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In a nutshell: 11 

 Wildlife-vehicle collisions (WVCs) are an ongoing and widespread source of biodiversity loss. 12 

Although autonomous vehicles (AV) have the potential to mitigate this impact, current 13 

knowledge gaps may cause AVs to respond incorrectly during wildlife-vehicle interactions. 14 

 Understanding how vehicles interact with wildlife has implications for human safety and animal 15 

conservation. Our framework explores this dynamic by incorporating WVC reduction as a critical 16 

step towards achieving sustainable AV technology and minimizing biodiversity loss. 17 

 Researchers can utilize this framework to identify key research goals regarding wildlife-vehicle 18 

interactions and patterns, and to encourage AV companies and developers to integrate conser-19 

vation goals within their research.  20 
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Abstract 21 

Autonomous vehicles (AV) are expected to play a key role in the future of transportation, and to 22 

introduce a disruptive yet potentially beneficial change for wildlife-vehicle interactions. However, 23 

this assumption has not been critically examined, and reducing the number of wildlife-vehicle col-24 

lisions may be beyond current technological capabilities. Here, we introduce a new conceptual 25 

framework covering the intersection between AV technology and wildlife conservation to reduce 26 

wildlife-vehicle collisions. We propose an integrated framework for developing robust warning sys-27 

tems and animal detection methods for AV systems, and incorporating wildlife-vehicle interactions 28 

into decision-making algorithms. With large-scale AV deployment a looming reality, it is vital to in-29 

corporate conservation and sustainability into the societal, ethical, and legal implications of AV 30 

technology. We intend our framework to help ecologists and conservationists foster the necessary 31 

interdisciplinary collaborations with AV developers and policymakers to reduce wildlife vehicle col-32 

lisions and concomitant biodiversity loss. 33 

Keywords: sustainability, self-driving cars, automated vehicles, traffic accidents, animal-vehicle col-34 

lisions, conservation 35 

 36 

The future of sustainable transportation 37 

A shift towards autonomous transportation has begun. There are over one billion cars registered 38 

worldwide, and this number is expected to double by 2030 (Mora et al. 2020). By 2050, a quarter or 39 

more of the vehicles traveling in the US and Europe could feature autonomous driving technology 40 

(Panel 1) (Miskolczi et al. 2021). Countries in North America, South America, Europe, Asia, and 41 

Australia have shared national visions integrating research, development, and pilot deployment of 42 

autonomous vehicles. The sustainable transportation concept harnesses autonomous driving 43 

technology as a tool to promote traffic flow efficiency and safety, facilitate mobility and accessibil-44 

ity, and reduce global emissions of greenhouse gases (Cugurullo et al. 2020; Mora et al. 2020; 45 

Acheampong et al. 2021), ultimately reimagining urban environments into smart and green cities. 46 

Tangential effects, related to energy consumption, light pollution, land use, or public health (Duarte 47 

and Ratti 2018; González-González et al. 2020; Singleton et al. 2020), are frequently highlighted and 48 

examined. Several visions for the future —such as those put forward by the United Nations sustain-49 

able development goals (SDGs), and The New Urban Agenda (https://habitat3.org/the-new-urban-50 
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agenda/)— are directly linked to sustainable transportation and road safety, and the protection of 51 

biodiversity or natural habitats. The integration of biodiversity and ecosystem conservation into 52 

SDGs focuses primarily on sustainable infrastructure and urban development, but fails to consider 53 

the interface between wildlife and sustainable (or autonomous) transportation. Moreover, existing 54 

research is mainly limited to urban landscapes or impacts on human safety (Duarte and Ratti 2018; 55 

González-González et al. 2020; Seuwou et al. 2020; Singleton et al. 2020; Cugurullo et al. 2020; 56 

Acheampong et al. 2021). Deployment of AVs at any scale will have far-reaching societal, ethical, 57 

legal, and environmental implications. However, the intense focus on urban settings has, so far, left 58 

the ability of AVs to safely interact with wildlife as a key challenge at the frontier of AV research. 59 

