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Abstract1

Predicting how populations respond to selection is a key goal of evolutionary biology. The field2

of quantitative genetics provides predictions for the response to directional selection through the3

breeder’s equation. However, differences between the observed responses to selection and those4

predicted by the breeder’s equation occur. The sources of these errors include omission of traits5

under selection, inaccurate estimates of genetic variance, and nonlinearities in the relationship6

between genetic and phenotypic variation. A key insight from previous research is that the7

expected value of these prediction errors is often not zero, in which case the predictions are8

systematically biased. Here, we propose that this prediction bias, rather than being a nuisance,9

can be used to improve the predictions. We use this to develop a novel method to predict10

the response to selection, which is built on three key innovations. First, the method predicts11

change as the breeder’s equation plus a bias term. Second, the method combines information12

from the breeder’s equation and from the record of past changes in the mean, to estimate the13

bias and predict change using a Kalman filter. Third, the parameters of the filter are fitted in14

each generation using a machine-learning algorithm on the record of past changes. We apply15

the method to data of an artificial selection experiment of the wing of the fruit fly, as well16

as to an in silico evolution experiment for teeth. We find that the method outperforms the17

breeder’s equation, and notably provides good predictions even when traits under selection are18

omitted from the analysis and when additive genetic variance is estimated inaccurately. The19

proposed method is easy to apply since it only requires recording the mean of the traits over past20

generations.21
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Introduction22

Evolutionary prediction is an important and active field within evolutionary biology (Lässig et23

al 2017, Nosil et al. 2018, Shaw 2019, Le Rouzic et al. 2020, Wortel et al. 2021). Aside from its24

theoretical value, predicting evolution has important applications such as developing strategies25

for the persistence of populations amidst rapid environmental change (Gomulkiewicz and Shaw26

2013, Bonnet et al. 2019), guide the development of vaccines (Hayati et al. 2020) and design27

interventions to control the spread of a disease (Cobey 2020).28

Quantitative genetics is a widely used approach to study and predict short-term evolution of29

continuous traits (Roff 2007, Walsh and Lynch 2018). The backbone of this theory is the breeder’s30

equation (Lush 1937, Lande 1979, Lande and Arnold 1983). In its multivariate form, it provides31

predictions of the change in the mean of a set traits, from one generation to the next, in response32

to directional selection33

∆z̄i = GiP−1
i si (1)34

Where ∆z̄i = z̄i+1− z̄i is the vector of change in trait means from generation i to i + 1, Gi and35

Pi are additive genetic and phenotypic variance-covariance matrices between traits in generation36

i, respectively, and si is the selection differential in generation i. In this way, the response to37

selection is predicted as the product of available genetic variation, and a measure selection.38

A major appeal of the equation is that its elements can be estimated without detailed knowl-39

edge of the genetic architecture and development underlying the focus traits. Indeed, estimates40

of Gi and Pi can be obtained using only phenotypic data and known genetic relatedness among41

individuals in a population (Lynch and Walsh 1998, Kruuk 2004), while estimates of si need42

knowledge of individual fitness (Lande and Arnold 1983, Walsh and Lynch 2018). The simplicity43

of the equation, however, is achieved at the cost of some assumptions.44

The breeder’s equation assumes an infinitesimal model for genetic effects (i.e. a large number45
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of loci, each of small effect), or at least a linear parent-offspring regression (and a few additional46

assumptions, see Rice 2004, Rice 2012, Walsh and Lynch 2018). It further assumes that the popu-47

lation is unselected prior to the application of the equation and that all traits under selection are48

included in the analysis (Lande and Arnold 1983, Walsh and Lynch 2018, Shaw 2019). Moreover,49

the equation is local, meaning that the accuracy of the predictions can only be ensured for a50

single generation (Walsh and Lynch 2018).51

When applied to real systems, the assumptions of the breeder’s equation are violated to some52

extent. To start, in practice we only have access to estimates of Gi. This introduces uncertainty53

and possibly biases to the predictions, particularly when Gi is estimated and used in different54

environments (Pigliucci 2006) or when relevant effects are not controlled for during the estima-55

tion of Gi (e.g. maternal effects, Roff 2007, Pujol et al 2018, Walsh and Lynch 2018). Moreover,56

the equation is typically used to predict the response for several generations, under the assump-57

tion that Gi remains constant over these generations. However, the constancy of the G-matrix58

is a debated issue (Steppan et al. 2002, Aguirre et al. 2013), and work on nonlinear genotype-59

phenotype maps (Milocco and Salazar-Ciudad 2021) and gene-environment interactions (Sgrò60

and Hoffmann 2004, Brodie and Wood 2015) show that the G-matrix can change rapidly even in61

a few generations. Another common violation is the so-called missing character problem, where62

the particular traits chosen for study do not account for all selection (Pujol et al. 2018, Shaw63

2019).64

Indeed, when applied to real systems, violations of the assumptions of the breeder’s equation65

lead to prediction errors (Gimelfarb and Willis 1994, Rice 2004, Roff 2007, Morrissey et al. 2010,66

Pujol et al 2018, Walsh and Lynch 2018, Shaw 2019, Milocco and Salazar-Ciudad 2020, Pélabon67

et al. 2021). A notable example is the problem of stasis (Merilä et al. 2001, Shaw 2019) where no68

response to selection is observed in a population that both has ample additive genetic variance69

and is under strong directional selection. Prediction errors have also been reported in artificial70

selection experiments when the parent-offspring regression is nonlinear (Gimelfarb and Willis71

1994, Heywood 2005), and when selection is applied in the direction opposite to the sign of the72
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genetic correlation between two traits under selection (reviewed in Roff 2007).73

