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Abstract 12 

1. Habitat loss and fragmentation represent a major threat to biodiversity, however, the 13 

modulation of its effects by the non-habitat matrix surrounding habitat patches is still 14 

undervalued. The landscape matrix might change community assembly in different ways. 15 

For example, low-quality matrices can accentuate environmental filtering by reducing 16 

resource availability and/or deteriorating abiotic conditions but they may also over limit 17 

dispersal of organisms and make communities more prone to ecological drift.  18 

2. To understand how matrix quality modulates the effects of habitat loss, we quantified the 19 

relative importance of environmental filter and ecological drift in bird occurrences across 20 

both local and landscape gradients of habitat loss embedded in low- and high-quality 21 

matrices. We used a trait-based approach to understand habitat loss filtering effects on birds.  22 

3. We found that low-quality matrices, composed mainly of low-productive pasturelands, 23 

increased the severity of habitat loss filtering effects for forest specialist birds, but only at 24 

the landscape scale. Bird occurrence was in general higher in high-quality matrices, i.e., 25 

more heterogeneous and with low-contrasting edges, indicating the role of the matrix quality 26 

on attenuating species extinction risks at the landscape scale probably due to mass effect. 27 

Moreover, forest specialists presented a strong negative response to habitat loss filtering 28 

across different functional traits, while generalists presented a high variability in traits 29 

response to habitat loss.  30 

4. Synthesis and applications: We raised evidence in supporting that landscape habitat loss 31 

filtering may be relaxed or reinforced depending on the quality of the matrix, evidencing 32 

that matrix quality has a strong impact in modulating community assembly processes in 33 

fragmented landscapes. In practical terms, it means that improving matrix quality may help 34 

in maintaining the high diversity of birds even without any increase in native forest cover. 35 
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Introduction 38 

Anthropogenic habitat change is one of the most important drivers of biodiversity loss (Díaz 39 

et al., 2019). The division of habitats into smaller and more isolated fragments, separated by a non-40 

habitat matrix of human-transformed land cover, alters not only the quantity but also the quality of 41 

the habitats in the landscape (Fischer & Lindenmayer, 2007; Haddad et al., 2015). Much has been 42 

studied on how habitat loss and fragmentation impact biodiversity in terms of the community and 43 

species deterministic responses (environmental filtering) and random demographic events leading to 44 

stochastic changes in community composition (ecological drift) (Baselga et al., 2015; Henckel et 45 

al., 2019; Pardini et al., 2017). Nevertheless, the role of the landscape matrix in altering these 46 

deterministic and random assembly processes and thus the outcome of habitat loss on community 47 

composition is still unclear (Kupfer et al., 2006; Pardini et al., 2017). 48 

The outcome of habitat loss and fragmentation on biodiversity may depend on how the 49 

matrix changes the relative importance of the assembly processes in the remaining habitat patches 50 

and the landscape (metacommunities sensu Leibold et al. (2004)). This knowledge is critical for 51 

mitigating the negative effects of global environmental change (Kohli et al., 2018; Tscharntke et al., 52 

2012), especially given the vast diversity of ways humans modify landscapes and create different 53 

matrix contexts. However, it faces two main challenges: how to disentangle community assembly 54 

processes at different spatial scales, and how to characterize the matrix context in landscapes. First, 55 

community assembly processes in acting differently at local and landscape scales may result in 56 

different metacommunity arrangements (Leibold et al., 2004), which evidence the foreseen patterns 57 

of multidimensionality and scale-dependency of species richness (Chase et al., 2019) and 58 

biodiversity changes (Chase et al., 2018). One approach to disentangle community assembly 59 

processes is the use of species traits to elucidate mechanisms by which communities respond to 60 

environmental gradients (Cadotte et al., 2015; McGill et al., 2006). Such trait-environment 61 
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associations proved to be critical in understanding how ecological processes affect biodiversity 62 

across scales (Gilroy et al., 2015; Newbold et al., 2013, 2014; Suárez-Castro et al., 2018). 63 

Therefore, trait-focused approaches may show how local environments and landscapes constrain 64 

diversity (Tscharntke et al., 2012), for example when the matrix influences trait diversity in habitat 65 

patches (Boesing et al., 2018a).  66 

Second, a prolific way to characterize matrix context is by its quality for a target group of 67 

organisms. Matrix quality is context-dependent, since each species may perceive the matrix 68 

differently, but in general, it may be assumed as the structural similarity of the matrix with the 69 

native habitat (Prevedello & Vieira, 2010). For instance, landscapes with high-quality matrices can 70 

maintain greater amounts and diversity of resources (Dunning et al., 1992; Pardini et al., 2009) 71 

which can be used occasionally by species living in patches (spillover; Blitzer et al. 2012). High-72 

quality matrices can also facilitate species movement across the landscape leading to higher 73 

landscape connectivity (Antongiovanni & Metzger, 2005; Fahrig, 2007). Consequently, landscapes 74 

with high-quality matrices may support more species than the ones with matrices of lower quality 75 