As core components of the future of transportation, AVs will have major implications for sustaina-60 

bility and biodiversity. Here, we present a conceptual framework that expands the concept of sus-61 

tainable transportation to address the interface between wildlife and AVs, evaluating this technol-62 

ogy beyond human safety concerns and urban environments. Our framework gives an overview of 63 

the emerging trends and dynamics within this field, combining open questions with relevant re-64 

search approaches, and provides an entry point for ecologists and conservationists to integrate 65 

wildlife concerns into AV research, development, and deployment. 66 

Autonomous vehicles: the problem or the solution? 67 

Given the transformative yet disruptive nature of autonomous technology, its potential benefits are 68 

only achievable if risks are properly identified. This task requires a proactive and adaptive approach 69 

here and now, at the early stages of AV development (Niehaus and Wilson 2018; Mora et al. 2020). 70 

Akin to current transportation modes, we can expect AVs (at all automation levels) to interact with 71 

urban wildlife and, as their deployment expands beyond cities and into suburban or rural ecosys-72 

tems (von Mörner 2019), or through naturalized or protected areas (Phillips et al. 2020; Eskandarian 73 

et al. 2021), with less urban-adapted species.  74 

Wildlife-vehicle collisions (WVCs) are the second-largest source of anthropogenic mortality for 75 

many animal species (Hill et al. 2019), and the most conspicuous environmental effect of linear 76 

infrastructures (Panel 2). Our framework helps to define current and future priorities for research 77 

following the overview presented in Figure 1. Correctly anticipating wildlife-vehicle interactions 78 

(and collision events), is crucial for the implementation of preventive countermeasures or mitiga-79 

tions at three levels linked with the environment: (1) infrastructure: construction, expansion, and 80 
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maintenance of road and support infrastructures, particularly when roads border or intersect bio-81 

diversity hotspots, naturalized or rural areas (such as parks, agricultural or plantation fields), or are 82 

near water sources; (2) society: government regulations and utilization policies to manage deploy-83 

ment within these sites, and account for potential travel pattern shifts and consumption; and (3) 84 

transport systems: mobility services and transportation modes that balance human and wildlife 85 

concerns for an efficient and safe traffic flow. These factors may have additive, synergistic, or an-86 

tagonistic effects. For example, incorporating WVC mitigation measures, such as wildlife-crossing 87 

structures, may limit the impacts of existing highways with higher speed limits. While we recognize 88 

the inherent complexity of these relationships, disentangling them is contingent on the concurrent 89 

stage of AV development (e.g., how fast can an autonomous vehicle react) and the conditions of 90 

their deployment (e.g., what mitigation measures are in place). A necessary first step is to clarify 91 

these relationships by fostering collaborations with industry and policymakers. 92 

Public acceptance of AVs relies primarily on traffic accident prevention (Pettigrew et al. 2019; Cu-93 

gurullo et al. 2020), and WVCs not only pose a substantial threat to wildlife but may also jeopardize 94 

the safety of drivers and passengers. In the US, over 59,000 passengers per year are injured in 95 

WVCs, resulting in over 440 human fatalities (Conover 2019) and with associated costs between 6 96 

to 12 billion dollars (Huijser et al. 2017). Approximately 40% of species involved in WVCs represent 97 

a real threat to human lives (mainly large mammals), and 94% may result in significant material 98 

damage, with an average cost of 885 US dollars per collision (for species > 1 kg) (Ascensão et al. 99 

2021). Our proposed framework guarantees human safety while integrating the reduction of wild-100 

life-vehicle collisions as a coexisting goal, increasing the reliability and sustainability of this tech-101 

nology. 102 

Current prevention of WVCs primarily targets the infrastructure (e.g., wildlife-crossing structures, 103 

fencing) and societal dimensions (e.g., temporary road closures, speed limits) —although the effec-104 

tiveness of these measures can vary considerably and is often taxon-specific (Rytwinski et al. 105 

