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Abstract (213 words)1

This study is an attempt to reconcile the physics-driven variation in reference2

evapotranspiration (ET0) and possible sensory-driven anticipatory acclimation3

that contributes to tolerance of dry weather spells and drought by plants4

growing in open fields. We use an original data set measured at high temporal5

resolution. These data include the standard meteorological observations plus6

detailed observations of different bands of sunlight: UV-B, UV-A,7

photosynthetically active and global down-welling short-wave radiation, blue,8

red and far-red light from two growth seasons at Helsinki, Finland. We also9

report ET0 computed with the FAO formulation of the Penman-Monteith10

equation. We assessed the correlations among variables at different time scales11

and their performance as predictors of ET0. We conclude that all studied bands12

of sunlight are consistently good predictors of ET0. UV radiation is a specially13

good predictor of the daily course of ET0 while longer wavelengths function14

better in the prediction of day to day variation in ET0. In most cases sunlight15

bands that plants are known to sense through specific photoreceptors can16

explain more than 95% of the variation in ET0, making them as cues carrying17

information on the demand side of the water budget of vegetation. Sunlight as18

sensed by plants is consequently a good candidate as driver of anticipatory19

acclimation to likely future drought events.20

Keywords: drought, sunlight, anticipation, acclimation, cue, signal, plants,21

transpiration, evaporation, weather.22

Abbreviations: PAR = photosynthetically active radiation, 400nm < 𝜆 < 700nm;23

R = red light, 655nm < 𝜆 < 665nm; FR = far-red light, 730nm < 𝜆 < 740nm; UV24

radiation, 280nm < 𝜆 < 400nm; UV-B radiation, 280nm < 𝜆 < 315nm; UV-A 225

radiation, 315nm < 𝜆 < 340nm; UV-A 1 radiation, 340nm < 𝜆 < 400nm; ET =26

evapotranspiration, evaporation + transpiration, ET0 = potential or reference27

evapotranspiration.28



1. Introduction29

This study is an attempt to reconcile the physics-driven variation in reference30

evapotranspiration (ET0) and possible sensory-driven anticipatory acclimation31

that contributing to tolerance of dry weather spells and drought by plants32

growing in open fields.33

The scaling of water fluxes from plants to fields and regions was a subject of34

intense research in the 1980s. It was then concluded that over large land35

surfaces the main driver of evapotranspiration (ET) is available energy when36

surface resistance is low and water supply unrestricted. These are conditions37

assumed for the calculation of potential- or reference evapotranspiration (ET0),38

as discussed by McNaughton (1989). In contrast actual evapotranspiration (ET) is39

not restricted to these idealized conditions, and usually less than ET0.40

The Penman-Monteith equation, (1), is an accepted method for estimation of ET41

based on the mechanisms of energy and matter exchange,42

ET = Δ(𝑅n − 𝐺) + 𝜌a𝑐p(𝑒∗
a − 𝑒a)/𝑟a

(Δ + 𝛾(1 + 𝑟s
𝑟a

))𝜌w𝜆 (1)

where ET is the evapotranspiration flux, Δ the slope of the saturation vapor43

pressure vs. temperature curve, 𝑅n the net radiation flux density, 𝐺 the sensible44

heat flux density into the soil, 𝜌a the air density, 𝑐p the specific heat of moist air45

at constant pressure, 𝑒∗
a the saturation water vapor pressure at air temperature,46

𝑒a the actual water vapor pressure of the air, 𝑟a the aerodynamic resistance to47

turbulent transfer from the surface to some 𝑧 height above the surface, 𝛾 the48

pyschrometric constant, 𝑟s the bulk surface resistance to flow of water vapor49

from inside the leaf, vegetation canopy or soil to outside the surface, 𝜌w the50

density of liquid water, and 𝜆 is the latent heat of vaporization.51

The simplified formulation from FAO’s publication No. 56 and its revisions52

combines equation (1) with those for 𝑟a, 𝜌a and 𝜆 (Allen et al., 2006),53

ET0 =
𝑘eΔ(𝑅n − 𝐺) + 𝛾 𝑘n

𝑇a+273𝑢2(𝑒∗
a − 𝑒a)

Δ + 𝛾(1 + 𝑘d𝑢2) (2)

where 𝑘𝑖 are numeric constants with values that depend on the time step of the54
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computations and the units of the input data, 𝑢2 wind speed at 2m, 𝑇a air55

temperature at 2m (∘C), and all other symbols as in equation (1).56

As a result of validation studies, ASCE-EWRI updated equation (2) by adjusting57

the numerical values of the 𝑘𝑖 constants, both for the same hypothetical grass58

sward canopy as used for ET0 according to FAO56 and for a 0.5m-tall canopy59

similar to a field of alfalfa (Allen et al., 2006). In this updated version the value60

