝑓𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖]) deal with the trait-mediated response to non-212 

measured environmental gradients at local and landscape scales, respectively. This is a solution to 213 

"account for any interaction that the observed trait has with any unobserved environmental 214 

gradient" (ter Braak 2019). 215 

We included two additional random effects of site-species (𝑔𝑠𝑖𝑡𝑒[𝑖]×𝑠𝑝𝑝[𝑖]), and landscape-216 

species interactions (ℎ𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖]×𝑠𝑝𝑝[𝑖]) to express that occurrence probability of the same species 217 

may vary among sites and landscapes, regardless of the species identity, its traits, and the 218 

environment (habitat loss gradients), i.e. random variation in species occurrences probabilities 219 

across sites and landscapes. In our model, the site-species interaction term is the so-called 220 

Observation Level Random Effect (OLRE), which allows for extra variance among observations. 221 

OLRE is generally used to deal with overdispersion in data modeling with the exponential family 222 

distributions (Harrison 2014, 2015). For species occurrences, overdispersion is frequently 223 

associated with individuals’ aggregations in space (Elston et al. 2001; Ozgul et al. 2009). In this 224 

sense, at the community level, we can assume that the spatial aggregation expressed by these terms 225 

is a result of differential dispersal, which may be limitation or excess of dispersal. For instance, 226 

dispersal limitation of individuals among patches and landscapes leads to ecological drift (sensu 227 

Vellend 2010). We cannot ensure that all the variances apportioned in these terms are exactly 228 

differential dispersal. However, because we have carefully handled many possible niche processes 229 

(or selection sensu Vellend 2010) in the model, probably, these terms do not include other processes 230 

than random variation in species occurrence probabilities. At least, if differential dispersal among 231 

patches and landscapes is an important process, it will be expressed in these two random effects and 232 

not in the other terms. 233 
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To express the importance of traits in explaining habitat loss filtering we calculated the 234 

proportional decrease in the variance of the species random slope of forest cover (𝑑𝑠𝑝𝑝[𝑖]) when we 235 

include the trait-forest cover interaction term (𝛽12) in the model (Jamil et al. 2013): 236 

𝐶𝛽 = 1 −
𝑑𝑠𝑝𝑝[𝑖](𝑟𝑒𝑠)

𝑑𝑠𝑝𝑝[𝑖](𝑡𝑜𝑡𝑎𝑙)
                                   (2)  237 

𝑑𝑠𝑝𝑝[𝑖](𝑟𝑒𝑠) is the variance of the random species slope from the model with forest cover and trait 238 

main effects (𝛽2) and the trait-environment interaction (𝛽12); 𝑑𝑠𝑝𝑝[𝑖](𝑡𝑜𝑡𝑎𝑙) is the same variance 239 

term for the model without trait-environment interaction but with the main effects. This proportion 240 

explains how much of the effect of habitat loss on each species can be explained by their trait 241 

values. 242 

We computed overall R2 for the models by the additive variance partitioning method 243 

(Nakagawa & Schielzeth 2013; Johnson 2014; Nakagawa et al. 2017), which is appropriate for 244 

comparing models fit to different data sets because it does not depend on sample size (Ives 2019). 245 

We also apportioned the total variance among the model terms (marginal R2 sensu Ives 2019) to 246 

compare the relative importance of processes across assemblages. We calculated the overall and 247 

marginal R2 on the scale of the link function (logit) since it can decouple variance and mean so that 248 

the linked scale R2 can be calculated independent of the population mean (Nakagawa & Schielzeth 249 

2010). 250 

Table 1: Definitions and ecological interpretations of the statistical terms of the hierarchical linear 251 

model (equation 1). 252 

Model terms 

(equation 1) 

Code* Description 

𝛼; 𝛽1; 𝛽2; 𝛽12  
trait*for_cov Fixed effects: main effects of habitat loss and traits, and habitat loss filtering 

effects through traits (interaction terms) at both local and landscape scale. 
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𝑎𝑠𝑝𝑝[𝑖]; 𝑑𝑠𝑝𝑝[𝑖] 

 

(for_cov|sp) Random effects: variation among species in their overall occurrences (intercept) 

and response to habitat loss (slope) regardless of its traits. It is the idiosyncratic 

response of each species to habitat loss and their differences in overall 

abundances. 