An important feature of the prediction errors when using the breeder’s equation is that their74

mean over time can be nonzero (Rice 2004, Milocco and Salazar-Ciudad 2020), indicating the75

presence of a systematic bias. For example, if a trait under selection is missing from the analysis,76

the prediction using the breeder’s equation can be biased because there is an indirect effect of77

selection that is systematically omitted in the prediction (Merilä et al. 2001). Moreover, if the78

G-matrix has changed rapidly, for example because the local genotype-phenotype map has a79

different structure (Milocco and Salazar-Ciudad 2021) or because of enviromental interactions80

(Wood and Brodie 2015), predictions will also be biased because the G used for predictions81

is incorrect. The presence of a systematic bias in the predictions means that the error is not82

purely stochastic, but somewhat structured. In other words, the error at a given generation i83

is informative of the error at generation i + 1. This indicates that there is potential to improve84

predictions by incorporating this bias, if one could retain the information of past generations as85

a “memory”.86

Here, we propose a new method to predict the response to directional selection that yields87

better predictions when some of the assumptions of the breeder’s equation do not hold. The88

method uses the record of the means of the traits in past generations to improve predictions.89

There are three key innovations in the method. First, it uses a model for the change in the mean90

of the traits that is the breeder’s equation plus a bias term, which is the term with memory.91

Second, the method predicts the change in the traits and the bias in each generation using a92

Kalman filter (Kalman 1960). The filter integrates the information of the breeder’s equation and93

the record of past means of the traits, and it efficiently deals with the noise in the data. Third, the94

method incorporates a machine-learning scheme to learn the parameters of the filter that provide95

the best predictions in each generation. Notably, if the assumptions of the breeder’s equations96

are met, the new method reduces to the breeder’s equation.97

The Kalman filter is a hallmark of control theory (Kalman 1960, Åström and Wittenmark 1997)98

and has a wide variety of technological applications, from navigation of aircrafts (Grewal and99
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Andrews 2010) to econometrics (Ghysels and Marcellino 2018). The filter is a general algorithm100

that allows to estimate the value of a set of variables of interest, using a model of how the101

variables are expected to change, and a series of measurements observed over time. Here, we102

adapt it to be used in the prediction of the response to selection.103

In the Methods section, we develop the novel prediction method in three parts. Part 1 is the104

introduction of the extended equation that consists of the breeder’s equation plus a bias term.105

Part 2 is the development of the Kalman filter for this application. Part 3 is the explanation of106

the machine-learning algorithm to learn the parameters of the filter at each generation. In the107

Results, the new method is used to predict the response to selection in two artificial selection108

experiments, and is compared with the predictions using the breeder’s equation. We show that109

the novel method improves the predictions of the response to selection when compared to the110

breeder’s equation, on average. The data sets are used to explore common situations where111

the assumptions of the breeder’s equation are violated to some extent, including when some112

of the traits that are under selection are omitted from the analysis, when the G-matrix used is113

outdated, and for varying degrees of precision in the estimation of Gi and Pi. Importantly, these114

improvements are achieved only by exploiting the registry of past values for the means of the115

traits. This data is easy to collect, especially when compared to alternatives such as increasing116

the precision in the estimate of Gi.117

Methods118

Part 1: The breeder’s equation plus a bias term119

We want to predict the change in the mean of a set of traits between generations, ∆z̄i. We propose120

the following equation consisting of the breeder’s equation plus a bias term, bi, a vector of length121

equal to the number of traits:122

∆z̄i = GiP−1
i si + bi (2)123
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The bias term can be understood as the part of the response to selection that is not captured by124

the breeder’s equation, and arises from violation of assumptions, such as presence of nonlinearity125

in the relationship between genotype and phenotype or missing traits. As such, the systematic126

bias is structured and we expect the bias of generation i to be similar to the bias at generation127

i + 1 (Rice 2004, Milocco and Salazar-Ciudad 2020).128

Here we propose to estimate the bias term by using measurements of the system up-to gen-129

eration i. In principle, one could estimate the bi−1 as the difference between the prediction from130

the breeder’s equation, Gi−1P−1
i−1si−1, and the realized change in the mean, ∆z̄i−1. Assuming that131

the bias changes slowly, one could further assume that bi ≈ bi−1 and obtain an estimation for the132

bias at generation i. The problem with this approach is that both the breeder’s prediction and133

the change in the mean for the trait are measured with noise, which typically is very large. Then,134

the estimate of obtained like this would be very inaccurate.135

To deal with the problem of noise in the measurements, we propose here to use a Kalman136

filter to estimate ∆z̄i and bi in each generation. The filter is explained in the next section. To137

simplify the bookkeeping and notation, we will develop the equations of the filter for each trait138

separately. We then rewrite equation (2) for each trait as139

∆i = ∆B
i + bi (3)140

Where ∆i is the change in the mean of a given trait in generation i, ∆B
i is the prediction using141

the breeder’s equation, and bi is the bias. We want to estimate ∆i and bi which we call the state142

variables.143

Part 2: The Kalman filter144

The Kalman filter is a general algorithm that integrates two sources of information (Åström and145

Wittenmark 1997). First, it uses a model of how we expect the state variables to change from146

one generation to the next. This makes the algorithm recursive, since the estimates of the state147
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variables at time i − 1 are used to make estimates of the state variables at i. The information148

from the estimates at i− 1 is combined with a second source of information to make estimates149

of the state variables at time i. This second source of information is a set of measurements from150

the system, taken at time i and that are related to the state variables. The filter combines these151

two sources of information by a weighted average. How the average is obtained is the central152

part of the filter, and it is achieved by calculating a weight matrix that minimizes the error in153

the estimates (Åström and Wittenmark 1997). Note that both sources of information described154

above have associated noise, summarized by the covariance matrices Ri and Qi (explained below).155

These matrices are the parameters of the filter that have to be provided by the user (see Part 3).156