of 𝑘d is different for day and night. Although the formulation is fixed, how61

calculations are done depends on the available data. There are procedures62

specified for the estimation of missing data for some of the inputs.63

Equations (1) and (2) are mechanistically based on the energy balance of the64

foliage, transfer resistances and concentration gradients. Use of equation (2) is65

restricted to large areas of uniform vegetation while equation (1) is not, as long66

as values for s and a are available. The values used for the numeric constants 𝑘𝑖67

are based on various assumptions about the vegetation and as well as that 𝑔w
l is68

high and that soil water is not limiting. It treats the canopy as an imaginary “big69

leaf” representing the foliage as a whole. The resistance to the flow of water70

vapour is described by two resistances in series, the surface resistance of the71

canopy (𝑟s) and the aerodynamic resistance (𝑟a) affect water vapour transport72

into the air above the canopy’s boundary layer. 𝑟a is a function of the wind speed73

and roughness of the canopy. In the case of ET0, 𝑟a is computed assuming a74

uniform grass sward 0.12m tall and 𝑟s assumed to be low during daytime75

reflecting high 𝑔w
l .76

Even when considering non-idealized canopies and conditions, available energy77

remains a key determinant of ET. This is in contrast to the central role of78

stomata in the regulation of transpiration of an isolated plant under controlled79

conditions (Jarvis and McNaughton, 1986). So, even though ET0 and ET are80

calculated using a “big leaf” approximation involving similar terms as the81

calculation of transpiration from an individual leaf, the main variables governing82

water flux are depend on the spatial scale (Jarvis, 1985; Jarvis and McNaughton,83

1986; Campbell and Norman, 1998). In brief, assuming that only a single leaf84

responds to its environment leads to different conclusions than assuming that85

all leaves in a field or forest respond concurrently to an external change in the86

environment. The process of estimating ET from responses of leaf conductance87

(𝑔w
l ) or of transpiration by individual leaves (𝐸) is an scaling-up problem rather88
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than a simple summation problem because of feedbacks loops. What is different89

for ET and 𝐸 is the boundary of what we consider the system of interest and90

consequently the height 𝑧 where we can assume that conditions remain91

unaffected by changes in the water vapour flux rate we are studying or92

estimating: outside the leaf boundary layer for 𝐸 vs. above the regional93

boundary layer for ET.94

With a focus on an individual plant or leaf, stomatal conductance is critical to95

the regulation of water use, but for a field of short vegetation not limited by96

water supply, differences in stomatal conductance among individuals mainly97

affect how these individuals share the total water flux, which is mainly98

dependent on the energy input (Aphalo, 1991). In the case of ET, 𝑔w
l is only one99

component of 𝑟s as evaporation may also take place at the soil surface or on wet100

plant surfaces (usually 𝑟a > 𝑟s); 𝑟s depends in addition on the leaf area index101

(LAI) because it is expressed per unit ground area as is ET, while 𝑔w
l is expressed102

per unit leaf area. The interception of radiation by the foliage depends on the103

spatial distribution of leaves and their positions, as well as on LAI. However, the104

assumption for ET0 is that all incoming radiation is intercepted by foliage and105

that the albedo is 0.23, i.e., that 23% of incoming solar radiation (𝜆 < 4000nm)106

radiation is reflected back and 77% absorbed .107

Drought as a meteorological phenomenon of abnormally low water availability is108

in most cases a regional phenomenon, dictated by the spatial distribution of109

rainfall. From a plant physiology perspective the water budget is dependent on110

the soil characteristics, topography, timing and previous environmental111

conditions experienced. In general we need to distinguish between drought and112

stress, as stress is related to each individual plant. Acclimation, the adjustment113

of physiology, morphology and development to the circumstances can delay or114

mitigate stress during a drought spell. Definitions of acclimation vary to some115

extent, but in all cases plastic responses are assumed to take time and to be116

mostly irreversible or only very slowly reversible. These features of acclimation117

indicate that to be effective, acclimation needs to be anticipatory (Novoplansky,118

2016). Anticipation implies that plants perceive the environmental conditions119

they are likely to experience in the near future (Aphalo and Sadras, 2021).120
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1.1. Daylight carries information121

Mechanisms for the acquisition of information are characteristic of all122

organisms, from bacteria to humans, including plants (Capra and Luisi, 2014).123

These mechanisms contribute to fitness because they allow anticipatory124

behaviour (Novoplansky, 2016). An important question from the perspective of125

sensory ecology is what are the available sources of information an organism126

has access to and that could guide a given anticipatory response.127

Sensing of light through wavelength-selective photoreceptors allows acquisition128

of information (Smith, 1981b; Novoplansky et al., 1990; Aphalo and Ballaré,129

1995). Daylight carries information through changes in its spectrum and in its130

irradiance (Aphalo and Ballaré, 1995; Casal, 2013) as well as the seasonality of131

the photoperiod, sensed by plants as the length of the night through132

photoreceptors (Song et al., 2015). Variables in the environment carry a wealth133

of information as a result of temporal and spatial auto-correlations and134

cross-correlations (Aphalo and Sadras, 2021).135

The spectral composition of sunlight varies with sun elevation, as the shorter136

wavelengths of UV are depleted when the sun is low in the sky (Aphalo et al.,137

2012). The photon ratio between 𝑄UV-B and 𝑄PAR varies strongly during the138

course of the day and with time of the year, specially at high latitudes139

(Kotilainen et al., 2020) but is only moderately affected by clouds (Lindfors and140