(Carrara et al., 2015; Reider et al., 2018; Stjernman et al., 2019). Even though there is evidence that 76 

landscapes with matrices of better quality (e.g., more heterogeneous, less contrasting) permit higher 77 

species and trait diversity (Boesing et al., 2018a), the specific mechanisms are still unclear.  78 

The matrix may change how habitat loss and fragmentation modulate community assembly 79 

processes through its effects on (1) organismal movements (Biz et al., 2017; Fahrig, 2007; Watling 80 

et al., 2011), (2) the availability of supplementary or complementary resources in the landscape 81 

(Boesing et al., 2021; Dunning et al., 1992), and (3) abiotic edge conditions of habitat patches (edge 82 

effects, Saunders et al. 1991, Pardini et al. 2009, Pfeifer et al. 2017). When movements of 83 

organisms among habitat patches are heavily limited by the matrix, dispersal (sensu Vellend 2010) 84 

may be limited and, together with habitat loss, will lead to small and functionally isolated 85 
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communities, which are more prone to ecological drift (Horváth et al., 2019; Siqueira et al., 2020). 86 

When matrix decreases resource availability in the landscape and/or accentuate unfavorable abiotic 87 

condition inside habitat patches (edge effects), habitat loss may be an even more severe 88 

environmental filter, selecting only those species able to persist under these harsher conditions 89 

(Chase, 2007). By modulating these 3 mechanisms, matrix quality changes how habitat loss and 90 

fragmentation alter the relative importance of the assembly processes of dispersal (potentially 91 

leading to ecological drift) and environmental filtering. Moreover, given the scale-dependent nature 92 

of ecological communities (Chase et al., 2018), only a multiscale combined with a trait-based 93 

approach (Suárez-Castro et al., 2018) may help to identify the relative strength of such processes 94 

across both local and landscape scales. 95 

In this study, we investigated whether and how matrix quality modulates the relative 96 

importance of assembly processes in bird communities across gradients of habitat loss. First, we 97 

hypothesize that the relative contribution of the assembly processes of habitat loss filtering and 98 

ecological drift will depend on (1) how dispersal is limited and (2) the harshness of the 99 

environmental filtering by matrices of different qualities. If bird dispersal is heavily limited by low-100 

quality matrices, habitat loss will create small and isolated communities more prone to drift, which 101 

in turn will relatively decrease the importance of habitat loss filtering compared to landscapes with 102 

high-quality matrices. However, if the main effects of a low-quality matrix are in decreasing 103 

resource availability and/or deteriorating abiotic conditions in habitat patches, habitat loss will be an 104 

even more severe filter, increasing the relative importance of habitat loss filtering compared to 105 

high-quality matrix landscapes. Second, given that matrix quality is an element of the landscape, we 106 

expect that the effects of habitat loss filtering on species traits will be stronger at the landscape scale 107 

than at the local scale (hypothesis of landscape moderation of trait selection; Tscharntke et al. 108 

2012). We compared results between forest specialist and forest generalist birds. Since specialists 109 
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are considered more sensitive to habitat loss (Carrara et al., 2015; Pardini et al., 2009), habitat loss 110 

filtering should be stronger and negative for them. As forest generalists are commonly less affected 111 

by habitat loss or can even increase in abundance (Devictor et al., 2008; Nordberg & Schwarzkopf, 112 

2018), we predict a positive or null relationship of their traits to habitat loss. 113 

To test our hypotheses and predictions, we modeled the occurrence of bird species in 114 

landscapes with different matrix quality using hierarchical models that are commonly used to 115 

analyze trait-environment associations (Jamil et al., 2013; ter Braak, 2019), for disentangling scale-116 

dependent community assembly processes (Ovaskainen et al., 2017; Poggiato et al., 2021), and to 117 

sort out niche and drift effects on species abundances (Mortara, 2016). We used variance 118 

partitioning of the models (Nakagawa & Schielzeth, 2013) to compare the relative importance of 119 

processes across assemblages. Habitat loss effects across scales were investigated by both habitat 120 

loss overall effect in birds’ occurrences and trait filtering effects. We also evaluated how much of 121 

the species response to habitat loss is explained by their traits, to understand how species traits are 122 

filtered in landscapes under different matrix contexts. 123 

 124 

Methods 125 

Study areas 126 

The study was carried out in the Atlantic Forest of southeastern Brazil (Fig. 1). Currently, 127 

the entire region detains less than 30% of the original forest cover (Rezende et al., 2018), and most 128 

of the forest is confined in small patches (< 50 ha) in different stages of regeneration (Ribeiro et al., 129 

2009). Our study landscapes were constrained across two regions (far apart 90 km) detaining 130 

similar biophysical characteristics and bird species pool, but with different agricultural matrix 131 

compositions (details in Boesing et al. 2018). The northwest region (henceforth ‘high-quality 132 
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matrix’) is mainly composed of a mosaic of sun-coffee, sugar cane plantations, and pastures, 133 

resulting in a more heterogeneous matrix. Coffee plantations cover around 46% of the matrix and it 134 

is usually located adjacent to forest edges, creating low-contrasting edges at the patch-scale (Fig. 135 

