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Highlights 11 

Wildlife-vehicle collisions (WVCs) are an ongoing and widespread source of biodiversity loss. Alt-12 

hough autonomous vehicles (AV) have the potential to mitigate this source of wildlife mortality, 13 

current AV research focuses almost exclusively on urban scenarios and pedestrian-vehicle interac-14 

tions that lack transferability to wildlife. 15 

Understanding how AVs will interact with wildlife has implications for both human safety and ani-16 

mal conservation. In their present state, AVs may respond incorrectly during wildlife-vehicle inter-17 

actions, endangering both passengers and wildlife. 18 

Desirable targets for the future of transportation should not focus only on economic and techno-19 

logical development, but also on minimizing biodiversity loss. Our framework explores this para-20 

digm shift by incorporating the reduction of WVCs and human safety as coexisting goals for AV 21 

technology.  22 
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Abstract 23 

Autonomous vehicles (AV) are expected to play a key role in the future of transportation, introduc-24 

ing a disruptive yet potentially beneficial change for vehicle-wildlife interactions. However, this as-25 

sumption has not been critically examined. Here, we introduce a new conceptual framework cov-26 

ering the intersection between AV technological innovation and wildlife conservation to reduce 27 

wildlife-vehicle collisions. We suggest future research within this framework to focus on developing 28 

robust warning systems and animal detection methods for AV systems, and to incorporate wildlife-29 

vehicle interactions into decision-making algorithms. With large-scale deployment a looming real-30 

ity, it is vital to incorporate conservation and sustainability into the societal, ethical, and legal impli-31 

cations of AV technology. We appeal for further debate and interdisciplinary collaborations be-32 

tween scientists, developers, and policymakers. 33 

Keywords: sustainability, self-driving cars, automated vehicles, traffic accidents, animal-vehicle col-34 

lisions 35 

 36 

The future of sustainable transportation 37 

A shift towards autonomous transportation has begun. There are over one billion cars registered 38 

worldwide, and this number is expected to double by 2030 [1,2]. By 2050, a quarter or more of the 39 

vehicles traveling in the US and Europe could feature autonomous driving technology (Box 1) [2,3]. 40 

Countries in North America, South America, Europe, Asia, and Australia have shared national vi-41 

sions integrating research, development, and pilot deployment of autonomous vehicles (see Glos-42 

sary) [2,4,5]. The sustainable transportation concept harnesses autonomous driving technology 43 

as a tool to promote traffic flow efficiency and safety, facilitate mobility and accessibility, and re-44 

duce global emissions of greenhouse gases [1,6–10], ultimately reimagining urban environments 45 

into smart and green cities. Tangential effects, related to energy consumption, light pollution, land 46 

use, or public health [11–14], are frequently highlighted and examined. Several visions for the future 47 

—such as those put forward by the United Nations sustainable development goals (SDGs), and The 48 

New Urban Agenda (https://habitat3.org/the-new-urban-agenda/)— are directly linked to sustaina-49 

ble transportation and road safety, and the protection of biodiversity or natural habitats. The inte-50 

gration of biodiversity and ecosystem conservation into SDGs focuses primarily on sustainable 51 

infrastructure and urban development [15,16], but fails to consider the interface between wildlife 52 
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and sustainable (or autonomous) transportation. Moreover, existing research is mainly limited to 53 

urban landscapes or impacts on human safety [5,7,8,11–14,17]. Deployment of AVs at any scale 54 

will have far-reaching societal, ethical, legal, and environmental implications; therefore, the ability 55 

to safely interact with wildlife represents a key challenge at the frontier of AV research. 56 

As key components of the future of transportation, AVs will have major implications for sustaina-57 

bility and biodiversity. Here, we present a conceptual framework that expands the concept of sus-58 

tainable transportation to address the interface between wildlife and AVs. We then explore how 59 

AVs should be designed and evaluated beyond human safety and urban environments, which re-60 

quires targeted technology that accounts for wildlife-vehicle interactions. 61 

Box 1. Autonomous vehicles: terminology and operation 

 

Figure I. The six levels of AV automation defined by the Society of Automotive Engineers (SAE), ranging 

from 0 (fully manual) to 5 (fully autonomous). 