2016). Applying our framework to reduce WVC risk requires targeted research to better integrate 106 

wildlife-vehicle interactions at the AV design and operation levels. Autonomous technology needs 107 

to successfully (i) pinpoint the presence of the animal in or near the lane, (ii) monitor and predict 108 

their motion, (iii) assess collision risk, and (iv) trigger warning systems (for levels 0–4), or (v) deter-109 

mine the appropriate autonomous response with decision-making algorithms (levels 4–5). As sci-110 

entists, we can further inform this process by accounting for (i) species traits and species-level 111 
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behavioral responses to (ii) roads and to (iii) vehicles, (iv) when and where animals cross (depend-112 

ent on environmental or weather conditions), and (v) the likelihood of causing material damages 113 

and threatening human safety. Overall, a deeper understanding of animal behavior and movement, 114 

as well as WVC patterns (e.g., which species are involved, known mortality hotspots) can provide 115 

crucial baseline information for developing safe and reliable autonomous driving systems.  116 

Integrating conservation into autonomous vehicle research 117 

Obstacle detection and motion tracking 118 

Animal detection in image and video processing has experienced considerable progress in recent 119 

years (Weinstein 2018; Smith and Pinter-Wollman 2021), but mainly as a post-processing step after 120 

ecological data collection (e.g., camera traps, citizen science record verification). The majority of 121 

these methods require at least some manual processing and minimal background clutter, or rely 122 

on the animal “posing” towards the camera. Therefore, the transferability of these methods to AV 123 

systems is low. First, AVs require high accuracy and precision combined with low response times 124 

(no manual processing). Second, animals may not be facing the camera during crossing attempts. 125 

Finally, as both the animal and the vehicle are moving, the road is quite unlike the environments 126 

where animal detection typically takes place (e.g., stationary camera trap). 127 

Object detection algorithms for AVs focus primarily on road signs, pedestrians, cyclists, or other 128 

vehicles (e.g., Fang and López 2019; Jahromi et al. 2019; Rosique et al. 2019; Hnewa and Radha 129 

2020; Ahmed et al. 2022), with comparatively fewer methods designed for animal detection 130 

(Sharma and Shah 2017; Munian et al. 2020; Saxena et al. 2020; Gupta et al. 2021). The high levels 131 

of morphological variation across animal species, along with a wide range of sensory perception 132 

processes, behavioral responses, and means of locomotion, introduce several obstacles to auto-133 

mated animal detection methods. Munian et al. (2020) employed thermal imaging and a convolu-134 

tional neural network (CNN) with the Histogram of Oriented Gradient (HOG) transform, to reach an 135 

average accuracy of 89%. This particular method experiences limitations with cold-blooded spe-136 

cies, as it is based on thermal images, or for higher vehicle speeds, as the processing time is be-137 

tween 1 to 3 seconds. For context, a previous HOG-based system could only alert the driver in time 138 

when the vehicle speed was below 35 km/h, as the response time was 2.04–3.24 seconds (with 139 

an accuracy of 82.5%) (Sharma and Shah 2017). Saxena et al. (2020), based on a Single Shot De-140 

tector and Faster Region-based CNN (Faster R-CNN) algorithm, improve object detection speed 141 
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but do not incorporate motion tracking. Gupta et al. (2021) incorporate motion tracking and predic-142 

tion, leveraging the Mask R-CNN model for multiple species and using lane detection to develop a 143 

predictive feedback mechanism, but require clear lane demarcation and only achieved an accuracy 144 

of 81%. All of these methods require either visible-light or thermal cameras, and the majority are 145 

trained on a single species (Mammeri et al. 2016; Sharma and Shah 2017; Saleh et al. 2018). There-146 

fore, future AV research should take advantage of the available multisensory systems to overcome 147 

sensor-specific weaknesses (Jahromi et al. 2019), and create faster and more robust animal de-148 

tection algorithms. 149 

Incorporating real-time species identification may allow for a more appropriate vehicle response to 150 

a collision event, but there are two major constraints. First, although CNNs achieve state-of-the-art 151 

performance, these techniques require large amounts of labeled data during training. Synthetic or 152 

simulated data may help fill these gaps (Saleh et al. 2018), particularly for cryptic, rare, or data-153 

deficient species, but should be deployed with caution if these are the only available training da-154 

tasets. Second, species identification algorithms may delay AV responsiveness; for example, ap-155 

plying content-based image retrieval algorithms is slower the bigger the database used. This bot-156 

tleneck may be partially offset by using the vehicle’s current location (filtering out species by their 157 

distribution range) and time of year (e.g., migratory species) to limit database size. 158 

