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Abstract

Parallelism between evolutionary trajectories in a trait space is often seen as evidence for

repeatability of phenotypic evolution, and angles between trajectories play a pivotal role in

the analysis of parallelism. However, many biologists have been ignorant on properties of

angles in multidimensional spaces, and unsound uses of angles are common in the biological

literature. To remedy this situation, this study provides a brief overview on geometric and

statistical aspects of angles in multidimensional spaces. Under the null hypothesis that

trajectory vectors have no preferred directions, the angle between two independent vectors is

concentrated around the right angle, with a more pronounced peak in a higher-dimensional

space. This probability distribution is closely related to t- and beta distributions, which can

be used for testing the null hypothesis concerning a pair of trajectories. A recently proposed

method with eigenanalysis of a vector correlation matrix essentially boils down to the test

of no correlation or concentration of multiple vectors, for which a simple test procedure is

available in the statistical literature. Concentration of vectors can also be examined by tools

of directional statistics such as the Rayleigh test. These frameworks provide biologists with

baselines to make statistically justified inferences for (non)parallel evolution.

Keywords: allometric space; directional statistics; high-dimensional data; parallel evolution;

phenotypic trajectory analysis.

1 Introduction

Multivariate approaches have proven to be powerful means to analyse phenotypes, yielding more

holistic and nuanced understanding of organismal evolution and development than achievable

from univariate approaches. It is now fairly common to conceptualise and analyse patterns

of phenotypic evolution in multidimensional trait spaces (e.g., Stayton, 2008, 2015; Adams &

Collyer, 2009, 2019; Arbuckle et al., 2014; Speed & Arbuckle, 2017; Bolnick et al., 2018). However,

increasing dimensionality sometimes poses challenges in interpreting and analysing quantities

that superficially appeared familiar. This brief review concerns technical (rather than biological)

aspects of the analysis of phenotypic trajectories in multidimensional spaces, with a particular

focus on the angles and their applications to detection of parallel evolution.

A variety of toolkits exists for analysing evolutionary or developmental trajectories in

multidimensional spaces. Historically, a notable breakthrough was Jolicoeur’s (1963b; 1963a)
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generalisation of the allometry formula to multivariate cases, which extended bivariate line-

fitting into principal component analysis (PCA) (see also Shea, 1985; Klingenberg, 1996, 2016).

Motivation has naturally arisen for comparing patterns of multivariate allometric variation

between taxa or populations (e.g., Zelditch et al., 2003, 2016; Urošević et al., 2013; Wilson,

2013, 2018; Rohner, 2020; Pérez-Ben et al., 2020; Feiner et al., 2021). One useful concept is

the allometric space (Solignac et al., 1990; Klingenberg & Froese, 1991; Gerber et al., 2008), in

which various visualisations and analyses are possible via ordination, clustering, etc., by treating

empirical allometric axes as observations (Gerber et al., 2008; Baliga & Mehta, 2018; Strelin

et al., 2018). Another broadly employed tool is the phenotypic trajectory analysis (Adams &

Collyer, 2007, 2009; Collyer & Adams, 2007, 2013), which primarily concerns quantification

and statistical testing of inter-population differences in the magnitude, direction, and shape of

phenotypic trajectories in a trait space.

Recently, the phenotypic trajectory analysis, with the name of phenotypic change vector

analysis, has fuelled investigations into the parallel evolution (Oke et al., 2017; Bolnick et al.,

2018). Here, the term parallel evolution is used in the geometric sense; parallelism between

trajectories in a trait space between multiple ancestor–descendant pairs (Stayton, 2006; Bolnick

et al., 2018), which typically results in acquisition of similar derived traits in the descendants.

Parallel responses to similar selection pressures between lineages are often regarded as evidence for

repeatability or predictability of phenotypic evolution under natural selection, but the prevalence

and extent of such parallelism are subjects of ongoing debate (e.g., Agrawal, 2017; Blount et al.,

2018; Rincon-Sandoval et al., 2020). A recent trend is to quantitatively analyse patterns of

evolutionary changes in what are regarded as typical examples of parallel evolution (e.g., Kaeuffer

et al., 2012; Raeymaekers et al., 2017; Langerhans, 2018). The angles between phenotypic

change vectors of different lineages play an especially pivotal role in empirical analyses of parallel

evolution (e.g., Stuart et al., 2017; Oke et al., 2017; Haines et al., 2020; James et al., 2021;

Owens et al., 2021; Weber et al., 2021), because they are supposed to provide ‘intuitive and

mathematically formal’ measures of (non)parallelism (Stuart et al., 2017: p. 6).