𝑏𝑠𝑖𝑡𝑒{𝑖}; 𝑒𝑠𝑖𝑡𝑒 

𝑐𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖]; 

𝑓𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖] 

 

 

(trait|site) 

(trait|lands) 

Random effects: interaction (random intercept and slope) between trait values 

and sites/landscapes. It is the possible relationship of the measured trait with any 

unmeasured environmental variable at the site/landscape level. Trait-mediated 

response to other environmental gradients at local/landscape scale. 

𝑔𝑠𝑝𝑝[𝑖]×𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖]  (lands:sp) Random effects: overdispersion term indicating random variation in species 

occurrences across landscapes, regardless of its traits and environmental 

conditions. 

ℎ𝑠𝑝𝑝[𝑖]×𝑠𝑖𝑡𝑒[𝑖]       (site:sp) Random effects: overdispersion term indicating random variation in species 

occurrences across sites, regardless of its traits and environmental conditions. 

* R syntax code following lme4 package (Bates et al. 2015). 253 
 254 

Data analysis 255 

We ran the model described above for each low and high-quality matrix landscapes and for 256 

forest specialists and generalists separately (hereafter assemblages) to better interpret and compare 257 

overall and marginal R2s among assemblages. We analyzed the data in two steps. First, given that 258 

ecological responses can be affected by processes acting at different spatial scales (Jackson & 259 

Fahrig 2015), we selected the best scale for the effect of local forest cover (details in Appendix 2). 260 

We chose the percentage of local forest cover measured at 400 m buffer radius around each site 261 

(Figure 1). Second, we ran separate models for each species trait (equation 1) including local and 262 

landscape forest cover (2 km radius around the centroid of the landscapes) as predictors of habitat 263 

loss. We finally combined 4 traits with the highest explanatory power for all datasets (main diet, 264 

proportion of lower strata use, body mass, and nest type) in one model to predict the trait's response 265 

to habitat loss and to compare the marginal R2 of each model term. The combined traits models did 266 

not show collinearity and the traits were not correlated among species (Appendix 3). 267 
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All data analysis was performed using R (R Core Team 2019) with lme4 package (Bates et 268 

al. 2015) for modeling, and DHARMa (Hartig 2018) for quantile residuals diagnostic. See Appendix 269 

3 for models’ implementation and diagnostic. 270 

 271 

Results  272 

In our modeling approach, the R2 of the fixed effects – trait, habitat loss, and filtering effects 273 

at both local and landscape scales – was the variance component that had the most marked 274 

differences between specialist assemblages (Figure 2). It was 2.2 times higher for the specialists in 275 

the low-quality than in the high-quality matrix landscapes (22 and 10%, respectively), and it was up 276 

to 3 times higher for specialists than for both generalist assemblages (7-8%). It means that habitat 277 

loss effects alone and habitat loss filtering effects were much stronger for the specialist birds in low-278 

quality matrix landscapes. Moreover, overall R2 for specialists in low-quality matrix landscapes 279 

captured most of the variability in bird’s occurrence (72%), followed by specialists in high-quality 280 

matrices (58%) (Figure 2). Overall R2 for generalists was smaller and similar across landscapes 281 

regardless of matrix quality (46-47%). 282 

The R2 for the terms that account for random variation in species occurrences across sites 283 

(site:sp), were very low (1%) for all assemblages. However, the R2 for random variation in species 284 

occurrences at the landscape scale (lands:sp) was almost 2 times larger for the specialists in high-285 

quality matrices than for the specialists in low-quality matrices, and it was much larger for 286 

specialists (4-7%) than generalists (1-2%). Therefore, specialists in high-quality matrices have 287 

higher random variation in species occurrences among landscapes than in low-quality matrices. 288 

The terms that express the variation among species in their overall abundances and 289 

responses to habitat loss regardless of their traits (random intercept and slope: env|sp) presented the 290 
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highest marginal R2 for all assemblages, ranging from 32 to 40%, and being about 1.3 higher for the 291 

specialists than for the generalists. Similarly, marginal R2 of the terms that express the effects of 292 

species traits associated with unmeasured environmental variables (trait|site and trait|land) were 293 

very low, and together they varied between 3 to 5% in all assemblages. 294 

 295 

 296 

Figure 2: Overall and marginal R2s for the models with combined traits (body mass, type of nest, 297 

main diet, percentage of lower strata use) for forest generalist and forest specialists in high and low-298 