For this particular application of the Kalman filter, the state variables are ∆i and bi and they157

are related to each other by equation (3). Note that with the above definitions, estimating ∆i158

gives us a prediction for z̄i+1, since z̄i+1 = z̄i + ∆i. In developing the algorithm below, we use159

the symbol ˆ to refer to estimates of the variables (e.g.. ∆̂i is the estimate of the state variable160

∆i). We make the usual assumption that the response to directional selection does not show161

abrupt changes from one generation to the next (Walsh and Lynch 2018). Additionally, in this162

application we will assume that the bias changes slowly in time. In this way, ∆i = ∆i−1 + ηi and163

bi = bi−1 + ηb
i , where ηi = (ηi, ηb

i ) is a vector of small changes that we assume to be normally164

distributed with mean zero and covariance matrix Qi.165

There are two measurements at time i that we can use to improve our estimates. We use166

the symbol ˜ to indicate that the variable has been measured with noise. The measurements are167

∆̃B
i = ∆B

i + vB
i and ∆̃i−1 = ∆i−1 + vi, where we assume that vi = (vB

i , vi) is a vector of gaussian168

measurement error with mean zero and covariance matrix Ri.169

The Kalman filter combines the estimates of the state variables in i − 1 (i.e. ∆̂i−1 and b̂i−1)170

and the new measurements (i.e. ∆̃B
i and ∆̃i−1) to provide the best possible estimates of the state171

variables in generation i (i.e. ∆̂i and b̂i). Given the relationships described above, this is done172

using the following formula:173
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∆̂i

b̂i

 =

∆̂i−1

b̂i−1

+ Ki


 ∆̃B

i

∆̃i−1

−
∆̂i−1 − b̂i−1

∆̂i−1


 (4)174

175

The first term of the right-hand side is the state vector estimates in step i − 1. The second176

term is the correction, which is the product of the matrix Ki and the error. The error is formed177

by the difference between the measurements ∆̃B
i and ∆̃i−1, and their expected values using the178

estimates at step i− 1.179

Ki is a 2× 2 matrix called the Kalman gain, which assigns weights to the correction. The180

calculation of Ki is the key of the filter, and it is done for each i. Ki is a trade off between the181

confidence we have on the estimate of the states at i − 1 and the confidence we have on our182

measurements at generation i, and is calculated to minimize the error covariance of the estimates183

(Kalman 1960, Åström and Wittenmark 1997). If the measurements are to be trusted, then the184

gain will give more weight to the second term of equation (4). If the estimates at i− 1 are to be185

trusted, then the gain will assign more weight to the first term of the equation. The “trust” is186

quantified by the associated error covariance matrices. This, together with the calculation of the187

gain Ki is explained in the Appendix A.188

As mentioned above, the algorithm is recursive: the estimates obtained in generation i − 1189

using equation (4) is the starting point for the prediction in generation i. We then require initial190

estimates at time i = 0 to begin the recursion. For our state variables, b0 = 0 and ∆z̄0 is the191

prediction using the breeder’s equation.192

Part 3: Learning the parameters of the Kalman filter193

The matrices Qi and Ri have to be provided by the user to implement the filter explained in Part194

2 of the method. Qi is the covariance of the vector ηi, and Ri is the covariance of vector vi, which195

describes measurement noise. These matrices are hard to calculate analytically. For example,196

the variance in the measurement noise for ∆̃i−1 is affected by drift, selection, measurement and197
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sampling (Walsh and Lynch 2018). An added difficulty is that Ri and Qi can change in time.198

Instead of calculating the matrices Ri and Qi analytically, we learn them using the time series199

of the trait means. That is, at generation i we use a window of the last L recorded changes in the200

mean {∆̃i−L, ..., ∆̃i−1} to learn the values of Ri and Qi. This is done by running the filter inside201

the window with several combinations of Ri and Qi . We then calculate the prediction error of202

the method in the window for each combination of Ri and Qi , and keep the combination that203

results in smallest prediction error. We then use this combination of Ri and Qi to make the actual204

prediction of interest at time i. Note that this process is done in every generation i for each205

time series separately. In this way, the method learns the best Ri and Qi possible for the specific206

system at time i.207

To learn the matrices, we assume that Ri and Qi are roughly constant inside the window.208

This sets a limit to how large the window can be, since if the window is too large then the209

matrices may change substantially inside the window. Then, the size of the window should be210

kept relatively small, making it hard to learn all the elements of the 2× 2 matrices Ri and Qi211

(i.e. more elements to learn require a larger dataset). To reduce the number of elements to learn,212

we make the additional simplification that Ri and Qi are diagonal, and that each has the same213

elements in the diagonal. This simplification is reasonable because both state variables have214

similar magnitudes, as they are both related to change of the same trait. Details of how this is215

done are given in Appendix B. For the analyses in this paper, we use a window of size L = 5 for216

i > 5, and L = i for i 6 5 (i.e. we use the available generations in the record).217

Apart from using the window to learn Ri and Qi, we also use it to approximate the uncertainty218

in the predictions using the new method. To do this, we calculate the standard deviation of the219

residuals of the predictions against the observed change inside the window. We use this as the220

uncertainty for the predictions using our method.221
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The artificial selection experiments222

We use data from two selection experiments to test the new method and the breeder’s equation223

in their ability to predict evolutionary change. Experiment 1 is simulated data for teeth evolution,224

and Experiment 2 is data from an experiment in the wing of the fruit fly.225

Experiment 1: teeth226

We use data of an in-silico artificial selection experiments on teeth. Details of the simulations227

are given in previous work, and the data is publicly available (Milocco and Salazar-Ciudad 2020,228

Milocco and Salazar-Ciudad 2021). Briefly, each evolutionary simulation has a population of229

genotypes. Each genotype is mapped to a tooth morphology through a deterministic model of230

tooth development (Salazar-Ciudad and Jernvall 2010, Harjunmaa et al. 2014). The tooth model231

recapitulates the process of development for a tooth, starting from a flat epithelium to a complex232