Unfortunately, however, interpretation of angles in multidimensional spaces is not as straight-

forward as some biologists have assumed. Consider, for example, the angle between randomly

directed vectors in 2- and 3-dimensional spaces. It is convenient to fix one of them pointing

an arbitrary ‘pole’ and to let the other be uniformly distributed on the unit circle and sphere

(Fig. 1A, B). The probability density of the angle between these vectors is then proportional

to the arc length and surface area for a given infinitesimal increment of ‘latitude’. One will

notice that the density for the 2-dimensional space is uniform (Fig. 1A), whereas that for the

3-dimensional space is peaked at the ‘equator’ because this region encompasses more area per

latitude than ‘polar’ regions (Fig. 1B). This simple example demonstrates that distributions of

random angles depend on the dimensionality, warning against extending our näıve intuition into

high-dimensional spaces. Regrettably, few recent biologists studying evolutionary parallelism

have appropriately taken this trend into account. Frameworks to make statistically justified

inferences on angles have essentially been lacking in the current empirical literature.

This paper gives a brief overview on methods to analyse angles in multidimensional spaces.

Specifically, it first derives the probability distribution of the angle between random vectors
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Figure 1. Distribution of angle in multidimensional spaces. A, B) Probability density of angle θ between
two vectors uniformly distributed on 2-dimensional circle and 3-dimensional sphere, respectively. Lower
panels show schematic illustrations of the angle between the vector pointing a ‘pole’ (the thick arrow
pointing the left-hand side) and another uniformly distributed on the unit circle/sphere. Upper panels
show the corresponding densities. C) Density of θ in general k-dimensional cases (eq. 9). D) Density of
r = cos θ (eq. 8).

under the null hypothesis that the vectors do not have preferred directions. It is by no means

novel to science or even to the biological literature, where relevant results have been used in

one form or another (e.g., Rice, 1990; Klingenberg & Marugán-Lobón, 2013; Ram & Hadany,

2015; Thompson et al., 2019). The primary aim here is to disseminate well-known results with

theoretical underpinnings.

Recently, De Lisle & Bolnick (2020) proposed a framework for analysing multiple vectors

simultaneously via eigenanalysis of a vector correlation matrix. Although elegant in design,

this framework lacked clear justifications as to which summary statistic should be looked at.

This study gives an alternative interpretation and a simple test statistic for this framework.

Potentially useful exploratory and visualisation methods for phenotypic change vectors are also

discussed in connection to the eigenanalysis.

2 Theory

2.1 Preliminaries

To begin with, let us review the definition of the ordinary (Pearson product-moment) correlation

coefficient, which has a close relationship with angles between random vectors. For the bivariate
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random observations of size N , (x1, x2, . . . , xN ) and (y1, y2, . . . , yN ), the correlation coefficient r

is defined as

r =

∑N
i=1 (xi − x̄)(yi − ȳ)√∑N

i=1 (xi − x̄)2
∑N

i=1 (yi − ȳ)2
, (1)

where x̄ and ȳ are the sample means: x̄ =
∑N

i=1 xi/N, ȳ =
∑N

i=1 yi/N . It is elementary that r

ranges between −1 and 1, with values closer to 0 suggesting no correlation between the variables.

By using the matrix notation x = (x1−x̄, x2−x̄, . . . , xN−x̄)T and y = (y1−ȳ, y2−ȳ, . . . , yN−ȳ)T ,

where the superscript T denotes transpose, we can rewrite equation 1 as

r =
xTy

∥x∥∥y∥
, (2)

where the numerator is the inner product, and ∥ · ∥ denotes the vector norm or length (∥x∥ =√
xTx). Recall the geometric definition of the inner product,

xTy = ∥x∥∥y∥ cos θ, (3)

where θ is the angle formed by x and y in their N -dimensional space. Then, we have

r = cos θ. (4)

That is, the correlation coefficient and the angle between a pair of random vectors are directly

related through the cosine/arccosine transformation. Here, the range of θ is taken as [0, π] (in

radians) so that a one-to-one, though negative, relationship exists between r and θ: in the case

of perfect positive correlation, r = 1, the two vectors point to the same direction, θ = 0; in the

case of no correlation, r = 0, and the two vectors are perpendicular to each other, θ = π/2.