Arola, 2008). Within canopies, a situation not considered in detail here, the R ∶FR141

photon ratio depends very strongly on the leaf area overhead and to a lesser142

extent on the plant species imposing shade (Holmes, 1981; Hartikainen et al.,143

2020; Durand et al., 2021). The R ∶FR is also affected by differential reflection of144

FR by green vegetation, so it changes before shading by neighbours starts145

(Ballaré et al., 1990). In addition, the R ∶FR depends weakly on the solar elevation146

angle and the water column in the atmosphere (Kotilainen et al., 2020). This147

causes some variation during the course of the day, through the seasons of the148

year and with latitude even at the top of a canopy (Smith and Morgan, 1981;149

Kotilainen et al., 2020).150

The shorter wavelengths are more scattered in the atmosphere than the longer151

wavelengths of the spectrum (Lindfors and Ylianttila, 2016), so UV radiation152

penetrates more readily into vegetation canopies (Durand et al., 2021) than blue153
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and red light, although they are all three strongly absorbed by the leaves of most154

plants.155

We hypothesise that plants can anticipate and acclimate to drought by sensing156

evaporative demand (measurable as ET0) or a variable correlated with it. This157

hypothesis is justified by the fact that in the absence of restrictions to water158

supply, the rate at which the water stored in the soil is being depleted is159

proportional to ET0. For vegetation ET0 represents a ceiling for actual ET160

(Campbell and Norman, 1998). As far as we know plants cannot directly sense161

ET0 or water loss at field scale. However, plants can sense different wavelengths162

of sunlight, temperature and 𝑒∗ − 𝑒. We may then ask if any of these variables163

can functions as proxies for ET0 and at which temporal scales.164

1.2. Variables sensed by plants165

Plants have multiple photoreceptors that allow them to separately sense166

different wavebands of the solar spectrum (Paik and Huq, 2019). Furthermore,167

signalling downstream of these photoreceptors is interconnected leading to168

complex interactions (Moriconi et al., 2018; Rai et al., 2021). The wavebands169

considered most important are UV-B (280–315nm), UV-A (315–400nm), blue170

(400–500nm), red (655–665nm) and far-red (730–740nm).171

Temperature responses in plants are not only the result of the effect of172

temperature on overall metabolic- and biochemical-reaction rates, but173

temperature is like light sensed and used as a source of information that174

triggers specific responses (Hayes et al., 2021). The R and FR photoreceptor175

phytochrome B and the UV-A/B photoreceptor phototropin are among plants’176

direct temperature sensors (Casal and Qüesta, 2018; Hayes et al., 2021).177

Stomata are sensitive to water vapour, probably through multiple mechanisms,178

including the bulk rate of transpiration (Monteith and Unsworth, 2008) and179

sensing of VPD, possibly through localized evaporation and long distance180

signalling (Aphalo and Jarvis, 1991; Mott and Parkhurst, 1991; Monteith, 1995;181

Buckley, 2005; Peak and Mott, 2011).182

Plants can also perceive mechanical stimuli including wind, touch and vibrations183

(Telewski, 2006). Repeated exposure to wind can result in shorter plants while184
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touching leaves or shaking them can induce stomatal closure.185

On the other hand, there is evidence that at least under some conditions,186

pre-exposure to solar UV-B and/or UV-A radiation can trigger acclimation187

leading to enhanced tolerance and even stress avoidance during a subsequent188

drought event (Gitz and Liu-Gitz, 2003; Robson et al., 2016). This has been189

frequently attributed to stress from UV exposure enhancing tolerance to190

drought stress (e.g. Bandurska et al., 2013). Two non-mutually exclusive191

mechanisms can underly this response: UV as a stress factor, and UV as a cue.192

Current consensus is that exposure to solar UV radiation only exceptionally193

induces stress in plants growing in the field (Robson et al., 2019). Furthermore,194

recent results support the idea proposed by Gitz and Liu-Gitz (2003) that195

induction of stress by UV radiation is not necessary for preemptive acclimation196

that protects from drought induced stress (Yan, 2021). Solar UV-B and/or UV-A197

2 radiation can function as a source of information, sensed by plants through198

the UVR8 photoreceptor (Rai et al., 2021) and induces acclimation that delays or199

moderates the development of stress under water restriction (Yan, 2021).200

Furthermore, responses mediated by UVR8 are negatively modulated by UV-A 1201

and blue radiation sensed through the cryptochrome photoreceptors (Rai et al.,202