The Society of Automotive Engineers (http://www.sae.org) sets the international standard for 

AVs, and defines six levels of automation (Figure I). Vehicles equipped with advanced driver-

assistance systems (levels 0–2) are currently in use, while levels 3–5 are still being developed 

or tested. Although levels 4 and 5 do not require a human driver to take control, as the automated 
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system manages all aspects of driving, level 4 is limited to specific conditions (e.g., favorable 

weather conditions, clear lane markings) or environments (e.g., freeways, dedicated lanes [18]). 

To achieve high levels of automation, AVs incorporate multisensory systems for navigation, ob-

stacle detection, and recognition, while merging technologies to offset the weakness of each 

system [19–21]. This sensor fusion allows AVs to function even in poor visibility environments 

or bad weather conditions. Common perception sensors include visible-light cameras, infrared 

imaging, Light Detection and Ranging (LiDAR), and radar, but level 5 AVs will likely not depend 

solely on their own inputs and instead will integrate vehicle-to-vehicle, vehicle-to-infrastructure, 

and vehicle-to-pedestrian communication systems. Although sensors are the fundamental build-

ing blocks, the AV operation also requires (i) processing data into meaningful information (object 

detection, identification, mapping, and tracking), (ii) mission, motion, and behavioral planning us-

ing decision-making algorithms and, for higher automation levels, (iii) motion and vehicle control 

(e.g., steering, braking, signaling) through actuators. 

Just as with conventional vehicles, autonomous driving technology must safely operate within 

narrow margins of processing time, failure rate, and maintainability [22]. Ideally, AVs are pro-

grammed to make more immediate and accurate risk mitigation decisions than human drivers 

due to multisensory inputs. Moreover, artificial intelligence technology is not confounded by hu-

man weaknesses of fatigue, distraction, or intoxication that may hinder decision-making pro-

cesses [23]. An AV that achieves functional safety must be able to detect, identify, and react to 

a diverse set of challenges and threats while traveling through complex, uncertain, and cluttered 

environments [24] —including those related to wildlife-vehicle interactions. As with vehicle-vehicle 

or vehicle-pedestrian interactions [25], deciding on the appropriate response requires an inter-

section of moral philosophy, law, and public policy to appropriately deal with moral dilemmas 

(e.g., “the trolley problem”) [25–27]. 

Autonomous vehicles: the problem or the solution? 62 

Given the transformative yet disruptive nature of autonomous technology, its potential benefits are 63 

only achievable if risks are properly identified. This task requires a proactive and adaptive approach 64 

here and now, at the early stages of AV development [1,28]. Akin to current transportation modes, 65 

we can expect AVs (at all automation levels) to interact with urban wildlife and, as their deployment 66 
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expands beyond cities and into suburban or rural ecosystems [29,30], or through naturalized or 67 

protected areas [21,31], with less urban-adapted species.  68 

 69 

Figure 1. Conceptual framework of the key elements of (A) sustainable transportation, interlinked with (B) wild-70 

life conservation (and corresponding ecological research areas) and with (C) technological development (and 71 

corresponding AV research areas). Correctly anticipating wildlife-vehicle interactions (and collision events), is 72 

crucial for the implementation of preventive countermeasures or mitigations at three levels linked with the 73 

environment: (1) infrastructure: construction, expansion, and maintenance of road and support infrastructures, 74 

particularly when roads border or intersect biodiversity hotspots, naturalized or rural areas (such as parks, 75 

agricultural or plantation fields), or are near water sources; (2) society: government regulations and utilization 76 

policies to manage deployment within these sites, and account for potential travel pattern shifts and con-77 

sumption; and (3) transport systems: mobility services and transportation modes that balance human and 78 

wildlife concerns for an efficient and safe traffic flow. 79 

Wildlife-vehicle collisions (WVCs) are the second-largest source of anthropogenic mortality for 80 

many animal species [32], and the most conspicuous environmental effect of linear infrastructures 81 