3D morphology. The dynamics of development, and the resulting phenotype, are determined233

by the value of a set of parameters which are determined by the genotype. This means that234

variation in genotypes results in variation in the phenotypes, but the mapping between these235

types of variation is complex and ultimately determined by the tooth development model itself.236

Traits were measured on each teeth. These were the x- and y-coordinates of 3 landmarks located237

in the 3 tallest cusps of the tooth (see Figure 1A). In each generation, once the genotypes of all238

individuals had been mapped to their corresponding phenotypes using the tooth development239

model, selection was applied by choosing 50% of the individuals with morphology closest to the240

optimum. Each simulation had an optimum shape, defined at the beginning, which determined241

the direction of selection (see Figure 1C). Selected parents were paired randomly, and produced242

the next generation of genotypes. Each couple produced 4 offspring, resulting in a constant243

population size. Recombination and mutation were included in each generation, and the process244

was iterated to simulate evolution. There is a total of 32 simulations, each with a different245

selection optimum. Each simulation was run for 30 generations using a population of 300 males246
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and 300 females.247

Estimation of variance components and observed change: In each generation, the elements248

of the breeder’s equation were estimated (i.e. Gi, Pi. and si). Variance components were estimated249

from a half-sibling breeding design using individuals at generation i as base population (details250

in Milocco and Salazar-Ciudad 2020). The animal model used was the simplest possible (i.e. with251

only additive genetic merit fitted to each individual). Restricted maximum likelihood (REML)252

estimates of G1 and P1 were obtained using the software WOMBAT (Meyer 2007). Sampling253

variation in the estimation of G1 was accounted for using the REML-MVN method (Houle and254

Meyer 2015). The method approximates the uncertainty in evolutionary parameters estimated255

using animal models by resampling G-matrices from the distribution of its maximum-likelihood256

estimate. For each generation, we resampled 100 G- and P-matrices from this distribution and257

used them to calculate 100 predicted changes using the selection differential and the breeder’s258

equation. We plot the mean and 1 SD of these predictions. Note that the tooth development259

model is deterministic and there is no measurement error. Moreover, we have a large sample260

size. This allows for very precise estimates of Gi and Pi.261

Due to the fact that there is little measurement noise for the population mean in the simula-262

tions, the observed change was obtained directly as ∆i = z̄i+1− z̄i. This is the amount that we look263

to predict at generation i (see Figure 1E, G).264

Experiment 2: fruit fly wing265

We performed artificial selection experiments on the wing of the fruit fly Drosophila melanogaster.266

The starting population was founded from 250 isofemale lines derived from flies captured during267

the Summer of 2017 in Groningen, The Netherlands by the Billeter’s lab. From each line, 25268

females and males were collected and merged to make a large, outbred population that was269

maintained in laboratory conditions. For the initial generation of the experiments, 100 virgin270

males and 100 virgin females from the large population were randomly assigned to one of four271

lines. Three of these lines were subjected to selection (R1, R2 and R3), with the remaining being272
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a control without selection (C1). Lines were kept at 25°C with alternating 12-h light and dark273

cycles during the experiment.274

In each generation, 100 males and 100 females were collected as virgins. The left wing of275

each collected, anesthetized fly was taken by the automatic system known as the WingMachine276

(Houle et al. 2003, Mezey and Houle 2005). The x- and y-coordinates of 5 landmarks shown277

in Figure 1B were obtained using a semiautomatic landmarking software (see Houle et al. 2003278

for details, note that we use a subset of 5 landmarks from the total 12 landmarks provided by279

the pipeline). In the Control line, 50 males and 50 females were chosen randomly as parents for280

the next generation. In the selected lines, the 50 males and 50 females with wings with shortest281

distance to the optimum morphology were selected as parents. The distance of each individual282

to the optimum was calculated as the euclidean distance between the values of the traits in the283

individuals and the optimal values of the traits. The optimum morphology is shown in Figure284

1D, and is the same for the three lines with selection. The process of image processing and285

selection was repeated in each generation. Sibling mating was avoided to reduce inbreeding.286

The process was repeated for a total of 20 generations, equivalent to 4000 flies per line (16 000287

in total). If some of the formed couples did not produce offspring for the next generation, either288

because one of the parents died or due to infertility, we measured more offspring from other289

couples to complete the 200 individuals per generation. We also formed 3 extra couples in each290

generation, to provide extra individuals in case some of the original 50 couples failed to produce291

offspring.292

As mentioned above, we measured the x- and y-coordinates of 5 landmarks, resulting in293

10 traits. The data was aligned by generalized Procrustes least squares superimposition. Four294

degrees of freedom are lost in this process, one to estimate wing size and three to standardize the295

orientation of wing shapes. Therefore, there are only 6 independent traits in the data. For these296

traits to be comparable between lines and through the generations, we use the 6 first components297

of a PCA of generation 1 of the Control as a reference and project the all data to that space. The298

resulting 6 phenotypic traits are a linear combination of the original 10 traits that conserves all299
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relevant variation in all lines. In this paper, we refer to these 6 traits as the phenotypic traits. The300

means of these traits agains generations, for all 4 experimental lines, are shown in Supplementary301

Figure 1.302

Estimation of variance components and observed change: All lines start from the same303

founding population. We estimate G1 and P1 for this founding population by pooling the first n304

generations of the Control. For these n generations we have the pedigree and phenotypic data.305

We call n the depth of the pedigree. Here we explore values of n from 2 to 15. Larger n will result306

in more accurate estimates of G1 and P1, but requires more measurements. We also compared307

the predictions of the breeder’s equation and the new method in the case that G1 = P1. REML308

estimates of G1 and P1 were obtained using the software WOMBAT (Meyer 2007) and sampling309

variation was estimated using the REML-MVN method (Houle and Meyer 2015). The animal310

model used included sex, generation and ID of the person measuring as fixed effects.311