2020; Tissot and Ulm, 2020; Rai et al., 2021). However, the common proposition203

that UV-B radiation is a good predictor of drought remains speculative. In204

particular, no previous study has considered this problem in the light of the205

sensory capabilities of plants or at multiple time scales.206

1.3. Aims of the study207

Given that available energy is the main driver of ET0, we hypothesized that UV-B208

radiation and/or some other components of solar irradiance are good sources of209

information about current ET0 and accessible to plants. However, as plants can210

sense also temperature, wind and air humidity, we also included these variables211

in the study given that they are mechanistically linked to ET0.212

Our aim was to compare the effectiveness of these variables in their hypothetical213

role as predictors of ET0 by assessing regressions and cross-correlations.214
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2. Methods215

2.1. Data and its acquisition216

Original data with high temporal resolution and discriminating different bands217

of the solar spectrum were collected at a research-oriented weather station218

located in the experimental field at the Viikki campus of the University of219

Helsinki, Finland (25.01673 E, 60.2253 N, 8m a.s.l.). These data describe the220

daily course as well as seasonal variation in the environmental conditions during221

the growing season in two consecutive years.222

The data were acquired with a datalogger (CR6, Campbell Scientific, Logan, UT,223

USA) expanded with an analogue input module (CDM-A116, Campbell Scientific),224

powered by a battery charged in parallel from mains power and solar panels.225

Except for those in the soil, sensors are mounted onto a 3-m tall galvanized-steel226

instrument tripod (CMxxx, Campbell Scientific). The data reported are for the227

period 7 May 2020 to 28 September 2021, excluding data from 1 November 2020228

to 31 March 2021, the winter period. Data were collected also through the winter229

but radiation data are suspect for this time of the year due to the intermittent230

accumulation of snow on the broadband sensors. The sensors in the station are231

listed in Table 1. Most measurements were acquired once every 5 s and means of232

12 values logged at 1min intervals. The exception are data from the soil at233

0.05m and deeper depths that were acquired and logged once per hour (data not234

shown). Wind speed and direction, air temperature, air humidity, precipitation235

and atmospheric pressure were measured at a height of 2 ± 0.3m.236

All visible and UV radiation sensors were calibrated simultaneously while237

deployed on site by comparison to a recently calibrated array spectrometer238

(Maya 2000 Pro, Ocean Optics, now Ocean Insight, Orlando, FL, USA). Spectral239

data were acquired with R (R Core Team, 2021) and package ‘ooacquire’ (Aphalo240

and Ylianttila, 2021) using an improved version of the protocol described in241

(Ylianttila et al., 2005) (method "ylianttila.mthd" in ‘ooacquire’). The integration242

time was optimized to attain at the peak 95 ± 3% of the maximum detector243

counts and the number of integrations adjusted to maintain a constant244

combined integration time of at least 10 s. Integration time was “bracketed” to245

improve the dynamic range and the resulting spectra spliced, with the low signal246
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Table 1: Variables in the high temporal resolution data set and their origin.
n.a. indicates not applicable. The WXT-520 sensor was replaced
by a WXT-530 in April 2021. Acq. = data acquisition frequency;
Logg. = data logging frequency; 𝑄 = photon irradiance, 𝐼 = energy
irradiance, 𝑇 = temperature, 𝑒 = water vapour pressure; 𝑢 = horizontal
wind speed; �⃗� = wind direction; 𝑃atm = atmospheric pressure; 𝑝rain
= rain precipitation; 𝑤 = volumetric water content; ET0 = reference
evapotranspiration. Subscripts: UV-B = ultraviolet B radiation (250–
315nm); UV-A = ultraviolet A radiation (315–400nm); B = blue light (400–
500nm); R = red light (655–664nm); FR = far-red light (730–740nm);
PAR = photsynthetically active radiation (400–700nm); SW = short-wave
radiation (280–4000nm).

Variable Acq. Logg. Technique Sensor type Make

𝑄UV-B 5s ̄𝑥, 1min SiC photodiode SEN2-UVB-Cosine sglux
𝑄UV-A 5s ̄𝑥, 1min SiC photodiode SEN2-UVA-Cosine sglux
𝑄B 5s ̄𝑥, 1min GaP photodiode SEN2-Blue-Cosine sglux
𝑄R 5s ̄𝑥, 1min Si photodiode SKR-110 Skye
𝑄FR 5s ̄𝑥, 1min Si photodiode SKR-110 Skye
𝑄PAR 5s ̄𝑥, 1min Si photodiode LI-190 LI-COR
𝑄PAR,diff.∶tot. 5s ̄𝑥, 1min Si BF5 Delta-T
𝐼sw 5s ̄𝑥, 1min thermopile SMP3 Kipp
𝑇air < 5 s ̄𝑥, 1min PT100 WXT-520/536 Vaisala
𝑒air < 5 s ̄𝑥, 1min HUMICAP WXT-520/536 Vaisala
𝑢2 0.25 s ̄𝑥, 1min 2D sonic WXT-520/536 Vaisala
�⃗�2 0.25 s ̄𝑥, 1min 2D sonic WXT-520/536 Vaisala
𝑃atm < 5 s ̄𝑥, 1min BAROCAP WXT-520/536 Vaisala
𝑝rain 1min ∑ 𝑥, 1min sonic WXT-520/536 Vaisala
𝑇surface 5s 𝑥, 1min IR 8–12𝜇m OPT-CSMV-LT02 Optris
𝑇soil,z 1h 𝑥, 1 h thermistor SoilVue Campbell
𝑤soil,z 1h 𝑥, 1 h TDR SoilVue Campbell
ET0 1min n.a. calc. Penman-Monteith n.a.
solar time 1min n.a. calc. Meeus n.a.
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regions coming from spectra measured using ×10 the base integration time. For247