We could standardise the variables by their standard deviations before calculating r. That is,

by putting u = ∥x∥−1x and v = ∥y∥−1y, we could simplify the notation

r = cos θ = uTv. (5)

Since ∥u∥ = ∥v∥ = 1, u and v denote points on the unit hypersphere in the N -dimensional space.

Technically, the sample-mean-centred vectors x and y are in an (N − 1)-dimensional space,

because centring with the sample mean reduces the effective dimensionality—the so-called degree

of freedom—of the original N -vectors by one. It is well established that, for normal (and other)

variables, the distribution of r with N sample-mean-centred observations from a population with

arbitrary mean is the same as that with N − 1 observations centred at a known population mean

(e.g., Hotelling, 1953; Anderson, 2003). For what follows, it is convenient to consider the latter

with the population mean 0 (see below).

This discussion concerns the equivalence between correlations in the trait space and angles in

the sample (lineage, species, etc.) space, but the same relationship also holds when the space

labels are swapped; i.e., the equivalence between correlations in a sample space and angles in

a trait space. We now turn to the distribution of random angles with a general k-dimensional

space.

4



2.2 Distribution of random angles

Let us consider a pair of random vectors x = (x1, x2, . . . , xk)
T and y = (y1, y2, . . . , yk)

T and the

angle θ between them. The elements are assumed to be independently and identically distributed.

Let b = (yTx)/(xTx), the ratio of the inner product between x and y to the squared norm of

x. By the geometric definition of the inner product (eq. 3), the vector bx points to the foot

of the perpendicular from y to x, and the vector y − bx denotes this perpendicular (Fig. 2).

In the terminology of regression, bx and y − bx are predictions and residuals, respectively, in

the regression of y on x (without intercept). The angle θ is related to these vectors in the

trigonometric relationship
1

tan θ
=

b∥x∥
∥y − bx∥

. (6)

The distribution of this quantity is heuristically derived here; see, e.g., Hotelling (1953),

Muirhead (1982: section 5.1), Anderson (2003: section 4.3), or Cai et al. (2013) for formal

proofs. Assume the null hypothesis that the elements of x and y are normally distributed with

mean 0 and variance σ2, and that these two vectors are independent. The standardised vectors

∥x∥−1x and ∥y∥−1y are uniformly distributed on the unit hypersphere in the k-dimensional

space. We can rotate the coordinate axes arbitrarily as far as concerning the distribution of θ;

let ∥x∥−1x = (1, 0, . . . , 0)T for simplicity. Then, the distribution of b∥x∥ = yT (∥x∥−1x) = y1 is

normal with mean 0 and variance σ2. Also, that of ∥y − bx∥2/σ2 =
∑k

i=2 y
2
i /σ

2 is chi-square

with k − 1 degrees of freedom, and independent of b∥x∥ (Fig. 2). Therefore, by the operational

definition of the t-distribution—namely, the distribution of the ratio of a standard normal variate

to the square root of a chi-square variate divided by its degree of freedom, with the two variates

independent from each other—the quantity

b∥x∥/σ√
∥y − bx∥2/σ2(k − 1)

=

√
k − 1

tan θ
=

√
k − 1

r√
1− r2

(7)

has a t-distribution with k− 1 degrees of freedom. The probability density (or mass, to be strict)

Rotation

1

2

k

1

2

k

Figure 2. Scheme to find probability distribution of random angle in k-dimensional space (only the 1st,
2nd, and kth coordinate axes are shown for obvious visual restrictions). See text for details.
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of r in this case can be derived by transforming that of the t-distribution:

1

B[1/2, (k − 1)/2]
(1− r2)

k−3
2 dr, −1 ≤ r ≤ 1, (8)

where B(a, b) is the beta function with the two parameters a and b (this is just a normalising

constant, whose actual value needs not concern most readers) (see Fig. 1D). Then the density for

θ = arccos r is, by noting |dr| = | − sin θ dθ|,

1

B[1/2, (k − 1)/2]
(1− cos2 θ)

k−3
2 | − sin θ dθ| = 1

B[1/2, (k − 1)/2]
sink−2 θ dθ, 0 ≤ θ ≤ π. (9)

This density has a peak at θ = π/2, which is increasingly pronounced as k increases (Fig. 1C).