The estimation of the means in each generation inevitably has noise. Noise arises from the312

imaging and landmarking process, finite sampling of the population and drift. Because we focus313

on directional selection, this noise has to be removed. We perform a quadratic regression to the314

20-generation time series of the means, which is a common regression for long-term artificial315

selection data (Eisen 1972, Rutledge et al. 1973, Grassini et al. 2013, Walsh and Lynch 2018). The316

fitted values are used as ∆i, which we call the observed change. This is compared to the change317

predicted by the new method and the breeder’s equation (see Figure 1F, H).318

Results319

We compare the performance of the new method introduced here and the breeder’s equation in320

predicting the response to directional selection, using two artificial selection experiments sum-321

marized in Figure 1. The performance of the prediction methods is assessed by calculating the322

prediction error, obtained as the relative root mean squared error (RMSE) between the multivari-323

ate series of predictions and the multivariate series of observed changes. This is, for a given times324
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series, all the predicted changes for all generations are stored in a matrix of predictions, and all325

the observed changes are stored in a matrix of observations. The RMSE is calculated between326

those matrices as the square root of the sum of the squared differences, divided by the square327

root of the sum of squared elements of the matrix of observations. This is a general measurement328

of the goodness of prediction for the whole time series.329

Predicting the response to selection in teeth simulations330

The teeth artificial selection experiments are in silico simulation of evolution in a population. A331

key feature of these simulations is that the mapping between genetic and phenotypic variation332

is done using a model of development that produces realistic morphological variation (Salazar-333

Ciudad and Jernvall 2010). Importantly, the genotype-phenotype map of this model is known to334

be complex and lead to biases in the estimation of the response to selection (Milocco and Salazar-335

Ciudad 2020). There are a total of 32 simulations with different optima, each of 30 generations336

(Figure 1C). Figure 1 shows the tooth morphology and the 3 landmarks used. The x- and y-337

coordinates of these landmarks are the 5 measured traits. Figure 1 also shows the response to338

selection for one trait in an example simulation. Because the data is simulated, all conditions are339

controlled. This allows to isolate specific sources of prediction error, and test how well the new340

method is able to perform. Specifically, we test the situation where the G-matrix is outdated by341

a varying number of generations, and when traits that are under selection are omitted from the342

prediction.343

First, we study the scenario where the P- and G-matrices are not known in all generations.344

This is the most common scenario, since obtaining estimates for each generation, or for blocks345

of generations, is very expensive. We update the estimates of Pi and Gi every a given number346

of generations that we call the update time. For example, for an update time of 10, the matrices347

are calculated at generation 1, 11 and 21 of each experiment. We use update times of 8, 10, 15348

and 30 generations, which correspond to 4, 3, 2 and 1 samples of Gi throughout the experiment,349

respectively.350
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Figure 2F summarizes the prediction error for all simulations, using the breeder’s equation351

and the new method for different update times. Each point in the scatter plot is the error mea-352

sured as RMSE between the multivariate series of predictions and the multivariate series of353

observed changes, for the new method and the breeder’s equation. The error is significantly354

smaller using the new method, and the improvement is more clear for larger update times (i.e.355

when Gi is updated with less frequency).356

Figure 2A-E show the time series of observed and predicted changes for example simulation357

18 using a time update of 30 generations. In this simulations, the population crosses a region of358

the genotype-phenotype map that is nonlinear (Milocco and Salazar-Ciudad 2020). This results359

in relatively fast changes in the observed response to selection (see for example panel B from360

generations 5 to 15). The new method provides much better predictions than the breeder’s361

equation in those regions.362

We use the teeth artificial selection experiments to study the situation where traits that are363

under selection are omitted from the prediction, what is known as the missing character problem.364

To isolate this error and avoid confounding it with the error arising from using old estimates of365

Gi and Pi, we use estimates of variance components at each generation (i.e. update time of 1).366

Note that the error would increase if we used an update time larger than 1. We try to predict367

the change in traits 2 and 3 (i.e. the x- and y- position of the landmark located in the posterior368

cusp, see Figure 1) without data from traits 1, 4 and 5. Figure 3A-B shows the predicted and369

observed changes for traits 2 and 3 in an example simulation. We find that this omission can lead370

to biases, and that the new method is able to correct the errors to a large extent. A summary for371

all simulations is given in Figure 3C.372

Predicting the response to selection in the wing373

The artificial selection experiment in the wing shows the full complexity of the problem of pre-374

dicting the response to selection in a real population. This is the most common scenario in which375

the new method can be applied. There are three replicates with selection and one control line,376
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all coming from the same base population and running for 20 generations (see Methods and377

Supplementary Figure 1). In each generation, 100 males and 100 females are measured. Selection378

is applied on 5 landmarks of the wing as shown in Figure 1B, by selecting the 50% of measured379

individuals in the direction shown in Figure 1D.380

For this experiment, we only calculate the G-matrix at the beginning (i.e. G1). Since the381

control line and the selection lines all start from the same base population, we use the pedigree382

and phenotypic data of the initial generations of the control to estimate G1. We call the pedigree383

depth the number of generations of the control line used to estimate G1. The larger the pedigree384

depth, the more precise the estimate of G1. We test the prediction ability of the breeder’s equation385

and the new method using estimates of G1 for different pedigree depths, ranging from 2 to 15386

which correspond to 400 to 3000 individuals from the control.387

Figure 4 shows the predictions for the change in the traits using the new method and the388

breeder’s equation, against the observed change, for selection line R2 (other lines shown in389

Supplementary Figures 2). A pedigree depth of 2 was used here. It can be seen that the new390

method yields predictions that are closer to the observed change, particularly for traits 1, 3 and391