each spectrum, measurements under three conditions were taken within not248

more than 2 min: a light measurement, a light measurement with a filter249

blocking UV radiation (𝜆 ≤ 400nm), and a dark measurement. This protocol250

together with a special calibration protocol and matching algorithm allow251

correction for stray light, slit function and increase the dynamic range. This252

makes it possible to measure UV-B radiation in sunlight reliably. As entrance253

optics a high performance cosine diffuser (D7-H-SMA, Bentham, Reading, U.K.)254

connected with an optical fibre (xxxx, Ocean Optics) and mounted on a255

custom-made levelling base were used. The distance between this entrance256

optics and the broadband sensors calibrated was less than 10m. During257

measurements the operator ducked down and remained at least 5m away, on258

the side opposite to the sun. Other sensors were factory calibrated.259

The observed data were used to estimate ET0 for a short (0.12 m-tall) vegetation260

canopy at 1min intervals. We used the FAO56 formulation of the261

Penman-Montieth equation, as modified by ASCE (ASCE-PM short canopy) (Allen262

et al., 2006). Given the availability of measured atmospheric pressure (𝑃atm) the263

psychrometric constant (𝛾) was computed from it instead of assumed constant.264

Soil heat flow was assumed to be negligible. Functions ET_ref(), ET_ref_day(),265

water_vp_sat(), water_vp_sat_slope(), psychrometric_constant() and266

net_radiation() from R package ‘photobiology’ version 0.10.7 (Aphalo, 2015)267

were used to compute ET0.268

Local solar time, the position of the sun in the sky and day length were also269

computed using a re-implementation in R package ‘photobiology’ (Aphalo, 2015)270

of Meeus’ equations (Meeus, 1998) as used in NOAA’s on-line web calculator.271

All calculations of solar radiation summaries were done in R 4.1.0 or 4.1.1 (R272

Core Team, 2021) with packages ‘photobiology’ (Aphalo, 2015), ‘dplyr’ (Wickham273

et al., 2021) and ‘lubridate’ (Grolemund and Wickham, 2011). The data from the274

logger were imported into R with the help of R package ‘photobiologyInOut’275

(Aphalo, 2015). Plots and the model fits they contain were created in R with276

packages ‘ggplot2’ (Wickham, 2016) and ‘ggpmisc’ (Aphalo, 2021).277
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2.2. Data analysis278

The relative importance of the different variables entering the ET0 calculation279

was assessed by the "lgm" method as implemented in R package ‘relaimpo’280

(Grömping, 2006) in a linear model with ET0 as response variable and 𝐼sw, 𝑇air,281

𝑒∗
air − 𝑒air and 𝑢 as explanatory variables. The lgm approach is based on 𝑅2

282

partitioned by averaging over orders and computed by numerical approximation.283

We did quantile regression fits with R package ‘quantreg’. We made also use of R284

packages ‘nlme’ (Pinheiro et al., 2021), ‘tibble’ (Müller and Wickham, 2021),285

‘dplyr’ (Wickham et al., 2021) and ‘tidyr’ (Wickham, 2021).286

We built correlation matrices for these variables together with solar radiation in287

those bands known to be perceived through plant photoreceptors, to not only288

detect possible proxies for potential evapotranspiration rate, but also assess the289

collinearity among variables entering the ET0 calculations. The matrices were290

plotted with variables grouped according to hierarchical clustering using R291

package ’ggcorrplot’ (Kassambara, 2019).292

Given that the main focus of the study was to assess what sources of293

information plants could use to “forecast” future drought and/or heat stress294

events, we assessed the goodness of different variables as predictors of ET0. We295

used polynomial regression fitted by ordinary least squares (OLS) and compared296

the adjusted coefficients of determination (𝑅2
adj). We used 𝑅2

adj instead of 𝑅2
297

because the number of parameters was not the same in all the fitted models. In298

spite of this, small differences in 𝑅2
adj must be interpreted with caution.299

Given the high frequency of data acquisition over two whole growing seasons, by300

doing the analyses described above on the original observations and on their301

averages when grouped by calendar day or by time of day we assessed the302

correlations at different time scales.303
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3. Results304