1A). The southeast region (henceforth ‘low-quality matrix’) is largely dominated by low-productive 136 

pastures and low diversity of other land use types, and so it is composed by a more homogeneous 137 

matrix. Additionally, the huge structural difference between pastures and forests creates high-138 

contrasting edges at the patch scale (Fig. 1B). 139 

 140 

Figure 1: Location of the study area (left upper panel) within the Brazilian Atlantic Forest biome 141 

(in green) with 23 studied landscapes in southeastern Brazil (left lower panel). We show in (A) a 142 

landscape with 27% of native forest cover and high-quality matrix, which is more heterogeneous 143 

and have a high proportion of sun coffee plantations; and in (B) a landscape with the same forest 144 

cover but low-quality matrix mostly composed by low-productive pastures. Buffers of 400 m radius 145 
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around sampling sites (black dots) composed the local scale, while the focal 2 km landscape with 4 146 

sampling points composed the landscape scale.  147 

We selected landscapes that span a gradient of landscape-level forest cover (2 km radius, 148 

1256 ha each), while controlling for potentially confounding factors, following Pasher et al. (2013). 149 

We selected 10 and 13 focal landscapes in the high-quality (ranging from 7-46% of forest cover) 150 

and low-quality matrix (12-55% of forest cover) regions, respectively. In each landscape, we placed 151 

4 sampling sites (total 96 sites) in forest patches in a way to cover different ranges of local forest 152 

cover inside the same landscape. See Appendix 1 and Boesing et al. (2018a) for more details about 153 

the area selection procedure. 154 

Bird sampling and traits selection   155 

In each sampling site, we performed a 50 m fixed radius point count (Bibby et al. 2000) and 156 

recorded all bird species detected visually or aurally during a 15 min sampling period. Each point 157 

count was visited four times, between January–April and August–November of 2014 (N=368). Both 158 

regions were sampled simultaneously. See Appendix 1 for more descriptions about the bird 159 

sampling and community. 160 

Bird traits selection was similar to the framework proposed by Luck et al. (2012). First, we 161 

listed the potential traits based on current knowledge on bird traits related to extinction-proneness 162 

due to habitat loss, land use, or environmental change (references in Appendix 2). Then, we 163 

selected the traits based on the (1) data availability (considering mainly Wilman et al. 2014, 164 

Boesing et al. 2018, Rodrigues et al. 2019); (2) experts’ knowledge (ALB); and (3) the empirical 165 

relationship among traits (correlations). Finally, we selected four groups of response traits (sensu 166 

Violle et al. 2007) that are known to affect individual fitness by influencing growth, reproduction, 167 

or survival of the species on human-modified landscapes: body size, nest type, diet, and foraging 168 
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stratum. These traits were represented by seven operational variables described in detail in 169 

Appendix 2. 170 

The classification of the species concerning their habitat specialization (forest specialists 171 

and forest generalists, henceforth just specialists and generalists) could be also considered a life 172 

history trait (e.g., Newbold et al., 2013). However, because habitat specialization is very important 173 

for understanding the effects of habitat loss and fragmentation (Kupsch et al., 2019; Owens & 174 

Bennett, 2000; Pandit et al., 2009), we kept separate analyses for specialists and generalists. 175 

Moreover, as both groups of species presented the same range of trait values on our data (Appendix 176 

2), we also investigated if the same trait differs in response to habitat loss depending on species 177 

habitat specialization. 178 

Modeling 179 

We modeled bird occurrences with hierarchical linear models commonly used to analyze 180 

trait-environment associations and disentangle scale dependency in community assembly processes 181 

(Jamil et al., 2013; Poggiato et al., 2021; ter Braak, 2019). We used a binomial generalized linear 182 

mixed model (logit link function) with the number of detections of each of n species (four visits) in 183 

each of m sites as response variable (Miller et al., 2018). In each species-site combination (𝑌𝑖, where 184 

i goes from 1 to n x m observations), we assigned predictors of the n species-level trait and the m 185 

site- and landscape-level forest cover (Miller et al., 2018). Following the convention of mixed 186 

models (Gelman et al., 2007; Miller et al., 2018), our model is described by: 187 

𝑌𝑖 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(4, 𝑝) 188 

𝑙𝑜𝑔𝑖𝑡(𝑝) = (𝛼 + 𝑎𝑠𝑝𝑝[𝑖] + 𝑏𝑠𝑖𝑡𝑒[𝑖] + 𝑐𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖]) + (𝛽1 + 𝑑𝑠𝑝𝑝[𝑖])𝑓𝑜𝑟𝑒𝑠𝑡𝑐𝑜𝑣𝑒𝑟𝑠𝑖𝑡𝑒[𝑖] + 189 