6. Also note that the change for trait 4 is accurately predicted by the breeder’s equation. In this392

case, the new method performs as well as the breeder’s equation.393

Figure 5A shows the prediction error for the new method and the breeder’s equation for394

different pedigree depths. The figure shows that the new method outperforms the breeder’s395

equation for all pedigree depths. The plot includes a pedigree depth of 1, which means assuming396

that G1 = P1, i.e. that all phenotypic variation is additive genetic. Notably, the new method397

using a G-matrix with small pedigree depth outperforms the breeder’s equation using a G-398

matrix with a large pedigree depth. The most extreme case is in R3, shown with triangles, where399

the predictions using G1 = P1 and the new method are better than the predictions using the400

breeder’s equation and a very precise estimate of G1. This is important because, experimentally,401

it is much more expensive to increase the accuracy of the estimate of G1 that to apply the new402

method. The latter only requires recording the trait means in past generations, while the former403
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requires phenotypic and relatedness data in particular breeding designs.404

We found that there are two sources of prediction error for the breeder’s equation in these405

experiments, and that the new method provides significantly better predictions in both cases.406

First, there is error associated to using wrong estimates of G1 and P1. This prediction error407

is most evident when using estimates of G1 with low pedigree depth, and even more when408

assuming G1 = P1 . Increasing the pedigree depth of the estimates can correct much of these409

errors. The second source of error is the fact that Gi changes during the experiment. This leads to410

possible errors at later stages of the experiment if the G-matrix estimated for the base population411

is used, even if the estimate of G1 is obtained with high accuracy (i.e. a deep pedigree in this412

case). Both of these error are shown in Figure 5B for trait 6 of line R1, using different pedigree413

depths, namely 1 (G = P), 2 and 10. A big part of the error is reduced when increasing the414

pedigree depth. However, even when using a precise estimate of G1 (pedigree depth of 10), the415

breeder’s predictions remains significantly biased towards the end of the experiment. Regardless416

of the source of the error, the novel method outperforms the breeder’s equation as shown in Fig.417

5B.418

Discussion419

We developed a novel method to predict the response to directional selection by combining the420

breeder’s equation with data from the time series. We tested the new method with two artificial421

selection experiments, and show that it outperforms the breeder’s equation. The method is422

general, and can be applied to virtually any evolving system under directional selection. Most423

importantly, the new method only requires the record of means of the trait for past generations,424

which is relatively easy to collect, at least compared to alternatives like obtaining better estimates425

of Gi. An important feature of the new method is that it reduces to the breeder’s equation when426

the assumptions of the latter are met (that is, when bi=0 and Ri=0). In this way, the method427

can be applied to a wide variety of scenarios, specially where the assumptions of the breeder’s428
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equation are not met, like in the later stages of long-term selection studies, when the full set of429

traits under selection is not known and when Gi cannot be accurately estimated. The more the430

assumptions are violated, the more the new method will outperform the breeder’s equation, as431

shown in Figure 2F and 5A.432

We highlight three key aspects of the novel method. The first aspect is the introduction of the433

bias term in equation (2). This is proposed on the grounds of previous theoretical and empirical434

work that shows that the expected value of the prediction error using the breeder’s equation435

may not be zero (Rice 2004, Pujol et al 2018, Walsh and Lynch 2018, Milocco and Salazar-Ciudad436

2020). This indicates that the error at generation i− 1 is correlated with the error at generation437

i. The second key aspect of the method is the use of a Kalman filter. This was necessary to deal438

with the noise associated with the measurements of the time series and the breeder’s equation.439

The final key element of the method is that we use a window of data to learn the parameters440

of the filter for each generation using a machine-learning algorithm. This is a significant con-441

ceptual shift from classical quantitative genetics approaches which are “offline”, meaning that442

parameter estimation is done after all the data has been collected. For example, the G- and443

P-matrices are obtained offline with data from a given a population, and later used to make444

predictions on the same or a different population. Similarly, realized heritabilities are calculated445

offline from regression of the response after the selection experiment is completed, commonly446

pooling information from different replicate lines (Walsh and Lynch 2018). The offline approach447

underexploits the dynamical properties of the time series (Le Rouzic et al 2011), as it does not448

capture possible temporal changes of the parameters, and other singularities of the time series.449

The method we propose here, on the contrary, works “online” by calculating the parameters dy-450

namically at each time point and exploiting the information in the time series data. Apart from451

enabling the method to be used in real time (i.e. during the experiment), it has the important452

quality that it allows the parameters to change in time. Moreover, it uses information that is453

specific to the population of interest and its singularities. This avoids extrapolating information454

taken in different conditions, which is a known problem in quantitative genetics (Pujol et al 2018).455
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The method introduced here can be classified as recursive, because it forecasts the variables456

of interest using past estimates of the variables. There has been recent interest in recursive mod-457

els to make predictions of future evolution (Le Rouzic et al 2011, Nosil et al. 2018, Rescan et al.458

2020, Nosil et al. 2020, Rescan et al. 2021). For example, Nosil et al. 2018 fitted an autoregressive459

model using several years of data of frequency changes of a morphs and patterns in a popu-460

lation of stick insects. They examined whether data from early time points in the series could461

predict data in later time points of the series (similar to what we do using the window of past462

generations). They were able to successfully predict changes in frequency for a trait under clear463

frequency-dependent selection, but failed to predict change for a trait under a more complex,464

unknown form of selection. They conclude that predictability was limited by understanding of465

selection. The authors suggest that knowledge of selection could be determinant in improving466

predictions when using recursive models. The method we propose in this paper does exactly467

this: it combines a recursive model, given by the window of past generations, with knowledge of468

selection, given by the breeder’s equation. Used like this, the breeder’s prediction contributes the469

type of information that purely recursive models are lacking. At the same time, purely theoreti-470

cal models like the breeder’s equation are based on simplifying assumptions that may miss some471

of the complexity of the system, and work offline. The efficient combination of the recursive472

model, which is data-driven, and the breeder’s equation, which is theoretical, is what results in473

the method proposed here to outperform each approach when used separately.474

The power of the method is best shown in Figure 5. The new method outperforms the475

breeder’s equation regardless of the accuracy in the estimation of the G-matrix, which is the476

limiting step in applying the breeder’s equation. Moreover, the figure shows that the new method477

using an inaccurate G-matrix is better than the breeder’s equation using a very accurate, and478

expensive to estimate, G-matrix. Even more, the method is able to make big corrections and479

overall provide very good estimates even when G is not estimated at all. That is, assuming that480