3.1. Drivers of evapotranspiration305

The Penman-Monteith’s (PM) equation we used to compute ET0 is an306

approximation based on the Physics processes regulating the water flux. This307

equation takes as input radiative energy, air temperature and water vapour308

pressure deficit as well as wind speed and atmospheric pressure. Atmospheric309

pressure plays a minor role in the calculations and is frequently ignored.310

An initial question before considering proxies, is to analyse how much reference311

evapotranspiration depends on each of the different variables used as input in312

its estimation. The importance of the variables depends on their variation and313

correlations, so we used for this analysis the same data we later used to the314

search for proxies of ET0 that plants could sense and use as sources of315

information. The apparent importance of the variables also depends on the316

model fitted. We selected a simple model that is able to give a very good fit to317

the data.318

ÊT0 = 𝑏0 + 𝑏1 ⋅ 𝐼sw + 𝑏2 ⋅ 𝑇a + 𝑏3 ⋅ (𝑒∗
a − 𝑒a) + 𝑏4 ⋅ 𝑢2 + 𝜖𝑖𝑗 (3)

We considered correlation corresponding to three different types of temporal319

variation: those revealed by 1) the original observations at a 1min time step, 2)320

daily summaries, and 3) monthly means for each hour of the photoperiod. Our321

aim was to investigate whether short-term and long-term correlations are322

consistent.323

In all analyses we used data for the period from April to September, as at our324

location, at other times of the year snowfall and snow on the ground may be325

present. Except for daily totals, we consider only data for sun elevation angles of326

5 degrees or more as the rate of evapotranspiration is much lower at night.327

For the original observations at 1min time step, the energy input is most328

important towards explaining variation in evapotranspiration, contributing329

between 82% and 71% of the 𝑅2. Depending on the month of the year, wind330

speed and vapour pressure deficit alternate as second in importance, while in331

most cases temperature makes only a small contribution (Fig. 1).332
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Figure 1: Relative importance of variables in the computation of ET0 on a 1min
time step. The total 𝑅2 of the fitted linear model is partitioned based on
the contribution of different variables. The stacked bar displays the 𝑅2

for each fit, with in all cases 𝑅2 > 0.98. n = 274075.

For daily totals, energy and vapour pressure deficit remain as main drivers of333

evapotranspiration. Month to month variation in the relative importance is,334

however, larger than for the original observations (Fig. 2).335

For monthly means for each hour of the photoperiod (based on local solar time),336

relative importances are rather different than on a 1min or an daily time steps,337

with the importance of wind speed increasing and that of global radiation338

decreasing. The four variables taken together still explain almost all variation in339

ET0 with 𝑅2 > 0.99 for all months (Fig. 3).340

3.2. Correlations341

The input variables to the Penman-Monteith equation can be strongly342

cross-correlated as for example, water vapour pressure tends to vary little343

through the course of a day and consequently changes in the vapour pressure344

deficit are dependent on air temperature. As a result, 𝑒∗ − 𝑒 is at its maximum in345

the early afternoon when air temperature is highest. Correlations for the original346

observations logged at 1 min interval are all positive and very strong among all347
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Figure 2: Relative importance of variables in the computation of ET0 on a daily
time step. The total 𝑅2 of the fitted linear model is partitioned based on
the contribution of different variables. The stacked bar displays the 𝑅2

for each fit, with in all cases 𝑅2 > 0.99. n = 317.
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Figure 3: Relative importance of variables in the computation of hourly ET0 on an
hourly time step. The total 𝑅2 of the fitted linear model is partitioned
based on the contribution of different variables. The stacked bar
displays the 𝑅2 for each fit, with in all cases 𝑅2 > 0.99. n = 155.
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Figure 4: Correlation matrix for observations logged at 1 min intervals for sun
elevations equal or higher than 5 degrees. n = 274072. Variables are
clustered based on the similarity of the correlation patterns.

pairs of sunlight wavebands and for ET0 against each of them (Fig. 4).348

Correlations involving wind speed, air temperature or 𝑒∗ − 𝑒 are much weaker.349

Correlations in day to day variation are shown as a correlation matrix for daily350

means (Fig. 5). In this case wind speed is very weakly and negatively correlated351

with ET0 and solar radiation bands, while air temperature and 𝑒∗ − 𝑒 are352

positively with each other and with solar radiation. As for observations at 1min353

time step, the different bands of sunlight and ET0 cluster together.354

Correlations within the average daily course are shown as a correlation matrix355

for monthly means for each hour of the day (Fig. 6). The clustering suggests that356

the correlations during the daily course of the photoperiod are slightly different,357

with a larger importance of wind speed than for day to day variation.358

At all three time scales the different bands of sunlight and ET0 cluster together,359

and consistently global radiation is an immediate neighbour of ET0. The360

ordering based on 𝑅2 within this cluster varies, but given that correlation361

coefficients are consistently very high among this group of variables, this362

variation is mostly inconsequential.363
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Figure 5: Correlation matrix for daily means from observations logged at 1min
intervals through 24h. n = 317. Variables are clustered based on the
similarity of the correlation patterns.
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Figure 7: Relationship between reference evapotranspiration for a short
vegetation cover (ET0) vs. UV-B photon irradiance (𝑄UV-B). Observations
are means logged at 1min interval. In red fitted 3rd degree polynomial.
Observations are plotted as semi-transparent dots (black corresponds
to 125 or more overlapping points).