Collision risk and decision-making algorithms 159 

Autonomous vehicles may reduce WVCs but this is dependent on our ability to program them cor-160 

rectly. Although we can expect some compatibility in collision risk assessments for vehicle-pedes-161 

trian and wildlife-vehicle interactions, the former may rely on pedestrian communication or contex-162 

tual cues —such as signal or pose estimation (Fang and López 2019) and human motion prediction 163 

(Rudenko et al. 2020)— which differ from that of wild animals (Sharma and Shah 2017). Wildlife-164 

vehicle collision risk also depends on the species, the individual’s sex and age, the time of day and 165 

year, or the surrounding environment. Comprehensive databases of behavioral responses to prior 166 

WVC events can help assess collision risk, but will not be possible to acquire for the majority of 167 

species. Recreating animal motion in a simulated environment may also address this knowledge 168 

gap if behavioral and morphological studies are available (Cutrone et al. 2018; Font and Brown 169 

2020), though researchers can also extrapolate these parameters from similar species. 170 

Deploying AVs within urban centers requires complex decision-making frameworks for road inter-171 

sections, lane-changing, or driving style preferences during mixed-flow traffic (Li et al. 2021). We 172 
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can expect that complex collision scenarios involving wildlife will require equally extensive re-173 

search. Introducing any collision avoidance response into the decision-making system can put the 174 

AV at risk, as braking or evasive maneuvers can set off an unforeseen chain of events. However, 175 

as the loss of vehicle control is inherently more dangerous than a controlled stop, most collision 176 

scenarios may be solved by programming the vehicle to brake in a straight line (Davnall 2020). 177 

Incorporating such a response into the AV’s decision and control block may result in a significant 178 

improvement for its passengers and for wildlife. Another way to improve human safety is to inform 179 

drivers if they are traveling through high-risk WVC sites. Developers could incorporate similar warn-180 

ing systems into existing smartphone apps (Wildwarner; https://wuidi.com/), programming AVs to 181 

alert human drivers (for autonomous levels 1–4) or to reduce vehicle speed (4–5) based on histor-182 

ical WVC datasets.   183 

Infrastructure and technical limitations  184 

The safe and efficient operation of AVs requires extensive work on current and future infrastructure 185 

(Liu et al. 2019; González-González et al. 2020), but roads will remain a ubiquitous part of our land-186 

scapes and their impacts are not limited to direct animal mortality due to vehicle collisions. Tropical 187 

and subtropical regions are already encumbered with several major development corridors, such 188 

as the “Belt and Road Initiative” throughout Eurasia and Africa (Hughes et al. 2020). These corridors 189 

may increase mobility and accessibility, but will likely cause extensive biodiversity loss as they cut 190 

through previously inaccessible regions and thus will increase habitat fragmentation, poaching 191 

pressure, and illegal wildlife trade. Dedicated lanes are a potential scenario for AV operation (Rad 192 

et al. 2020), reducing congestion and increasing traffic efficiency. However, if these lanes are cre-193 

ated using hard barriers, mitigation measures (such as under- or overpasses) will have to be applied 194 

to compensate for potential connectivity losses. 195 

The development of decision-making algorithms may require AV systems to be trained within sim-196 

ulated environments (Rosique et al. 2019). Although researchers can then safely evaluate a myriad 197 

of atypical situations, these simulations have inherent biases and are not always transferable to 198 

the real word. The lack of data on wildlife-vehicle interactions for rare and cryptic species (or in 199 

controlled, repeatable conditions) is a substantial constraint for their development and transfera-200 

bility. In practice, autonomous vehicles could function as opt-in data collection systems, recording 201 