(𝛽2 + 𝑒𝑠𝑖𝑡𝑒[𝑖] + 𝑓𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖])𝑡𝑟𝑎𝑖𝑡𝑠𝑝𝑝[𝑖] + 𝛽12𝑡𝑟𝑎𝑖𝑡𝑠𝑝𝑝[𝑖] × 𝑓𝑜𝑟𝑒𝑠𝑡𝑐𝑜𝑣𝑒𝑟𝑠𝑖𝑡𝑒[𝑖] +         (1) 190 
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𝑔𝑠𝑖𝑡𝑒[𝑖]×𝑠𝑝𝑝[𝑖] + ℎ𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖]∗𝑠𝑝𝑝[𝑖] 191 

where 𝑌𝑖 is the observed occurrence for each of the 𝑖 species-site combination (species n in site m). 192 

Fixed effects are represented in Greek and random effects in Latin letters. All random effect terms 193 

are represented by a normal distribution with mean zero and their respective estimated variances 194 

(𝜎𝑎
2, 𝜎𝑏

2, 𝜎𝑐
2, 𝜎𝑑

2, 𝜎𝑒
2, 𝜎𝑓

2,𝜎𝑔
2,𝜎ℎ

2). Terms with random intercept and slope have additional parameters 195 

denoting the correlation between them (𝜌𝑎𝑑 , 𝜌𝑏𝑒 , 𝜌𝑐𝑓). The model’s formula syntax the lme4 R 196 

package (Bates et al., 2015) is: 197 

Y ~ trait*forest_cover + (forest_cover|species) + (trait|site) + 198 

(trait|landscape) + (1|landscape:species) + (1|landscape:site) 199 

The fixed effects in the logit link function are the main effects of habitat loss (represented by 200 

forest cover) and trait (𝛼, 𝛽1, 𝛽2 and habitat loss filtering effects through traits (interaction term 201 

𝛽12). We used the percentage of forest cover at both local and landscape scales as response 202 

variables to denote habitat loss and we found no collinearity between these variables (Appendix 2). 203 

We are particularly interested in: (1) the main effects of habitat loss, i.e., how steep is the decrease 204 

in occurrence probability of all birds when habitat is lost, and (2) the interaction effect of habitat 205 

loss with traits, i.e., how species with different traits will respond to habitat loss. However, these 206 

effects are not statistically easily separable from the effects of trait values in terms of variance 207 

explained (R2, Johnson 2014). As we show below, we kept the whole structure of fixed effects in 208 

interpreting marginal R2 as a general interpretation of habitat loss effects. Nevertheless, we also 209 

compared the estimates of habitat loss main effects among assemblages and across scales and 210 

calculated the importance of the traits in explaining habitat loss filtering (equation 2, below) to 211 

interpreting habitat loss filtering effects through traits. 212 
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Species random effects are the variation among species in their overall abundances (random 213 

intercept, 𝑎𝑠𝑝𝑝[𝑖]) and response to habitat loss (random slope, 𝑑𝑠𝑝𝑝[𝑖];) regardless of its trait values. 214 

They mean the idiosyncratic response of each species to habitat loss and their differences in overall 215 

abundances. Trait-site and trait-landscape random interactions (random intercepts: 𝑏𝑠𝑖𝑡𝑒[𝑖], 216 

𝑐𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖], and slopes: 𝑒𝑠𝑖𝑡𝑒[𝑖], 𝑓𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖]) deal with the trait-mediated response to non-217 

measured environmental gradients at local and landscape scales, respectively. This is a solution to 218 

"account for any interaction that the observed trait has with any unobserved environmental 219 

gradient" (ter Braak, 2019). 220 

We included two additional random effects of site-species (𝑔𝑠𝑖𝑡𝑒[𝑖]×𝑠𝑝𝑝[𝑖]), and landscape-221 

species interactions (ℎ𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖]×𝑠𝑝𝑝[𝑖] to express that occurrence probability of the same species 222 

may vary among sites and landscapes, regardless of the species identity, its traits, and the 223 

environment (habitat loss gradients), i.e. random variation in species occurrences probabilities 224 

across sites and landscapes. In our model, the site-species interaction term is the so-called 225 

Observation Level Random Effect (OLRE), which allows for extra variance among observations. 226 

OLRE is generally used to deal with overdispersion in data modeling with the exponential family 227 

distributions (Harrison, 2014, 2015). For species occurrences, overdispersion is frequently 228 

associated with individuals’ aggregations in space (Elston et al., 2001; Ozgul et al., 2009). In this 229 

sense, at the community level, we can assume that the spatial aggregation expressed by these terms 230 

is a result of differential dispersal, which may be limitation or excess of dispersal. For instance, 231 

dispersal limitation of individuals among patches and landscapes leads to ecological drift (sensu 232 

Vellend 2010). Although it is expected that these terms express ecological drift (Mortara, 2016), we 233 

cannot ensure that all the variances apportioned in these terms are exactly differential dispersal. 234 

However, because we have carefully handled many possible niche processes (or selection sensu 235 