3.3. Proxies for ET0364

Until now we have considered linear correlation and linear fits. These yielded365

slightly smaller estimates of correlation coefficients between UV-B radiation and366

ET0 than for other bands of the solar spectrum. We need however to consider367

that within the photoperiod the relationship between global irradiance and UV-B368

irradiance is not linear while the relationship for UV-A 1 and longer wavelengths369

is almost perfectly linear (cf. Figs. 24 and 25). This results in a curvilinear370

relationship between ET0 and UV-B irradiance for the original observations that371

can be well described by a 3rd degree polynomial (Fig. 7) and in a linear372

relationship between ET0 and irradiance for longer wavelengths such as for blue373

light (Fig. 8).374

To individually assess the performance of each variable as predictor of ET0 we375

fitted first or third degree polynomials. Fig. 9 shows the adjusted 𝑅2 from these376

fits, done separately for each month using data at 1 min intervals for sun377

elevation equal or more than five degrees. This shows, in agreement with the378

analysis in Fig. 2 that the best predictors are the various bands of sunlight, with379
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Figure 8: Relationship between reference evapotranspiration for a short
vegetation cover (ET0) vs. solar blue photon irradiance (𝑄UV-A). Hourly
averages computed from 60 values logged at 1min interval. In red fitted
linear regression. Observations are plotted as semi-transparent dots
(black corresponds to 125 or more overlapping points). n = 274071.

PAR performing slightly better than UV radiation. Non-the-less even for UV-B380

radiation 𝑅2 > 0.85 in all months (Fig. 7). In contrast, for VPD, the best381

performing of the variables not directly related to solar radiation,382

0.24 > 𝑅2 > 0.31, i.e., 𝑒∗ − 𝑒 explained in every case less than one third of the383

variation in ET0 (Fig. 22).384

A similar analysis for variation within the course of the photoperiod shows very385

high estimates of 𝑅2 for all sunlight bands (𝑅2 ≥ 0.99; Fig. 10). Of the remaining386

variables, wind is a good predictor of ET0 during the photoperiod387

(0.63 ≤ 𝑅2 ≤ 0.91). UV-B irradiance is a very good predictor of ET0 even though388

the relationship is curvilinear (Fig. 20).389

4. Discussion390

Our analysis of the data highlights the importance of energy as the main driver391

of ET0, and demonstrates that all bands of the solar spectrum are much better392

predictors of ET0 than VPD, wind speed or 𝑇air. The relationship between393
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Figure 11: Relationship between reference evapotranspiration for a short
vegetation cover (ET0) vs. UV-B photon irradiance (𝑄UV-B). Monthly
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down-welling short-wave radiation (𝐼sw) and irradiance in the blue (𝑄B), red (𝑄R)394

and far-red (𝑄FR) regions is linear and very tight. In contrast, as 𝑄UV-B has395

stronger dependency on solar elevation than 𝐼sw, the relationship between them396

is curvilinear. They are also differently affected by clouds (Lindfors and Arola,397

2008), possibly the reason for a relationship that is not as tight when398

considering day to day variation. In contrast, within the photoperiod there is399

little difference among wavebands in their performance as predictors.400

Horizontal cosine corrected diffusers, as normally used, measure the radiation401

flux received on a horizontal surface (irradiance: 𝐼 or 𝑄). However, a horizontal402

plane is far from representing the true position of most plant leaves in a canopy.403

Diffusers with hemispherical or cylindrical shape could be used instead of flat404

ones and deployed both within and above canopies. So, an important caveat is405

that the irradiances we report here are not exactly the same as what individual406

plants and leaves are exposed when growing either in a canopy or isolated407

(Chelle, 2005).408

Reference evapotranspiration, ET0, is an abstraction that even if useful does not409
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describe the actual water loss from the soil (Campbell and Norman, 1998; Allen410

et al., 2006). Future studies assessing actual soil drying and water recharge, e.g.,411

by measuring evapotranspiration with lysimeters, or by estimating it from soil412

volumetric water content and precipitation will allow to more precisely assess413

the information carried by cues. Measurements of the surface temperature of414

the canopy and long wave radiation would allow the use of equation (1) to415

validate estimates of ET.416

There is evidence for a role of pre-exposure to UV-B and/or UV-A in preemptive417