WVC events to improve AV responses over time; and as this feature could compromise privacy, 202 

data anonymization should be insured during this process. 203 
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The development of more appropriate animal detection methods is also necessary. Relying only 204 

on algorithms tailored for human detection may lead to inaccurate interpretations of animal behav-205 

ior or their impending motion, and current animal-specific methods still face many obstacles: rela-206 

tively high response times only applicable at low vehicle speeds (Sharma and Shah 2017; 2020), 207 

the need for clear lane demarcation (Gupta et al. 2021), no motion tracking (Saxena et al. 2020), or 208 

limited training datasets (Sharma and Shah 2017; Saleh et al. 2018).  209 

The technological limitations of AV sensors also need to be recognized. Visible-light cameras func-210 

tion poorly at high speeds, in adverse weather and low-light conditions, or with “busy” backgrounds 211 

(Rosique et al. 2019). The latter is likely to occur in natural landscapes with cluttered roadside veg-212 

etation (Font and Brown 2020; Phillips et al. 2020). Object detection with LiDAR is challenging for 213 

non-grounded objects. As the ground is used as a reference point to determine an object’s distance, 214 

LiDAR has trouble dealing with unique means of locomotion (such as a hopping kangaroo) (Petti-215 

grew et al. 2019). AV systems may also fail to detect small volant species (e.g., birds, bats, gliding 216 

animals), which can suffer significant losses from vehicle collisions: for birds, c. 200 million indi-217 

viduals and 194 million individuals are killed annually on US (Loss et al. 2014), and European (Grilo 218 

et al. 2020) roadways, respectively. Similarly, small non-volant animals are likely to remain unde-219 

tected, unless the sensors are mounted sufficiently low, the road and weather conditions are ideal, 220 

and the AV system is suitably trained to detect tiny objects (Li et al. 2020). 221 

Concluding remarks 222 

Hailed as essential components of a sustainable future for transportation within smart cities, AVs 223 

have the potential to improve accessibility and mobility while reducing traffic congestion, accidents, 224 

energy costs, and pollution. However, as transportation remains one of the main pressures on bio-225 

diversity (Maxwell et al. 2016) and hundreds of millions of animals die from vehicle collisions every 226 

year, we must consider the impact of AVs beyond urban landscapes and examine how they will 227 

interact with wildlife. 228 

Although WVCs will not fully cease, making roads safer for people and wildlife should be a top 229 

research priority, and current challenges underscore the need to invest in further WVC research as 230 

well as complementary solutions within transportation policy, regulation, and roadway design. If 231 

AVs can redefine urban environments into sustainable or smart cities, they also offer an opportunity 232 

to integrate the safety of wildlife populations occurring near roads with that of drivers, passengers, 233 
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and pedestrians. Roads are expanding exponentially, further fragmenting our remaining natural en-234 

vironments and exacerbating the impact of WVCs. Given the promise of AV technology, we provide 235 

clear suggestions to guide future research in Panel 3. Sustainable transportation centers on the 236 

realization of ambitious targets: traffic safety and efficiency, socioeconomic inclusion, and the re-237 

duction of human impacts. Our expectations for autonomous transportation must be matched by 238 

effective technological advances, and require targeted ecological research to fill knowledge gaps. 239 

Unlike existing approaches, our framework highlights specific steps that we must address to inte-240 

grate conservation goals and achieve sustainable autonomous transportation (Panel 3). Our 241 

framework calls for a deeper understanding of animal movement and behavior towards roads and 242 

vehicles, as well as WVC patterns, to address human safety and the reduction of WVCs as co-243 

existing targets for autonomous technology.  244 
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Panels 383 

Panel 1. Autonomous vehicles: terminology and operation 384 

The Society of Automotive Engineers (http://www.sae.org) sets the international standard for AVs, 385 

and defines six levels of automation (Figure 2). Vehicles equipped with advanced driver-assistance 386 

systems (levels 0–2) are currently in use, while levels 3–5 are still being developed or tested. Alt-387 

hough levels 4 and 5 do not require a human driver to take control, as the automated system man-388 

ages all aspects of driving, level 4 is limited to specific conditions (e.g., favorable weather condi-389 

tions, clear lane markings) or environments (e.g., freeways, dedicated lanes) (Rad et al. 2020). 390 

To achieve high levels of automation, AVs incorporate multisensory systems for navigation, obsta-391 

cle detection, and recognition, while merging technologies to offset the weakness of each system 392 