quality matrix landscapes. The number on the right side of each bar indicates the percentages for 299 

each term. See Table 1 for model terms definitions. 300 

In comparing habitat loss effects across scales, we found that the effects of both local and 301 

landscape habitat loss in bird occurrence were stronger for the specialists in low-quality matrix 302 

landscapes (Figure 3). While local forest cover presented similar and positive effects on bird 303 

occurrences for specialists in both high- and low-quality matrix landscapes, landscape forest cover 304 

presented a strong effect only for specialists in low-quality matrix landscapes, where this effect was 305 
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larger than for local forest cover. As expected, the effects of habitat loss for generalists were 306 

generally weaker and irrelevant at any scale.307 

 308 

 309 

Figure 3: Slope coefficients (and 95% confidence intervals) of local and landscape forest cover for 310 

specialist and generalist birds in different matrix quality landscapes. These are results for the 311 

combined model (equation 1) with the traits: main diet, nest type, body mass and proportion of 312 

lower strata use. See Appendix 3 for a table of all coefficients estimated for each assemblage. 313 

The importance of species traits explaining habitat loss filtering was higher for the 314 

assemblages in low-quality matrices (Figure 4, combined traits model). Trait importance for the 315 

generalists in low-quality matrix landscapes explained 26% of the variability in species response to 316 

habitat loss. For the specialists, trait importance varied between 17 and 22%, and for the generalist 317 

in high-quality landscapes, it was only 14%. In general, nest type and main diet presented the 318 

highest values of trait importance for the assemblages (Figure 4). 319 
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Bird occurrence probabilities were in general higher for the assemblage in high-quality 320 

compared to low-quality matrix landscapes (Figure 5). For specialists, all the traits were associated 321 

with a decrease in occurrence probabilities with habitat loss. For generalists, trait-habitat loss 322 

relationships changed according to the trait. For example, generalists of closed nests responded 323 

positively to habitat loss, while those that nest in cavities responded negatively and generalists of 324 

open nests almost did not change with habitat loss (Figure 5). Nevertheless, occurrence probabilities 325 

of frugivores, species that build nests in cavities, and large birds decreased with habitat loss 326 

regardless of the matrix type and habitat specificity (Figure 5). 327 

 328 

 329 

Figure 4: Importance of species traits in explaining habitat loss filtering (equation 2) for forest-330 

specialists and forest-generalists according to matrix quality. Trait importance was calculated for 331 

each trait in separate models and for the combined model, which includes, nest type, main diet, 332 

body mass, and percentage of lower strata use. 333 
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334 
Figure 5: Probabilities of occurrence of species with local forest cover (400 m buffer; %) according 335 

to main diet, body mass, and nest type for forest specialists and generalists in both high (green 336 

lines) and low-quality matrices (yellow lines). For the predictions, landscape forest cover was fixed 337 

at 30%. 338 

 339 

Discussion 340 

Here, we aimed to understand how the quality of the matrix surrounding habitat patches 341 

modulates the relative importance of assembly processes in bird communities across local and 342 

landscape gradients of habitat loss. We found that landscapes with low-quality matrices, composed 343 
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mainly of low-productive pasturelands, increased the severity of habitat loss filtering effects for 344 

forest specialist birds (Figure 2), with habitat loss effects at the landscape scale (Figure 3) and 345 

habitat loss filtering effects through species traits (Figure 4) being much stronger in those 346 

landscapes. In high quality-matrix landscapes (more heterogeneous and with low-contrasting 347 

edges), birds’ occurrences were in general larger with more random variation among landscapes 348 

(evidence for larger differential dispersal). Both results indicate the role of matrix quality in 349 

attenuating extinction risks in the landscape, allowing species that would have been extinct due to 350 

habitat loss. As expected, forest specialists presented a stronger response to habitat loss filtering, 351 

displaying a consistent negative relationship of all traits (diet, nest type, foraging stratum, and body 352 

size) with local habitat loss, while generalists presented a high variability in traits response to 353 

habitat loss (Figure 5). 354 

Matrix quality modulating the relative importance of habitat loss across scales 355 

We found that matrix quality modulates habitat loss effects only for specialist birds at the 356 

landscape scale. Local habitat amount effects on birds were not dependent on the quality of the 357 

matrix. At the landscape scale, filtering processes are usually related to the selection of species 358 

according to landscape composition and configuration (Duflot et al. 2014; Suárez-Castro et al. 359 