Gi = Pi, which corresponds to precision 1 in the x-axis of Figure 5A. This is an important result481

because the P-matrix has been used as a proxy of the G-matrix for morphological traits (i.e.482
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Cheverud’s conjecture, Cheverud 1988, Assis et al. 2016, Sodini et al. 2018, Love et al. 2021), a483

simplification suggested due to the difficulty in estimating the latter. When used in this method,484

this approximation works because the resulting deviations are corrected by the bias term. Note485

that even in this case, the information of selection is still exploited, as it enters the predictions486

through the selection differential, si. An important note is that both the breeder’s equation and487

the new method perform significantly better when Gi is estimated than when it is assumed that488

Gi = Pi, (compare precision 1 and 2 in Figure 5A). This means that Gi contains useful information,489

even when estimated with relatively low precision.490

The method proposed here is specific to continuous directional selection, sustained for several491

generations. This allows to develop the specific equations explained in Part 1 of the Methods. In492

principle, a similar framework combining multiple sources of information could be developed493

for other types of selection, such as fluctuating. The difficulty here may be in obtaining infor-494

mation of how selection is acting in each generation. Recent efforts (Rescan et al 2021) have495

tried to map environmental fluctuations to fluctuations in selection, since certain environmental496

queues such as temperature are much easier to measure than selection itself. Developing such an497

approach could allow to improve predictions by measuring environmental queues, and feeding498

the measurements into the predictive model of a similar form to the one described here.499

Data-driven methods are only becoming more popular in the future. This change from more500

classical, theoretical methods is fueled by the rapid accumulation of data. The method we pro-501

pose here is line with this change, by combining theory and data. As suggested by other authors502

(Nosil et al. 2020) this is a promising future for developing better predictions in evolutionary503

biology. We hope that the method proposed here will be widely applied since it provides better504

predictions with very few additional costs.505
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Figures506

Figure 1: Summary of the artificial selection experiments. A, C, E, G correspond to the teeth507

experiments and B, D, F, H to the fly wing experiments. A shows the tooth morphology and the508

3 landmarks used for the experiments. The coordinates of the landmarks are the phenotypic509

traits. Note that the y-axis passes through the central landmark, resulting in 5 traits (i.e. x- and510
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y- coordinates for anterior and posterior landmark, and only y-coordinate for central landmark).511

C shows the directions of selection for 4 of the 32 evolutionary simulations as examples. All512

combinations of up and down selection for the traits are used. E is the mean of trait 1 in time513

for simulation 1, and G shows the change in the trait mean. We do not make a regression in E514

because there is little measurement noise. B shows the morphology and the five landmarks on515

the wing. There are 6 phenotypic traits that are obtained after aligning the 10 coordinates of these516

landmarks using Procrustes superimposition. D shows the direction of selection. F shows the517

mean of trait 3 for line R2, together with a quadratic fit to the data and its 95% CI. The remaining518

traits and replicate lines are shown in Supplementary Figures 1 and 2. H shows the change in519

the mean of trait 1 (i.e. what we aim to predict) and its 95% CI.520
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Figure 2: Breeder’s equation and the new method applied to predict the response to selection521

in the teeth experiments. A–E are the predictions and obersved changes for all 5 traits of522

example simulation 18, using the G1 and P1 matrices (i.e. estimated at generation 1). Each plot523

shows a diagram of the tooth, the direction of selection for this particular simulation and a a524

gray bar indicating the trait being plotted. F shows a summary of the prediction error for all525

simulations, when updating the estimates of Gi and Pi every 8, 10, 15 and 30 generations. For526
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these experiments of 30 generations, this means 4, 3, 2 and 1 update(s) of the G-matrix throughout527

the experiment. Each point in the boxplot is the total error for one of the 32 simulations. The528

new method always has smaller error that the breeder’s equation, but the improvement is more529

clear when G is updated with less frequency.530
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Figure 3: Observed and predicted change in the teeth experiments when omitting traits under531

selection in the prediction. Only traits 2 and 3 (i.e. the x- and y- coordinated of the posterior532

cusp of the tooth) are used for predictions. A and B show the 2 traits for example simulation 32.533

The diagram of the tooth inside the panel shows that only the posterior cusp is considered for534

predictions. C shows a summary for all simulations when making predictions using only traits535

2 and 3. Each point in the boxplot represents one of the 32 simulations.536
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Figure 4: Response to selection for the 6 phenotypic traits in line R2 of artificial selection537

experiments with the wing. The predicted and observed changes are shown with their approx-538

imated uncertainties (95% CI for the observed change, 1 SD for the predictions). The observed539

change is obtained from a regression of the means (see Fig. 1). A pedigree depth of 2 was used540

to estimate the variance components.541
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Figure 5: Predicted and observed response to selection for different pedigree depths in the542

artificial selection experiments of the wing. A shows the total error of the prediction using543

the breeder’s equation (orange) and the new method (purple) for the 3 replicated selection lines544