Vellend 2010) in the model, probably, these terms do not include other processes than random 236 
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variation in species occurrence probabilities. At least, if differential dispersal among patches and 237 

landscapes is an important process, it will be expressed in these two random effects and not in the 238 

other terms. 239 

To express the importance of traits in explaining habitat loss filtering we calculated the 240 

proportional decrease in the variance of the species random slope of forest cover (𝑑𝑠𝑝𝑝[𝑖]) when we 241 

include the trait-forest cover interaction term (𝛽12) in the model (Jamil et al., 2013): 242 

𝐶𝛽 = 1 −
𝑑𝑠𝑝𝑝[𝑖](𝑟𝑒𝑠)

𝑑𝑠𝑝𝑝[𝑖](𝑡𝑜𝑡𝑎𝑙)
                                   (2)  243 

𝑑𝑠𝑝𝑝[𝑖](𝑟𝑒𝑠) is the variance of the random species slope from the model with forest cover and trait 244 

main effects (𝛽2) and the trait-environment interaction (𝛽12); 𝑑𝑠𝑝𝑝[𝑖](𝑡𝑜𝑡𝑎𝑙) is the same variance 245 

term for the model without trait-environment interaction but with the main effects. This proportion 246 

explains how much of the effect of habitat loss on each species can be explained by their trait 247 

values. 248 

We computed overall R2 for the models by the additive variance partitioning method 249 

(Johnson, 2014; Nakagawa et al., 2017; Nakagawa & Schielzeth, 2013), which is appropriate for 250 

comparing models fit to different data sets because it does not depend on sample size (Ives, 2019). 251 

We also apportioned the total variance among the model terms (marginal R2 sensu Ives 2019) to 252 

compare the relative importance of processes across assemblages. We calculated the overall and 253 

marginal R2 on the scale of the link function (logit) since it can decouple variance and mean so that 254 

the linked scale R2 can be calculated independent of the population mean (Nakagawa & Schielzeth, 255 

2010). 256 

 257 
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Table 1: Definitions and ecological interpretations of the statistical terms of the hierarchical linear 258 

model (equation 1). 259 

Model terms 

(equation 1) 

Code* Description 

𝛼;𝛽1; 𝛽2; 𝛽12 
trait*for_cov Fixed effects: main effects of habitat loss and traits, and habitat loss filtering 

effects through traits (interaction terms) at both local and landscape scale. 

𝑎𝑠𝑝𝑝[𝑖]; 

𝑑𝑠𝑝𝑝[𝑖] 
 

(for_cov|sp) Random effects: variation among species in their overall occurrences (intercept) 

and response to habitat loss (slope) regardless of its traits. It is the idiosyncratic 

response of each species to habitat loss and their differences in overall 

abundances. 

𝑏𝑠𝑖𝑡𝑒{𝑖}; 𝑒𝑠𝑖𝑡𝑒 

𝑐𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖]; 

𝑓𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖] 
 

 

(trait|site) 

(trait|lands) 

Random effects: interaction (random intercept and slope) between trait values 

and sites/landscapes. It is the possible relationship of the measured trait with any 

unmeasured environmental variable at the site/landscape level. Trait-mediated 

response to other environmental gradients at local/landscape scale. 

𝑔𝑠𝑝𝑝[𝑖]×𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒[𝑖]  (lands:sp) Random effects: overdispersion term indicating random variation in species 

occurrences across landscapes, regardless of its traits and environmental 

conditions. 

ℎ𝑠𝑝𝑝[𝑖]×𝑠𝑖𝑡𝑒[𝑖]       (site:sp) Random effects: overdispersion term indicating random variation in species 

occurrences across sites, regardless of its traits and environmental conditions. 
* R syntax code following lme4 package (Bates et al. 2015). 260 
 261 

Data analysis 262 

We ran the model described above for each low and high-quality matrix landscapes and for 263 

forest specialists and generalists separately (hereafter assemblages) to better interpret and compare 264 

overall and marginal R2s among assemblages. We analyzed the data in two steps. First, given that 265 

ecological responses can be affected by processes acting at different spatial scales (Jackson & 266 

Fahrig, 2015), we selected the best scale for the effect of local forest cover (details in Appendix 2). 267 

We chose the percentage of local forest cover measured at 400 m buffer radius around each site 268 

(Fig. 1). Second, we ran separate models for each species trait (equation 1) including local and 269 

landscape forest cover (2 km radius around the centroid of the landscapes) as predictors of habitat 270 

loss. We finally combined 4 traits with the highest explanatory power for all datasets (main diet, 271 

proportion of lower strata use, body mass, and nest type) in one model to predict the trait's response 272 

to habitat loss and to compare the marginal R2 of each model term. The combined traits models did 273 

not show collinearity and the traits were not correlated among species (Appendix 3). 274 
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All data analysis was performed using R (R Core Team 2019) with lme4 package (Bates et 275 

al., 2015) for modeling, and DHARMa (Hartig, 2018) for quantile residuals diagnostic. See 276 

Appendix 3 for models’ implementation and diagnostic. 277 

 278 

Results  279 

In our modeling approach, the R2 of the fixed effects – trait, habitat loss, and filtering effects 280 

at both local and landscape scales – was the variance component that had the most marked 281 

differences between specialist assemblages (Fig. 2). It was 2.2 times higher for the specialists in the 282 

low-quality than in the high-quality matrix landscapes (22 and 10%, respectively), and it was up to 283 