2018). Landscapes composed of low-quality matrices may decrease the availability of 360 

supplementary and complementary resources in the matrix (Dunning et al. 1992; Boesing et al. 361 

2021) and/or deteriorate abiotic conditions in habitat edges (Saunders et al. 1991; Pardini et al. 362 

2009; Pfeifer et al. 2017). These two mechanisms together with habitat loss may create an even 363 

more severe environmental filter for the communities, selecting only those species able to persist 364 

under new harsh conditions (Chase 2007). Our results for the specialist birds support this hypothesis 365 

of lower-quality matrices increasing severity of habitat loss filtering by showing: (1) a 2-times 366 

larger relative importance of habitat loss, traits, and filtering effects, with consequently (2) a 367 
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stronger habitat loss effect, and (3) higher importance of traits in habitat loss filtering. In addition, 368 

there is evidence in our study system that the high-quality matrices, especially sun-coffee 369 

plantations, are serving as a source of complementary resources for biodiversity due to the 370 

movement of organisms from forest patches to the matrix for foraging (cross-habitat spillover, 371 

Boesing et al. 2018b, 2021). 372 

Additionally, landscapes composed of low-quality matrices may hinder dispersal among 373 

patches or decrease the survival rate of dispersing individuals (Fahrig 2007; Watling et al. 2011; 374 

Biz et al. 2017). By that, dispersal limitation would create functionally isolated communities more 375 

prone to ecological drift (e.g., Baselga et al. 2015, Siqueira et al. 2020), which, in turn, would 376 

decrease species filtering effects by habitat loss. However, our results pointed to another direction, 377 

as we found that habitat loss filtering through traits was stronger in low-quality matrix landscapes. 378 

We believe that in our study system, dispersal limitation is not an issue for the forest birds in both 379 

matrix landscapes, as the marginal R2s for the differential dispersal (Figure 2, lands:sp term) were 380 

relatively low. However, the differential dispersal term was 2 times higher in relative importance 381 

(R2) for the specialists in the high-quality matrix, indicating that there may be not a limitation but an 382 

excess of dispersal in high-quality matrices – possibly resulting in source-sink dynamics (Mouquet 383 

& Loreau 2003). High-quality matrix landscapes with higher dispersal rates, more resource 384 

availability, and milder edge effects may be preventing extinctions of isolated populations by 385 

migration of individuals from other patches (mass effect in metapopulation theory, Leibold et al. 386 

2004). This mechanism would weaken the deleterious effects of habitat loss, allowing the survival 387 

of species that are not optimally suited for the new environmental conditions (Leibold & Loeuille 388 

2015).  389 
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Habitat loss filtering depends on the quality of the matrix 390 

The importance of species traits in explaining habitat loss filtering effects was higher for the 391 

assemblages in low-quality matrices for both generalists and specialists (Fig. 4), evidencing 392 

stronger filtering effects in low-quality matrix landscapes as discussed above. We found that 393 

specialist birds with certain traits, e.g., small-sized, insectivorous, or birds with closed nests, were 394 

more prone to extinction due to habitat loss in landscapes embedded in low-quality matrices than 395 

species with the same traits in high-quality matrices (Fig. 5). This indicates further that habitat loss 396 

has different filtering effects (stronger or weaker) over species traits depending on the quality of the 397 

matrix. Such changes might be related to further effects of the matrix changing specific niches 398 

required by different species in-patches, mostly via edge-effects on both biotic and abiotic patterns 399 

(Murcia 1995). For instance, species that make nests in cavities or build closed nests are safer 400 

against parasitism and predation (Sibly et al. 2012), which are among the most impacting drivers of 401 

bird populations’ decline in fragmented landscapes (Cavitt & Martin 2002). As nest 402 

predation/parasitism often increases with edge effects (Murcia 1995), it may be stronger in 403 

landscapes with highly contrasting matrices, i.e., lower quality. However, this difference among 404 

matrices of different quality vanishes in low forest cover (less than 30%) for species that nest in 405 

cavities, even though they have higher occurrence probabilities for larger forest cover (~60%) in 406 

high-quality matrix landscapes. It may be the case that the lack of suitable nesting cavities under 407 

low forest cover amounts have a similarly strong effect on the reproduction of these species in both 408 

landscape types, especially for Picidae and Psittacidae families, which require old or dead trees to 409 

build their nests (Sick 1997). 410 

Because we were able to compare the same set of traits for forest generalist and specialist 411 

species, we can understand better why habitat loss and fragmentation not necessarily leads to loss of 412 

functional diversity (Boesing et al. 2018a), change in functional traits (de Coster et al. 2015), or 413 
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even functional homogenization (Devictor et al. 2008; Clavel et al. 2011; Nordberg & Schwarzkopf 414 