(Box 2). Our framework helps to define current and future priorities for AV research following the 82 
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overview presented in Figure 1. To achieve sustainable transportation, it is critical to explore how 83 

transport infrastructure, regulations and utilization policies, and the management of transportation 84 

systems may lead to potential wildlife-vehicle interactions. These factors may have additive, syn-85 

ergistic, or antagonistic effects. For example, incorporating WVC mitigation measures, such as 86 

wildlife-crossing structures, may limit the impacts of existing highways with higher speed limits. 87 

While we recognize the inherent complexity of these relationships, disentangling them is contingent 88 

on the stage of AV development (e.g., how fast can an autonomous vehicle react) and the condi-89 

tions of their deployment (e.g., what mitigation measures are in place). A necessary first step is to 90 

explicitly clarify these relationships by fostering collaborations between industry, policymakers, and 91 

scientists. 92 

Public acceptance of AVs relies primarily on traffic accident prevention [8,33], and WVCs not only 93 

pose a substantial threat to wildlife but may also jeopardize the safety of drivers and passengers. 94 

In the US, over 59,000 passengers per year are injured in WVCs, resulting in over 440 human fatal-95 

ities [34] and with associated costs between 6 to 12 billion dollars [35]. Approximately 40% of spe-96 

cies involved in WVCs represent a real threat to human lives (mainly large mammals), and 94% may 97 

result in significant material damage, with an average cost of 885 US dollars per collision (for spe-98 

cies > 1 kg) [36]. Our proposed framework focuses on how AVs can guarantee human safety while 99 

integrating the reduction of wildlife-vehicle collisions as a coexisting underlying target, increasing 100 

the reliability and sustainability of this technology. 101 

Current prevention of WVCs primarily targets the infrastructure (e.g., wildlife-crossing structures, 102 

fencing) and societal dimensions (e.g., temporary road closures, speed limits) —although the effec-103 

tiveness of these measures can vary considerably and is often taxon-specific [37]. Applying our 104 

framework to further reduce WVC risk requires targeted technology to account for potential wildlife-105 

vehicle interactions at the design and operation levels. Autonomous technology needs to success-106 

fully (i) pinpoint the presence of the animal in or near the lane, (ii) monitor and predict their motion, 107 

(iii) assess collision risk, and (iv) trigger warning systems (for levels 0–4), or (v) determine the ap-108 

propriate autonomous response with decision-making algorithms (4–5). This process can be in-109 

formed by (i) species traits, the specific behavioral response to (ii) roads and to (iii) vehicles, (iv) 110 

when and where animals cross (dependent on environmental or weather conditions), and (v) the 111 

likelihood of causing material damages and threatening human safety. In addition, a better under-112 

standing of WVCs —which species are involved, known mortality hotspots— could also provide cru-113 

cial baseline information for developing safe and reliable autonomous driving systems.  114 
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Box 2. Wildlife-vehicle collisions as a threat to biodiversity 

Transportation poses a significant threat to biodiversity through collisions with vehicles [32,38]. 

In the US, it is estimated that hundreds of millions of vertebrates are killed annually from vehicle 

collisions [39]. Similar patterns are predicted for European roads, with over 194 million birds and 

29 million mammals killed annually [40]. These patterns are not exclusive to the Global North. In 

Brazil, for example, over 8 million birds and 2 million mammals may be killed per year due to 

collisions with vehicles [41]. Furthermore, at least 3.0–4.7 million kilometers of new roads will 

be built by 2050, and predominately in South and East Asia, Africa, and South America [42]. 

 

Figure II. Animal behavioral responses to roads and to oncoming vehicles, and the driver’s response to 

wildlife presence, leading to a wildlife-vehicle collision. 