3 times higher for specialists than for both generalist assemblages (7-8%). It means that habitat loss 284 

effects alone and habitat loss filtering effects were much stronger for the specialist birds in low-285 

quality matrix landscapes. Moreover, overall R2 for specialists in low-quality matrix landscapes 286 

captured most of the variability in bird’s occurrence (72%), followed by specialists in high-quality 287 

matrices (58%) (Fig. 2). Overall R2 for generalists was smaller and similar across landscapes 288 

regardless of matrix quality (46-47%). 289 

The R2 for the terms that account for random variation in species occurrences across sites 290 

(site:sp), were very low (1%) for all assemblages. However, the R2 for random variation in species 291 

occurrences at the landscape scale (lands:sp) was almost 2 times larger for the specialists in high-292 

quality matrices than for the specialists in low-quality matrices, and it was much larger for 293 

specialists (4-7%) than generalists (1-2%). Therefore, specialists in high-quality matrices have 294 

higher random variation in species occurrences among landscapes than in low-quality matrices. 295 

The terms that express the variation among species in their overall abundances and 296 

responses to habitat loss regardless of their traits (random intercept and slope: env|sp) presented the 297 



16 

 

 

highest marginal R2 for all assemblages, ranging from 32 to 40%, and being about 1.3 higher for the 298 

specialists than for the generalists. Similarly, marginal R2 of the terms that express the effects of 299 

species traits associated with unmeasured environmental variables (trait|site and trait|land) were 300 

very low, and together they varied between 3 to 5% in all assemblages. 301 

 302 

 303 

Figure 2: Overall and marginal R2s for the models with combined traits (body mass, type of nest, 304 

main diet, percentage of lower strata use) for forest generalist and forest specialists in high and low-305 

quality matrix landscapes. The number on the right side of each bar indicates the percentages for 306 

each term. See Table 1 for model terms definitions. 307 

In comparing habitat loss effects across scales, we found that the effects of both local and 308 

landscape habitat loss in bird occurrence were stronger for the specialists in low-quality matrix 309 

landscapes (Fig. 3). While local forest cover presented similar and positive effects on bird 310 

occurrences for specialists in both high- and low-quality matrix landscapes, landscape forest cover 311 

presented a strong effect only for specialists in low-quality matrix landscapes, where this effect was 312 
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larger than for local forest cover. As expected, the effects of habitat loss for generalists were 313 

generally weaker and irrelevant at any scale.314 

 315 

Figure 3: Slope coefficients (and 95% confidence intervals) of local and landscape forest cover for 316 

specialist and generalist birds in different matrix quality landscapes. These are results for the 317 

combined model (equation 1) with the traits: main diet, nest type, body mass and proportion of 318 

lower strata use. See Appendix 3 for a table of all coefficients estimated for each assemblage. 319 

The importance of species traits explaining habitat loss filtering was higher for the 320 

assemblages in low-quality matrices (Fig. 4, combined traits model). Trait importance for the 321 

generalists in low-quality matrix landscapes explained 26% of the variability in species response to 322 

habitat loss. For the specialists, trait importance varied between 17 and 22%, and for the generalist 323 

in high-quality landscapes, it was only 14%. In general, nest type and main diet presented the 324 

highest values of trait importance for the assemblages (Fig. 4). 325 

Bird occurrence probabilities were in general higher for the assemblage in high-quality 326 

compared to low-quality matrix landscapes (Fig. 5). For specialists, all the traits were associated 327 
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with a decrease in occurrence probabilities with habitat loss. For generalists, trait-habitat loss 328 

relationships changed according to the trait. For example, generalists of closed nests responded 329 

positively to habitat loss, while those that nest in cavities responded negatively and generalists of 330 

open nests almost did not change with habitat loss (Fig. 5). Nevertheless, occurrence probabilities 331 

of frugivores, species that build nests in cavities, and large birds decreased with habitat loss 332 

regardless of the matrix type and habitat specificity (Fig. 5). 333 

 334 

 335 

Figure 4: Importance of species traits in explaining habitat loss filtering (equation 2) for forest-336 

specialists and forest-generalists according to matrix quality. Trait importance was calculated for 337 

each trait in separate models and for the combined model, which includes, nest type, main diet, 338 

body mass, and percentage of lower strata use. 339 
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340 
Figure 5: Probabilities of occurrence of species with local forest cover (400 m buffer; %) according 341 

to main diet, body mass, and nest type for forest specialists and generalists in both high (green 342 

lines) and low-quality matrices (yellow lines). For the predictions, landscape forest cover was fixed 343 

at 30%. 344 

 345 

Discussion 346 

Here, we aimed to understand how the quality of the matrix surrounding habitat patches 347 

modulates the relative importance of assembly processes in bird communities across local and 348 