2018). If specialists are replaced by generalists with similar trait values, functional differences 415 

cannot be easily observed, and thus no apparent functional differences are seen, as often reported 416 

(de Coster et al. 2015; Boesing et al. 2018a). However, we also found that species with some 417 

specific traits (such as nest type and body size) were always negatively impacted by habitat loss. 418 

This finding raises the point that not all forest generalist species succeed in fragmented landscapes, 419 

and that some key functions and/or species may be indeed lost with no substitution of traits when 420 

specialists are replaced by generalists. Overall, our results reinforce the evidence that habitat loss 421 

and matrix harshness promote abiotic environmental changes inside habitat patches which make 422 

species with specific traits to be more prone to extinction than others under different matrix 423 

conditions in the landscapes. 424 

Theoretical and practical implications 425 

Despite a long-standing global research effort into understanding how habitat loss and 426 

fragmentation influence species loss, and at which spatial scale species loss is observed (Horváth et 427 

al. 2019), there is still a considerable debate on which mechanisms are more important (Fahrig 428 

2013, 2017; Haddad et al. 2015; Hanski 2015; Fletcher et al. 2018). Our findings raised evidence 429 

supporting that habitat loss is a strong filtering process that often leads more vulnerable species to 430 

extinction (Gilbert et al. 2006; Banks-Leite et al. 2012; Püttker et al. 2015; Pardini et al. 2017), but 431 

with a considerable influence of the matrix in modulating filtering processes. We have evidenced 432 

the importance of the matrix quality in modulating habitat loss effects at the landscape scale, 433 

weakening or strengthening its severity on species filtering (Chase 2007). Matrices of low quality 434 

accentuate habitat loss filtering in fragmented landscapes through its relatively larger effects in 435 

altering resource availability and edge effects, more than movement limitation. Consequently, the 436 
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larger severity of habitat loss filtering in low-quality matrix landscapes decreases the relative 437 

importance of ecological drift on those assemblages.  438 

Statistical quantification of the effects of dispersal and ecological drift is still an unresolved 439 

methodological problem with many caveats (Vellend et al. 2014). In our framework, we chose to 440 

handle possible effects of differential dispersal through terms that would take the extra variability of 441 

the data (overdispersion) produced by differences in species occurrences across sites and 442 

landscapes. This way, we saw that dispersal limitation in low-quality matrices leading to drift is not 443 

the only possible outcome after habitat loss and fragmentation. High rates of dispersal in high-444 

quality matrix landscapes can even override environmental filtering by allowing species to occupy 445 

habitat patches where their intrinsic growth rate would be otherwise negative (Chase et al. 2020). 446 

To our knowledge, this is the first empirical evidence that a not limited dispersal in high-quality 447 

matrices may result in mass effects in metacommunities in fragmented landscapes, although its 448 

effects are relatively small in comparison with environmental filtering. 449 

In practical terms, improving matrix quality in fragmented landscapes is a key action aiming 450 

to restore and achieve more sustainable landscapes (Leite et al. 2013; Arroyo-Rodríguez et al. 451 

2020), especially in places where conservation practices and restoration are constrained by 452 

economic and political conflicts, are costly-demanding and requires strategic planning (Metzger et 453 

al. 2021). In this sense, converting low-productive pastures into more heterogeneous environments 454 

via tree enrichment (Prevedello et al. 2018), or converting such pastures (even if partially) in less 455 

contrasting land uses (such as diversified crops, perennial crops, or even tree plantations) can 456 

increase matrix quality, minimizing the severity of habitat loss and fragmentation for forest birds 457 

(Ruffell et al. 2017).  In our study areas, the conversion of abandoned and unproductive 458 

pasturelands into silviculture in the last decades was responsible for the increase in second-growth 459 

native forests (Calaboni et al. 2018). Restoration and economic practices improving matrix quality 460 
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may help in maintaining the high diversity of birds in the Atlantic Forest even without any increase 461 

in native forest cover. 462 
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