Another useful expression can be derived for s = r2, by noting |dr| = |ds/2
√
s| and duplication

of the positive and negative branches for r in equation 8:

1

B[1/2, (k − 1)/2]
s−

1
2 (1− s)

k−3
2 ds, 0 ≤ s ≤ 1, (10)

which is the density of the beta distribution with the parameters 1/2 and (k − 1)/2.

The same distribution can be obtained from looser conditions than assumed here. For example,

x could be from any distribution (or a fixed vector) as long as it is independent of y that in turn

has a spherically contoured distribution (Muirhead, 1982; Anderson, 2003). Indeed, expressions

equivalent to equations 9 and 10 can be obtained from purely geometric evaluation of the surface

area of a hyperspherical cap (Rice, 1990; Li, 2011), which is equivalent to the probability for a

random vector uniformly distributed on the hypersphere to fall within the region (see also Ram

& Hadany, 2015). A similar geometric reasoning was in fact involved in Fisher’s (1915; 1925)

formal derivation of the t-distribution (see also Stuart & Ord, 1994: chapter 11), so, to be strict,

the above derivation was partly circular.

These results can be used for testing the null hypothesis that two phenotypic change vectors

have no preferred directions (population means being (0, . . . , 0)T ) and are independent from

each other, by inserting the dimensionality of the trait space into k. In particular, the P -value

for an observed angle can be calculated from the t statistic (eq. 7); example functions for the R

environment (R Core Team, 2019) are provided in Supplemental Material. This is equivalent to

the ordinary correlation test, where typically k = N − 1 (see above). When the polarities of the

vectors are to be ignored (e.g., test for angles between eigenvectors), the beta distribution (eq.

10) can be used instead. An equivalent test is commonly used for testing differences between

allometric axes (e.g., Klingenberg & Marugán-Lobón, 2013).

2.3 Pairwise angles and correlations

The above results concern a pair of random vectors, which should suffice when there are only

a few lineages to compare. In practice, interest is often in analysing a set of many lineages

simultaneously (e.g., Stuart et al., 2017; De Lisle & Bolnick, 2020; Owens et al., 2021). A

convenient way to summarise the overall pattern is to construct a matrix of pairwise angles or

correlations. Let xi denote phenotypic change vectors of p traits from n lineages (i = 1, . . . , n),
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each starting from its respective ancestor, and arrange these in rows of the n× p matrix X. This

matrix then is standardised so that each row has the length of unity:

Z = diag(∥xi∥−1)X, (11)

where diag(·) denotes an n× n diagonal matrix with the designated ith diagonal elements. Then

we consider the following n× n inter-lineage correlation matrix

C = ZZT . (12)

By construction, C is symmetric and its (i, j)-th elements are the vector correlations between

the ith and jth vectors (eq. 5), with the diagonal elements being 1. The rows need not be

centred, thus retain the full effective dimensionality of p, unless the traits themselves are linearly

dependent (as is the case for shape variables; see below). Taking element-wise arccosines of

C yields a matrix of pairwise angles. For sake of discussion, let Γ be the population (true)

correlation matrix corresponding to C.

It might be tempting to make statistical inferences by treating pairwise angles or correlations in

these matrices as a sample; e.g., calculating mean and standard deviation from all pairwise angles

and conducting a t-test for the difference of the mean from, say, π/2 to detect a parallel signal

(Owens et al., 2021). However, such inferences should be, if at all, made with extreme caution,

because pairwise angles and correlations are generally not independent from one another. The

ordinary t-test and the like assume the observations to be independent (or at least uncorrelated),

and violation of this assumption leads to suboptimal performance, e.g., inflated type I error rates.

Off-diagonal elements of C have nonzero covariances unless Γ = In, where In is the n×n identity

matrix (Olkin & Siotani, 1976; Olkin & Finn, 1990). Similar should be the case for pairwise

angles. Therefore, it is inadvisable to conduct tests for pairwise correlations or angles in this

way, unless, perhaps, the covariances are appropriately taken into account (methods for which

are available for correlations; Olkin & Finn, 1995; Zou, 2007). On the other hand, it would be

valid to conduct a sensibly constructed Monte Carlo test. That said, it is rather questionable

whether this test is of any practical use. There are more straightforward ways to test the null

hypothesis Γ = In (below), and other cases hardly translate into particular values of mean of

pairwise angles or correlations.