(Jahromi et al. 2019; Rosique et al. 2019; Eskandarian et al. 2021). This sensor fusion allows AVs 393 

to function even in poor visibility environments or bad weather conditions. Common perception 394 

sensors include visible-light cameras, infrared imaging, Light Detection and Ranging (LiDAR), and 395 

radar, but level 5 AVs will likely not depend solely on their own inputs and instead will integrate 396 

vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-pedestrian communication systems. Alt-397 

hough sensors are the fundamental building blocks, the AV operation also requires (i) processing 398 

data into meaningful information (object detection, identification, mapping, and tracking), (ii) mis-399 

sion, motion, and behavioral planning using decision-making algorithms and, for higher automation 400 

levels, (iii) motion and vehicle control (e.g., steering, braking, signaling) through actuators. 401 

Just as with conventional vehicles, autonomous driving technology must safely operate within nar-402 

row margins of processing time, failure rate, and maintainability. Ideally, AVs are programmed to 403 

make more immediate and accurate risk mitigation decisions than human drivers due to multisen-404 

sory inputs. Moreover, artificial intelligence technology is not confounded by human weaknesses 405 

of fatigue, distraction, or intoxication that may hinder decision-making processes (Cunneen et al. 406 

2019). An AV that achieves functional safety must be able to detect, identify, and react to a diverse 407 

set of challenges and threats while traveling through complex, uncertain, and cluttered environ-408 

ments —including those related to wildlife-vehicle interactions. As with vehicle-vehicle or vehicle-409 

pedestrian interactions, deciding on the appropriate response requires an intersection of moral phi-410 

losophy, law, and public policy to appropriately deal with moral dilemmas (e.g., “the trolley problem”) 411 

(Davnall 2020; Li et al. 2021).  412 
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Panel 2. Wildlife-vehicle collisions as a threat to biodiversity 413 

Transportation poses a significant threat to biodiversity through collisions with vehicles (Hill et al. 414 

2019). In the US, it is estimated that hundreds of millions of vertebrates are killed annually from 415 

vehicle collisions (Loss et al. 2014). Similar patterns are predicted for European roads, with over 416 

194 million birds and 29 million mammals killed annually (Grilo et al. 2020). These patterns are not 417 

exclusive to the Global North. In Brazil, for example, over 8 million birds and 2 million mammals 418 

may be killed per year due to collisions with vehicles (González-Suárez et al. 2018). Furthermore, at 419 

least 3.0–4.7 million kilometers of new roads will be built by 2050, and predominately in South and 420 

East Asia, Africa, and South America (Meijer et al. 2018). 421 

Understanding why WVCs occur requires knowledge of animal behavioral responses to roads and 422 

to vehicles (Figure 3). Road avoidance can be caused by traffic noise, road surface, or the presence 423 

of vehicles (Hill et al. 2021), and is linked to the more indirect impacts (e.g., as barriers or filters to 424 

movement). Conversely, road attraction increases wildlife-vehicle interactions by prompting a 425 

crossing attempt or increasing road use due to thermoregulation, habitat or food resource availabil-426 

ity, and dispersal or breeding behavior. For example, reptiles use road surfaces for basking (Baxter-427 

Gilbert et al. 2015) and bats forage for insects near streetlights (Azam et al. 2018), while other 428 

species may scavenge roadkill carcasses. Animals may also exhibit higher road crossing rates dur-429 

ing mating or nesting seasons (Zhou et al. 2020). For an animal, avoiding a collision requires suc-430 

cessful vehicle detection, threat assessment, and evasive behavior. For many species an approach-431 

ing vehicle triggers a “flight” response (moving away from danger), while for others it results in a 432 

“freeze” response (remaining motionless) (Lima et al. 2015). The outcome of this interaction also 433 

depends on the driver’s response (remain on course, slow down, swerve or brake) and various ex-434 

ternal factors, such as road and landscape features, nearby vehicles or pedestrians, and weather 435 

conditions. Failure at any of these stages may lead to severe injury or death, for the animal or the 436 

passengers of the vehicle.  437 
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Panel 3. Sustainable autonomous transportation  438 