Understanding why WVCs occur requires knowledge of animal behavioral responses to roads 

and to vehicles (Figure II). Road avoidance can be caused by traffic noise, road surface, or the 

presence of vehicles [43,44], and is linked to the more indirect impacts (e.g., as barriers or filters 

to movement). Conversely, road attraction increases wildlife-vehicle interactions by prompting 

a crossing attempt or increasing road use due to thermoregulation, habitat or food resource 

availability, and dispersal or breeding behavior. For example, reptiles use road surfaces for bask-

ing [45]) and bats forage for insects near streetlights [46], while other species may scavenge 

roadkill carcasses. Animals may also exhibit higher road crossing rates during mating or nesting 

seasons [47]. For an animal, avoiding a collision requires successful vehicle detection, threat 

assessment, and evasive behavior. However, while for many species an approaching vehicle 
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triggers a “flight” response (moving away from danger), others remain motionless (“freeze” re-

sponse) [48]. The outcome of this interaction also depend on the driver’s response (remain on 

course, slow down, swerve or brake) and various external factors, such as road and landscape 

features, nearby vehicles or pedestrians, weather conditions. Failure at any of these stages may 

lead to severe injury or death, for the animal or the passengers of the vehicle. 

Integrating conservation into autonomous vehicle research 115 

Obstacle detection and motion tracking 116 

Animal detection in image and video processing has experienced considerable progress in recent 117 

years [49–51], but mainly as a post-processing step after ecological data collection (e.g., camera 118 

traps, citizen science record verification). The majority of these methods require at least some 119 

manual processing and minimal background clutter, or rely on the animal “posing” towards the 120 

camera. Therefore, the transferability of these methods to AV systems is low. First, AVs require 121 

high accuracy and precision combined with low response times (no manual processing) [22]. Sec-122 

ond, animals may not be facing the camera during crossing attempts. Finally, as both the animal 123 

and the vehicle are moving, the road is quite unlike the environments where animal detection typi-124 

cally takes place (e.g., stationary camera trap). 125 

Object detection algorithms for AVs focus primarily on road signs, pedestrians, cyclists, or other 126 

vehicles [e.g., 52–58], with comparatively fewer methods designed for animal detection [59–62]. 127 

The high levels of morphological variation across animal species, along with a wide range of sen-128 

sory perception processes, behavioral responses, and means of locomotion, introduce several ob-129 

stacles to automated animal detection methods. Munian et al. [59] employed thermal imaging and 130 

a convolutional neural network (CNN) with the Histogram of Oriented Gradient (HOG) transform, to 131 

reach an average accuracy of 89%. This particular method experiences limitations with cold-132 

blooded species, as it is based on thermal images, or for higher vehicle speeds, as the processing 133 

time is between 1 to 3 seconds. For context, a previous HOG-based system could only alert the 134 

driver in time when the vehicle speed was below 35 km/h, as the response time was 2.04–3.24 135 

seconds (with an accuracy of 82.5%) [62]. Saxena et al. [60], based on a Single Shot Detector and 136 

Faster Region-based CNN (Faster R-CNN) algorithm, improve object detection speed but do not 137 

incorporate motion tracking. Gupta et al. [61] incorporate motion tracking and prediction, leveraging 138 
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the Mask R-CNN model for multiple species and using lane detection to develop a predictive feed-139 

back mechanism, but require clear lane demarcation and only achieved an accuracy of 81%. All of 140 

these methods require either visible-light or thermal cameras, and the majority are trained on a 141 

single species [62–65]. However, it is possible to utilize AV multisensory systems to overcome sen-142 

sor-specific weaknesses [20] and create faster and more robust animal detection algorithms, which 143 

should be a priority for future AV research. 144 

Incorporating real-time species identification may allow for a more appropriate vehicle response to 145 

a collision event, but there are two major constraints. First, although CNNs achieve state-of-the-art 146 

performance, these techniques require large amounts of labeled data during training. Synthetic or 147 

simulated data may help fill these gaps [65], particularly for cryptic, rare, or data-deficient species, 148 

but should be deployed with caution if these are the only available training datasets. Second, spe-149 

cies identification algorithms may delay AV responsiveness; for example, applying content-based 150 

image retrieval (CBIR) algorithms is slower the bigger the database used. This bottleneck may be 151 

partially offset by using the vehicle’s current location (filtering out species by their distribution 152 

range) and time of year (e.g., migratory species) to limit database size. 153 

Collision risk and decision-making algorithms 154 

Autonomous vehicles may reduce WVCs but this is dependent on our ability to program them cor-155 

rectly. Although we can expect some compatibility in collision risk assessments for vehicle-pedes-156 

trian and wildlife-vehicle interactions, the former may rely on pedestrian communication or contex-157 