(squares correspond to replicate R1, circles to R2 and triangles to R3). We performed predictions545

using the two methods and G1 and P1 matrices estimated with varying pedigree depths. We also546

include the case where we assume G1 = P1, and this is plotted as pedigree depth of 1. The new547
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method outperforms the breeder’s equation for all pedigree depths. B shows the predicted and548

observed time series for trait 6 of R1, for different pedigree depths. Color code is the same as549

Figure 2, with the observed change in black. Increasing the pedigree depth of the estimate of G1550

reduces the prediction error, but the predictions of the breeder’s equation remain biased towards551

the end of the experiment even with high pedigree depth. The new method is able to correct552

this. Approximate uncertainties are included as shaded areas. Note that for G1 = P1 there is no553

uncertainty for the breeder’s equation since variance components are not estimated.554
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Appendixes555

Appendix A556

Here we will derive the equations of the Kalman filter, importantly how the gain matrix Ki is557

calculated in each generation. For this, we first need to obtain an expression for the error which558

is what we want Ki to minimize. We will use a matrix representation of equation (4),559

x̂i = x̂i−1 + Ki(ỹi − Cx̂i−1), (5)

where560

x̂i =

(
∆̂i
b̂i

)
, ỹi =

(
∆̃B

i
∆̃i−1

)
, C =

(
1 −1
1 0

)
. (6)

Considering that561

xi = xi−1 + ηi, where xi =

(
∆i
bi

)
, (7)

the measured vector can be rewritten in terms of past state variables as follows:562

ỹi = Cxi + vi = C(xi−1 + ηi) + vi (8)

where563

vi =

(
vB

i
vi

)
, ηi =

(
ηi
ηb

i

)
(9)

Then, using (7) and replacing (8) in (5), the matrix representation for the prediction error, ei, is564

ei = xi − x̂i

=
(

I −Ki
) [( I

C

)
ei−1 +

(
ηi

Cηi + vi,

)]
(10)

where I is the identity matrix. The covariance of the error (Φi) is the expected value of the product565

of the error by it transpose, Φi = E [eieT
i ]. Taking into account that ηi and vi are independent, the566

expected value of the cross products between ei−1 and both ηi and vi vanishes. Then, multiplying567

(10) by its transposed, the covariance matrix of the error is568

Φi =
(

I −Ki
) [( I

C

)
Φi−1

(
I
C

)T

+

(
Qi QiCT

CQi CQiCT + Ri

)](
I
−KT

i

)
, (11)

where we use the definition of the noise covariance matrices, Qi = E [ηiη
T
i ] and Ri = E [vivT

i ].569

From (11) it follows that if Φi−1 is positive definite, then Φi is also positive definite.570

Given expression (11), we want to find Ki such that Φi is minimized. This is a convex quadratic571

minimization problem with unique solution given in Åström and Wittenmark 1997 page 430.572

The solution is,573
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Ki = (Φi−1 + Qi)CT(C(Φi−1 + Qi)CT + Ri)
−1, (12)

x̂i = x̂i−1 + Ki(ỹi − Cx̂i−1), (13)
Φi = (I − KiC)(Φi−1 + Qi). (14)

The equations above are applied in each generation to obtain the best predictions possible.574

Appendix B575

As explained in the main text, the matrices are assumed to be diagonal with equal elements in576

the diagonal, that is Qi = qi I and Ri = ri I, where I is the 2× 2 identity matrix. If we use these577

definitions we can rewrite the equations from Appendix A as,578

Ki = (Φ∗i−1 +
qi

ri
I)CT(C(Φ∗i−1 +

qi

ri
I)CT + I)−1, (15)

x̂i = x̂i−1 + Ki(ỹi − Cx̂i−1), (16)

Φ∗i = (I − KiC)(Φ∗i−1 +
qi

ri
I). (17)

Where we define Φ∗i = Φi/ri. Written in this form, the optimization problem is reduced to579

a single variable, namely the quotient qi/ri. That is, in the window of past generations we try580

several values of qi/ri and keep the value that results in the smallest prediction error. The process581

is repeated for each i of a given time series.582
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Harjunmaa, E., Seidel, K., Häkkinen, T., Renvoisé, E., Corfe, I. J., Kallonen, A., ... & Jernvall, J.608

(2014). Replaying evolutionary transitions from the dental fossil record. Nature, 512(7512),609

44-48.610

Hayati, M., Biller, P., & Colijn, C. (2020). Predicting the short-term success of human influenza611

virus variants with machine learning. Proceedings of the Royal Society B, 287(1924).612

Heywood, J. S. (2005). An exact form of the breeder’s equation for the evolution of a quantitative613

trait under natural selection. Evolution, 59(11), 2287-2298.614

Houle, D., & Meyer, K. (2015). Estimating sampling error of evolutionary statistics based on615

genetic covariance matrices using maximum likelihood. Journal of Evolutionary Biology,616

28(8), 1542-1549.617

32



Houle, D., Mezey, J., Galpern, P., & Carter, A. (2003). Automated measurement of Drosophila618

wings. BMC Evolutionary Biology, 3.619

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of620

Fluids Engineering, Transactions of the ASME, 82(1), 35–45.621

Kruuk, L. E. B. (2004). Estimating genetic parameters in natural populations using the “animal622

model”. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1446),623

873.624

Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: body625

size allometry. Evolution, 402-416.626

Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolu-627

tion, 1210-1226.628
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Supplementary Figures715

Supplementary Figure 1. Change in trait mean for the 3 replicate lines (R1, R2, R3) and the716

control (C1) for the artificial selection experiments of the wing. The quadratic fit and its 95% CI717

is included.718
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Supplementary Figure 2. Predicted and observed responses to selection for lines R1 and R2,719

with G estimated with a pedigree depth of 2 (i.e. like Main Figure 2). The observed change is720

plotted with 95% CI and the predicted changes are plotted with 1 SD.721
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