landscape gradients of habitat loss. We found that landscapes with low-quality matrices, composed 349 
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mainly of low-productive pasturelands, increased the severity of habitat loss filtering effects for 350 

forest specialist birds (Fig. 2), with habitat loss effects at the landscape scale (Fig. 3) and habitat 351 

loss filtering effects through species traits (Fig. 4) being much stronger in those landscapes. In high 352 

quality-matrix landscapes (more heterogeneous and with low-contrasting edges), birds’ occurrences 353 

were in general larger with more random variation among landscapes (evidence for larger 354 

differential dispersal). Both results indicate the role of matrix quality in attenuating extinction risks 355 

in the landscape, allowing species that would have been extinct due to habitat loss. As expected, 356 

forest specialists presented a stronger response to habitat loss filtering, displaying a consistent 357 

negative relationship of all traits (diet, nest type, foraging stratum, and body size) with local habitat 358 

loss, while generalists presented a high variability in traits response to habitat loss (Fig. 5). 359 

Matrix quality modulating the relative importance of habitat loss across scales 360 

We found that matrix quality modulates habitat loss effects only for specialist birds at the 361 

landscape scale. Local habitat amount effects on birds were not dependent on the quality of the 362 

matrix. At the landscape scale, filtering processes are usually related to the selection of species 363 

according to landscape composition and configuration (Duflot et al., 2014; Suárez-Castro et al., 364 

2018). Landscapes composed of low-quality matrices may decrease the availability of 365 

supplementary and complementary resources in the matrix (Boesing et al., 2021; Dunning et al., 366 

1992) and/or deteriorate abiotic conditions in habitat edges (Pardini et al., 2009; Pfeifer et al., 2017; 367 

Saunders et al., 1991). These two mechanisms together with habitat loss may create an even more 368 

severe environmental filter for the communities, selecting only those species able to persist under 369 

new harsh conditions (Chase, 2007). Our results for the specialist birds support this hypothesis of 370 

lower-quality matrices increasing severity of habitat loss filtering by showing: (1) a 2-times larger 371 

relative importance of habitat loss, traits, and filtering effects, with consequently (2) a stronger 372 

habitat loss effect, and (3) higher importance of traits in habitat loss filtering. In addition, there is 373 
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evidence in our study system that the high-quality matrices, especially sun-coffee plantations, are 374 

serving as a source of complementary resources for biodiversity due to the movement of organisms 375 

from forest patches to the matrix for foraging (cross-habitat spillover, Boesing et al. 2018b, 2021). 376 

Additionally, landscapes composed of low-quality matrices may hinder dispersal among 377 

patches or decrease the survival rate of dispersing individuals (Biz et al., 2017; Fahrig, 2007; 378 

Watling et al., 2011). By that, dispersal limitation would create functionally isolated communities 379 

more prone to ecological drift (e.g., Baselga et al. 2015, Siqueira et al. 2020), which, in turn, would 380 

decrease species filtering effects by habitat loss. However, our results pointed to another direction, 381 

as we found that habitat loss filtering through traits was stronger in low-quality matrix landscapes. 382 

We believe that in our study system, dispersal limitation is not an issue for the forest birds in both 383 

matrix landscapes, as the marginal R2s for the differential dispersal (Fig. 2, lands:sp term) were 384 

relatively low. However, the differential dispersal term was 2 times higher in relative importance 385 

(R2) for the specialists in the high-quality matrix, indicating that there may be not a limitation but an 386 

excess of dispersal in high-quality matrices – possibly resulting in source-sink dynamics (Mouquet 387 

& Loreau, 2003). High-quality matrix landscapes with higher dispersal rates, more resource 388 

availability, and milder edge effects may be preventing extinctions of isolated populations by 389 

migration of individuals from other patches (mass effect in metapopulation theory, Leibold et al. 390 

2004). This mechanism would weaken the deleterious effects of habitat loss, allowing the survival 391 

of species that are not optimally suited for the new environmental conditions (Leibold & Loeuille, 392 

2015).  393 

Habitat loss filtering depends on the quality of the matrix 394 

The importance of species traits in explaining habitat loss filtering effects was higher for the 395 

assemblages in low-quality matrices for both generalists and specialists (Fig. 4), evidencing 396 
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stronger filtering effects in low-quality matrix landscapes as discussed above. We found that 397 

specialist birds with certain traits, e.g., small-sized, insectivorous, or birds with closed nests, were 398 

more prone to extinction due to habitat loss in landscapes embedded in low-quality matrices than 399 

species with the same traits in high-quality matrices (Fig. 5). This indicates further that habitat loss 400 

has different filtering effects (stronger or weaker) over species traits depending on the quality of the 401 

matrix. Such changes might be related to further effects of the matrix changing specific niches 402 

required by different species in-patches, mostly via edge-effects on both biotic and abiotic patterns 403 