tual cues —such as signal or pose estimation [66] and human motion prediction [67]— which can 158 

differ from that of wild animals [62]. Wildlife-vehicle collision risk also depends on the species, the 159 

individual’s sex and age, the time of day and year, or the surrounding environment. Comprehensive 160 

databases of behavioral responses to prior WVC events can help assess collision risk, but will not 161 

be possible to acquire for the majority of species. Recreating animal motion in a simulated envi-162 

ronment may also address this knowledge gap if behavioral and morphological studies are availa-163 

ble [68,69], though researchers can also extrapolate these parameters from similar species. 164 

Deploying AVs within urban centers requires complex decision-making frameworks for road inter-165 

sections, lane-changing, or driving style preferences during mixed-flow traffic [25,26]. We can ex-166 

pect that complex collision scenarios involving wildlife will require equally extensive research. In-167 

troducing any collision avoidance response into the decision-making system can put the AV at risk, 168 

as braking or evasive maneuvers can set off an unforeseen chain of events. However, as the loss 169 
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of vehicle control is inherently more dangerous than a controlled stop, most collision scenarios 170 

may be solved by programming the vehicle to brake in a straight line [27]. Incorporating such a 171 

response into the AV’s decision and control block may result in a significant improvement for its 172 

passengers and for wildlife. Another way to improve human safety is to inform drivers if they are 173 

traveling through high-risk WVC sites. Developers could incorporate similar warning systems to 174 

existing smartphone apps (Wildwarner; https://wuidi.com/), programming AVs to alert human driv-175 

ers (for autonomous levels 1–4) or to reduce vehicle speed (4–5) based on historical WVC da-176 

tasets.  177 

Infrastructure and technical limitations  178 

The safe and efficient operation of AVs requires extensive work on current and future infrastructure 179 

[14,70], but roads will remain a ubiquitous part of our landscapes and their impacts are not limited 180 

to direct animal mortality due to vehicle collisions. Tropical and subtropical regions are already 181 

encumbered with several major development corridors, such as the “Belt and Road Initiative” 182 

throughout Eurasia and Africa [71,72]. These corridors may increase mobility and accessibility, but 183 

will likely cause extensive biodiversity loss as they cut through previously inaccessible regions and 184 

thus will increase habitat fragmentation, poaching pressure, and illegal wildlife trade. Dedicated 185 

lanes are a potential scenario for AV operation [18], reducing congestion and increasing traffic ef-186 

ficiency. However, if these lanes are created using hard barriers, mitigation measures (such as un-187 

der- or overpasses) will have to be applied to compensate for potential connectivity losses. 188 

The development of decision-making algorithms may require AV systems to be trained within sim-189 

ulated environments [19]. Although researchers can then safely evaluate a myriad of atypical situ-190 

ations, these simulations have inherent biases and are not always transferable to the real word. 191 

The lack of data on wildlife-vehicle interactions for rare and cryptic species (or in controlled, repeat-192 

able conditions) is a substantial constraint for their development and transferability [73]. The de-193 

velopment of more appropriate animal detection methods is also necessary. Relying only on algo-194 

rithms tailored for human detection may lead to inaccurate interpretations of animal behavior or 195 

their impending motion, and current animal-specific methods still face many obstacles: relatively 196 

high response times only applicable at low vehicle speeds [59,62], the need for clear lane demarca-197 

tion [61], no motion tracking [60], or limited training datasets [62,65].  198 

The technological limitations of AV sensors also need to be recognized. Visible-light cameras func-199 

tion poorly at high speeds, in adverse weather and low-light conditions, or with “busy” backgrounds 200 
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[19]. The latter is likely to occur in natural landscapes with cluttered roadside vegetation [31,69]. 201 