Autonomous vehicles offer new opportunities by increasing efficiency and safety over conventional 439 

vehicles: 90% of traffic accidents are partially due to human error or negligence (Guanetti et al. 440 

2018), and human drivers may intentionally hit animals —particularly smaller non-charismatic spe-441 

cies (Beckmann and Shine 2012; Mesquita et al. 2015). Future research efforts should follow five 442 

priority areas (Figure 4), leveraging our understanding of WVC patterns to inform the operation of 443 

automated systems. Database integration (animal motion, behavior, susceptibility to collisions, 444 

threatened status) should occur in a phased approach: first, incorporate only commonly-occurring 445 

species likely to cause damage to the vehicle or its passengers; later, as sensors and algorithms 446 

improve, species-level classification. Lower-level automation systems (0–4) can alert drivers of a 447 

“high-risk” species or potential crossing site, while higher automation levels (4-5) can incorporate 448 

specific responses to each behavioral type.  449 

The reduction of WVC events requires modifications at three levels: infrastructure, society, and 450 

transport systems (Figure 5). First, crucial upgrades to existing infrastructures will extend to the 451 

implementation of specific mitigation measures, and can likewise facilitate AV deployment (e.g., 452 

clear lane markings) (Liu et al. 2019; Nandutu et al. 2022). Although some measures require a large 453 

initial investment, WVC prevention offsets their cost within 16–40 years, or earlier for animal mor-454 

tality hotspots (Ascensão et al. 2021). Second, new regulations and utilization policies can balance 455 

successful WVC reduction and AV deployment. Speeding and limited forward vision are the main 456 

factors affecting the outcome of wildlife-vehicle interactions (DeVault et al. 2015; Gharraie and Sac-457 

chi 2020), and speed limits are frequently suggested as a mitigation measure for WVC hotspots. 458 

Although their efficacy is somewhat limited (Rytwinski et al. 2016; Riginos et al. 2019), this may be 459 

due to the unpredictable behavior of human drivers and difficulties in enforcing speed limits. If 460 

properly programmed, AVs will follow speed zoning and limits better than human drivers. Low-461 

speed limits allow for longer response times, particularly with fast-moving animals. Limited forward 462 

vision can be addressed by reducing roadside vegetation in high-risk WVC sites, which will limit the 463 

use of roadside verges as movement corridors (Phillips et al. 2020) and increase visibility and re-464 

sponse time for AV systems. Lastly, AVs could serve as opt-in data collection systems to record 465 

WVC events for accident forensics, and to upload animal detections to existing biodiversity data-466 

bases (e.g., http://www.gbif.org) after proper anonymization procedures.  467 
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Figures 468 

 469 

Figure 1. Conceptual framework of the key elements of (A) sustainable transportation, interlinked with (B) wild-470 

life conservation (and corresponding ecological research areas) and with (C) technological development (and 471 

corresponding AV research areas). To achieve sustainable transportation, it is critical to explore how transport 472 

infrastructure, regulations and utilization policies, and the management of transportation systems can be op-473 

timized to reduce wildlife-vehicle interactions.   474 
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 475 

Figure 2. The six levels of AV automation defined by the Society of Automotive Engineers (SAE), ranging from 476 

0 (fully manual) to 5 (fully autonomous).  477 
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 478 

Figure 3. Animal behavioral responses to roads and to oncoming vehicles, and the driver’s response to wildlife 479 

presence, leading to a wildlife-vehicle collision.  480 



 
21 

 

481 

Figure 4. Research priorities within AV development that may reduce wildlife-vehicle collisions. For example, 482 

lower reliance on streetlights can reduce light pollution, improve the effectiveness of wildlife-crossing struc-483 

tures (Bhardwaj et al. 2020), or reduce foraging near roads (Azam et al. 2018).   484 
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 485 

Figure 5. Mitigation measures for AV deployment and infrastructure that may reduce wildlife-vehicle interac-486 

tions. These measures include infrastructure changes (e.g., dedicated lanes, wildlife-crossing structures), reg-487 

ulations and utilization policies (e.g., lowering speed limits), and redesigning our transport systems (e.g., pro-488 

moting car-sharing). 489 