acclimation to drought (e.g. Robson et al., 2016; Yan, 2021), but the usual418

explanation does not seem to hold, at least for our data set, as all wavebands of419

sunlight seem to function as cues carrying information about ET0. This raises420

the question of why plants use UV exposure as a proxy informing about the421

likelihood of future drought. We propose three possible explanations as422

hypotheses for future studies: 1) UV exposure is a comparatively better423

predictor of ET0 for plants growing within a canopy than when considering424

sunlight above a canopy; 2) irradiance measured on a horizontal plane may not425

represent what a plant senses; and 3) UV exposure in itself is a better predictor426

of future drought than ET0.427

Disentangling these questions has practical implications for crop breeding as it428

will explain under which conditions reductions in 𝑔w
l contribute to population429

level water-use efficiency and under which conditions it does not. The albedo,430

LAI and timing of soil-water use can all affect canopy evapotranspiration,431

possibly as much or more than a decrease in 𝑔w
l , while imposing different432

constraints and trade-offs on production. As far as we know, data like we are433

collecting at our station are not available anywhere else with a similarly high434

temporal resolution. A network of similar stations deployed worldwide would be435

very valuable for the development and deployment of precision agriculture.436

Thus, this report provides a starting point with respect to instrumentation and437

data analysis, in addition to answers to scientific questions.438
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A. Supplementary Material439

A.1. Daily totals and means440
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Figure 12: Relationship between reference evapotranspiration for a short
vegetation cover (ET0) and UV-B photon irradiance (𝑄UV-B). Monthly
averages computed for each hour of the photoperiod from values
logged at 1min interval. Median regression (line) and quartile
regressions (band), second degree polynomials.
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Figure 13: Relationship between reference evapotranspiration for a short
vegetation cover (ET0) and UV-A photon irradiance (𝑄UV-A). Monthly
averages computed for each hour of the photoperiod from values
logged at 1min interval. Median regression (line) and quartile
regressions (band), first degree polynomial.
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Figure 14: Relationship between reference evapotranspiration for a short
vegetation cover (ET0) vs. global radiation (𝐻sw). Daily sums computed
from 1440 values logged at 1min interval. In red fitted 2nd degree
polynomial.
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Figure 15: Relationship between reference evapotranspiration for a short
vegetation cover (ET0) vs. UV-B photon exposure (𝐻UV-B). Daily sums
computed from 1440 values logged at 1min interval. In red fitted 2nd
degree polynomial.
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Figure 16: Relationship between reference evapotranspiration for a short
vegetation cover (ET0) vs. UV-A photon exposure (𝐻UV-A). Daily sums
computed from 1440 values logged at 1min interval. In red fitted 2nd
degree polynomial.
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Figure 17: Relationship between reference evapotranspiration for a short
vegetation cover (ET0) vs. PAR photon exposure (𝐻UV-A). Daily sums
computed from 1440 values logged at 1min interval. In red fitted 2nd
degree polynomial.
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Figure 18: Short-wave radiation (𝐻sw) vs. UV-B photon exposure (𝐻UV-B). Daily
sums computed from 1440 values logged at 1min interval. In red fitted
1st degree polynomial.
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Figure 19: Short-wave radiation (𝐻sw) vs. red photon exposure (𝐻R). Daily sums
computed from 1440 values logged at 1min interval. In red fitted 1st
degree polynomial.
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A.2. Variation within the photoperiod441
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Figure 20: Relationship between reference evapotranspiration for a short
vegetation cover (ET0) and UV-B photon irradiance (𝑄UV-B). Monthly
averages computed for each hour of the photoperiod from values
logged at 1min interval. Median regression (line) and quartile
regressions (band) using a spline.
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Figure 21: Relationship between reference evapotranspiration for a short
vegetation cover (ET0) and UV-A photon irradiance (𝑄UV-A). Monthly
averages computed for each hour of the photoperiod from values
logged at 1min interval. Median regression (line) and quartile
regressions (band), second degree polynomial.
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Figure 22: Average daily path of the relationship between reference
evapotranspiration for a short vegetation cover (ET0) vs. water
vapour pressure deficit (𝑒∗ − 𝑒). Monthly averages computed for each
hour of the photoperiod from values logged at 1min interval.
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Figure 23: Average daily path of the relationship between reference
evapotranspiration for a short vegetation cover (ET0) vs. water
vapour pressure deficit (𝑒∗ − 𝑒). Monthly averages computed for each
hour of the photoperiod from values logged at 1min interval.
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Figure 24: Short-wave global energy irradiance (𝐼sw) vs. UV-B photon irradiance
(𝑄UV-B). Monthly averages computed for each hour of the photoperiod
from values logged at 1min interval. In red fitted 2nd degree
polynomial.
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Figure 25: Short-wave global energy irradiance (𝐼sw) vs. R photon irradiance (𝑄R).
Monthly averages computed for each hour of the photoperiod from
values logged at 1min interval. In red fitted linear regression.
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