Object detection with LiDAR is challenging for non-grounded objects. As the ground is used as a 202 

reference point to determine an object’s distance, LiDAR has trouble dealing with unique means of 203 

locomotion (such as a hopping kangaroo) [33]. AV systems may also fail to detect small volant 204 

species (e.g., birds, bats, gliding animals), which can suffer significant losses from vehicle colli-205 

sions: for birds, c. 200 million individuals and 194 million individuals are killed annually on US [39], 206 

and European [40] roadways, respectively. Similarly, small non-volant animals are likely to remain 207 

undetected, unless the sensors are mounted sufficiently low, the road and weather conditions are 208 

ideal, and the AV system is suitably trained to detect tiny objects [74]. 209 

Concluding remarks 210 

Hailed as essential components of a sustainable future for transportation within smart cities, AVs 211 

have the potential to improve accessibility and mobility while reducing traffic congestion, accidents, 212 

energy costs, and pollution. However, as transportation remains one of the main pressures on bio-213 

diversity [75] and hundreds of millions of animals die from vehicle collisions every year, we must 214 

consider the impact of AVs beyond urban landscapes and examine how they will interact with wild-215 

life.  216 

Although WVCs will not fully cease, making roads safer for both people and wildlife should be a top 217 

research priority, and current challenges underscore the need to invest in complementary solutions 218 

within transportation policy, regulation, and roadway design. If AVs can redefine urban environ-219 

ments into sustainable or smart cities [7,13,17], they also offer an opportunity to integrate the safety 220 

of drivers, passengers, and pedestrians with that of wildlife populations occurring near roads. 221 

Roads are expanding exponentially, further fragmenting our remaining natural environments and 222 

exacerbating the impact of WVCs. When we do not account for wildlife-vehicle interactions, we 223 

effectively restrict AV deployment to city centers while undermining efforts towards the renatural-224 

ization of urban areas. Given the promise of AV technology, we provide clear suggestions to guide 225 

future research in Box 3. Sustainable transportation centers on the realization of ambitious targets: 226 

traffic safety and efficiency, socioeconomic inclusion, and the reduction of human impacts. Our 227 

expectations for autonomous transportation must be matched by effective technological ad-228 

vances, and account for multiple deployment scenarios and operational challenges. Unlike existing 229 

approaches, our framework highlights specific steps within conservation and AV research that 230 
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must be addressed to achieve sustainable autonomous transportation (Box 3). We appeal for in-231 

terdisciplinary collaborations to address knowledge gaps (see Outstanding Questions), as our 232 

framework requires (i) scientists to study animal movement, motion, and behavior towards roads 233 

and vehicles, (ii) developers to integrate this information into AV systems, and (iii) industry stake-234 

holders and policymakers to achieve and promote sustainability in AV deployment. 235 

Box 3. Development and deployment of sustainable autonomous vehicles 

 

Figure III. Research priorities within AV development that may reduce wildlife-vehicle collisions. For exam-

ple, lower reliance on streetlights can reduce light pollution, improve the effectiveness of wildlife-crossing 

structures [76], or reduce foraging near roads [46].  

Autonomous vehicles offer new opportunities by increasing efficiency and safety over conven-

tional vehicles: 90% of traffic accidents are partially due to human error or negligence [77], and 

human drivers may intentionally hit animals —particularly smaller non-charismatic species [78–

80]. Future research efforts should follow five priority areas for technological development (Fig-

ure III), targeting the behavior of human drivers or the operation of automated systems. Data-

base integration (animal motion, behavior, susceptibility to collisions, threatened status) should 

occur in a phased approach: first, incorporate only commonly-occurring species likely to cause 

damage to the vehicle or its passengers; later, as sensors and algorithms improve, species-level 

classification. Lower level automation systems (0–4) can alert drivers of a “high-risk” species or 
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potential crossing site, while higher automation levels (4-5) can incorporate specific responses 

to each behavioral type.  

 

Figure IV. Mitigation measures for AV deployment and infrastructure that may reduce wildlife-vehicle inter-

actions. These measures include infrastructure changes (e.g., dedicated lanes, wildlife-crossing struc-

tures), regulations and utilization policies (e.g., lowering speed limits), and redesigning our transport sys-

tems (e.g., promoting car-sharing). Particular care must be taken with (i) wildlife crossing and traffic signs, 

as they should be designed to be machine-readable; and with (ii) smart streetlights (or streetlight reduction), 

as it can endanger human safety and some species are more likely to cross in low-lighting conditions. As 

such, smart streetlight schemes should only be applied alongside other measures, such as fencing. 