(Murcia, 1995). For instance, species that make nests in cavities or build closed nests are safer 404 

against parasitism and predation (Sibly et al., 2012), which are among the most impacting drivers of 405 

bird populations’ decline in fragmented landscapes (Cavitt & Martin, 2002). As nest 406 

predation/parasitism often increases with edge effects (Murcia, 1995), it may be stronger in 407 

landscapes with highly contrasting matrices, i.e., lower quality. However, this difference among 408 

matrices of different quality vanishes in low forest cover (less than 30%) for species that nest in 409 

cavities, even though they have higher occurrence probabilities for larger forest cover (~60%) in 410 

high-quality matrix landscapes. It may be the case that the lack of suitable nesting cavities under 411 

low forest cover amounts have a similarly strong effect on the reproduction of these species in both 412 

landscape types, especially for Picidae and Psittacidae families, which require old or dead trees to 413 

build their nests (Sick, 1997). 414 

Because we were able to compare the same set of traits for forest generalist and specialist 415 

species, we can understand better why habitat loss and fragmentation not necessarily leads to loss of 416 

functional diversity (Boesing et al., 2018a), change in functional traits (de Coster et al., 2015), or 417 

even functional homogenization (Clavel et al., 2011; Devictor et al., 2008; Nordberg & 418 

Schwarzkopf, 2018). If specialists are replaced by generalists with similar trait values, functional 419 

differences cannot be easily observed, and thus no apparent functional differences are seen, as often 420 
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reported (Boesing et al., 2018a; de Coster et al., 2015). However, we also found that species with 421 

some specific traits (such as nest type and body size) were always negatively impacted by habitat 422 

loss. This finding raises the point that not all forest generalist species succeed in fragmented 423 

landscapes, and that some key functions and/or species may be indeed lost with no substitution of 424 

traits when specialists are replaced by generalists. Overall, our results reinforce the evidence that 425 

habitat loss and matrix harshness promote abiotic environmental changes inside habitat patches 426 

which make species with specific traits to be more prone to extinction than others under different 427 

matrix conditions in the landscapes. 428 

Theoretical and practical implications 429 

Despite a long-standing global research effort into understanding how habitat loss and 430 

fragmentation influence species loss, and at which spatial scale species loss is observed (Horváth et 431 

al., 2019), there is still a considerable debate on which mechanisms are more important (Fahrig, 432 

2013, 2017; Fletcher et al., 2018; Haddad et al., 2015; Hanski, 2015). Our findings raised evidence 433 

supporting that habitat loss is a strong filtering process that often leads more vulnerable species to 434 

extinction (Banks-Leite et al., 2012; Gilbert et al., 2006; Pardini et al., 2017; Püttker et al., 2015), 435 

but with a considerable influence of the matrix in modulating filtering processes. We have 436 

evidenced the importance of the matrix quality in modulating habitat loss effects at the landscape 437 

scale, weakening or strengthening its severity on species filtering (Chase, 2007). Matrices of low 438 

quality accentuate habitat loss filtering in fragmented landscapes through its relatively larger effects 439 

in altering resource availability and edge effects, more than movement limitation. Consequently, the 440 

larger severity of habitat loss filtering in low-quality matrix landscapes decreases the relative 441 

importance of ecological drift on those assemblages.  442 
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Statistical quantification of the effects of dispersal and ecological drift is still an unresolved 443 

methodological problem with many caveats (Vellend et al., 2014). Our framework builds on the 444 

idea of handling possible effects of differential dispersal through terms that would take the extra 445 

variability of the data (overdispersion) produced by differences in species occurrences across sites 446 

and landscapes (Mortara, 2016). This way, we saw that dispersal limitation in low-quality matrices 447 

leading to drift is not the only possible outcome after habitat loss and fragmentation. High rates of 448 

dispersal in high-quality matrix landscapes can even override environmental filtering by allowing 449 

species to occupy habitat patches where their intrinsic growth rate would be otherwise negative 450 

(Chase et al., 2020). To our knowledge, this is the first empirical evidence that a not limited 451 

dispersal in high-quality matrices may result in mass effects in metacommunities in fragmented 452 

landscapes, although its effects are relatively small in comparison with environmental filtering. 453 

In practical terms, improving matrix quality in fragmented landscapes is a key action aiming 454 

to restore and achieve more sustainable landscapes (Arroyo-Rodríguez et al., 2020; Leite et al., 455 

2013), especially in places where conservation practices and restoration are constrained by 456 

economic and political conflicts, are costly-demanding and requires strategic planning (Metzger et 457 

al., 2021). In this sense, converting low-productive pastures into more heterogeneous environments 458 

via tree enrichment (Prevedello et al., 2018), or converting such pastures (even if partially) in less 459 

contrasting land uses (such as diversified crops, perennial crops, or even tree plantations) can 460 

increase matrix quality, minimizing the severity of habitat loss and fragmentation for forest birds 461 

(Ruffell et al., 2017).  In our study areas, the conversion of abandoned and unproductive 462 

pasturelands into silviculture in the last decades was responsible for the increase in second-growth 463 

native forests (Calaboni et al., 2018). Restoration and economic practices improving matrix quality 464 

may help in maintaining the high diversity of birds in the Atlantic Forest even without any increase 465 

in native forest cover. 466 
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