Large-scale AV deployment requires modifications at three levels: infrastructure, society, and 

transport systems (Figure IV). First, crucial upgrades to existing infrastructures will facilitate AV 

implementation (e.g., clear lane markings) [70,81], which can likewise extend to WVC mitigation 

measures. Although some measures require an initial high investment, WVC prevention offsets 

their cost within 16–40 years, or earlier for animal mortality hotspots [36]. Another opportunity 

provided by AV deployment is the reduction of artificial nighttime lighting and its negative effects 

on human, wildlife, and ecosystem health [12]. Second, new regulations and utilization policies 

can balance successful AV deployment and WVC reduction. Speeding and limited forward vision 

are the main factors affecting the outcome of wildlife-vehicle interactions [82,83], and speed lim-

its are frequently suggested as a mitigation measure for WVC hotspots. Although their efficacy 

is somewhat limited [37,84], this may be due to the unpredictable behavior of human drivers and 
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difficulties in enforcing speed limits. If properly programmed, AVs will follow speed zoning and 

limits better than human drivers. Low-speed limits allow for longer response times, particularly 

with fast-moving animals. Limited forward vision can be addressed by reducing roadside vege-

tation in high-risk WVC sites, which will increase visibility for drivers and limit the use of roadside 

verges as movement corridors [31]. Lastly, AVs could serve as opt-in data collection systems 

with a dual purpose: (i) record WVC events for accident forensics [85] and to improve AV re-

sponses over time, and (ii) upload animal detections to existing biodiversity databases (e.g., 

http://www.gbif.org). As this could compromise privacy, data anonymization should be insured. 

  236 
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Outstanding Questions 237 

How can we conduct WVC studies to better understand emergent impacts regarding autonomous 238 

vehicles (before full-scale deployment)? How can we create realistic wildlife-vehicle collision mod-239 

els based on limited natural history information? What species, or species traits, may indicate high 240 

risk to the vehicles or its passengers? What are the challenging scenarios for AV development in-241 

troduced by incorporating wildlife databases? 242 

What factors do we incorporate into decision-making frameworks, and what limits do we set for 243 

AV behavior? How should AVs be programmed to act under moral dilemmas involving wildlife? 244 

Should we program AVs to avoid wildlife-vehicle collisions with small animals? It is easy to justify 245 

the reduction of vehicle collisions with large species that may incur high repair costs or lead to 246 

human injuries and fatalities, but the safety of small or non-charismatic species should also be 247 

considered whenever it does not compromise human safety.  248 

What are the traffic impacts or infrastructure needs within the urban-rural-natural transition of AV 249 

deployment? What are the appropriate mitigation measures to consider during road construction 250 

and expansion to address both human safety and the reduction of WVCs?  251 

 252 

Glossary 253 

Accessibility: the ability to access or reach a desired service or activity. 254 

Advanced driver-assistance systems: a broad term that covers multiple partially automated tech-255 

nologies that assist the driver in certain driving conditions, such as automated parallel parking, 256 

forward collision warming, and lane keeping. 257 

Autonomous vehicles: vehicles that sense, analyze and interact with their physical environment, 258 

and may require little to no human input (also known as self-driving cars or automated vehicles). 259 

Functional safety: all potential risks were assessed and addressed. 260 

Mixed-flow traffic: both conventional (human-driven) and autonomous vehicles. 261 

Mobility: the potential for movement between one places, using one or more modes of transport, 262 

to meet our daily needs. 263 
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Renaturalization: introducing green spaces to counteract the effects of climate change and pollu-264 

tion in urban environments, ultimately increasing biodiversity and improving quality of life. 265 

Smart and green cities: combines the concepts of smart cities (technologically modern urban ar-266 

eas, where traditional services are made more efficient with digital solutions) and green cities (ur-267 

ban areas that promote energy efficiency and renewable energy in all its activities, coupled with 268 

mixed land use). 269 

Sustainable transportation: transportation that is affordable, operates fairly and efficiently, and is 270 

consistent with human and ecosystem health (limiting emissions, waste and land-use impacts). 271 
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