2.4 Eigenanalysis and one-step test for multiple vectors

De Lisle & Bolnick (2020) proposed to use eigenanalysis of the inter-lineage correlation matrix

C to detect concentration of phenotypic change vectors in a trait space. That is, to consider

spectral decomposition (or eigendecomposition) of C:

C = ULUT , (13)

where U is an n × n matrix of eigenvectors, and L = diag(li) is an n × n diagonal matrix

of eigenvalues. Their motivation was to quantify the magnitude of parallelism and effective

dimensionality of parallel trajectories in the trait space by analysing eigenvalues of C, which
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represent variances along the corresponding principal components (PCs). For those purposes,

however, it is more straightforward to consider the p× p inter-trait cross-product matrix A and

its eigendecomposition instead:

A = ZTZ = VKVT , (14)

where V is a p × p matrix of eigenvectors, and K = diag(ki) is a p × p diagonal matrix of

eigenvalues. The non-zero eigenvalues of C and A are in fact identical (Appendix A). C provides

a quick means to surmise closeness between phenotypic change vectors, as well as a useful

test described below. However, concerning variation in the trait space, V and K are more

interpretable than U and L because the former pair pertains to the p-dimensional trait space

whereas the latter pertains to the n-dimensional lineage space (Appendix A). The rest of this

study addresses quantification and test of the magnitude of parallelism—the first objective of the

eigenanalysis as proposed by De Lisle & Bolnick (2020). Their second objective—determination of

dimensionality of parallel trajectories—requires more methodological clarification and elaboration

than can be covered here (see Appendix A for comments).

Concentration of variation in a trait space is often measured by dispersion of eigenvalues

(Cheverud et al., 1983; Wagner, 1984; Pavlicev et al., 2009a; Haber, 2011; Watanabe, 2021),

which is easier to quantify than ‘skewness’ mentioned (but not quantified) by De Lisle & Bolnick

(2020). If phenotypic change vectors are uniformly directed in the trait space, eigenvalues of

A (or C) exhibit low dispersion. If the vectors are concentrated in certain directions, then the

eigenvalues are highly dispersed. One complexity here is the presence of sampling error and bias,

which render sample eigenvalues more dispersed than the corresponding population eigenvalues

(e.g., Anderson, 1963; Jolliffe, 2002; Watanabe, 2021). De Lisle & Bolnick (2020) suggested

to compare eigenvalues of C with Monte Carlo distributions of eigenvalues of matrices drawn

from a Wishart distribution. However, that distribution pertains to unscaled cross-product or

covariance matrices, so is not directly applicable to a correlation matrix like C, except as a rough

approximation. That method would work if the random matrices are also scaled as correlation

matrices. Nevertheless, concerning detection of concentration between vectors, there is a much

simpler alternative.

It is possible to show that dispersions of eigenvalues ofC andA (denoted li and ki, respectively)

are equivalent to sum of squared correlations (see Appendix A):

n∑
i=1

(li − l̄)2 =

p∑
i=1

(ki − k̄)2 +
n2

p
− n = 2

n∑
i<j

r2ij , (15)

where l̄ and k̄ are the averages of eigenvalues, and rij are the (i, j)-th elements of C. Therefore,

instead of eigenvalue dispersion, we can equivalently consider sum of squared correlations
∑n

i<j r
2
ij ,

which is a straightforward measure of deviation from independent directions of vectors. Let us

assume the null hypothesis of Γ = In; that is, all vectors are independently directed from one

another without preferred directions (in the population). For n lineages, we take as if p traits are

observations. Under the multivariate normality of the elements of X, each of r2ij is distributed

as Beta[1/2, (p − 1)/2] (eq. 10) and hence has the mean 1/p and variance 2(p − 1)/p2(p + 2).

Furthermore, it is possible to show that r2ij ’s are uncorrelated with one another under the null
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hypothesis (Schott, 2005; Watanabe, 2021). Therefore, the expectation and variance of the sum

of squared correlations are:

E

 n∑
i<j

r2ij

 =
n(n− 1)

2p
, Var

 n∑
i<j

r2ij

 =
n(n− 1)(p− 1)

p2(p+ 2)
. (16)

From these moments, Schott (2005) proposed the following high-dimensional asymptotic test.

Under the condition n → ∞, p → ∞, and n/p → γ ∈ (0,∞), the distribution of
∑n

i<j r
2
ij −n(n−

1)/2p converges to the normal distribution with mean 0 and variance lim
[
Var(

∑n
i<j r

2
ij)
]
= γ2.

(This condition may at first look odd, but is just a modest generalisation from the ordinary

large-sample asymptotic condition, n → ∞ and p/n → 0, which is equally unrealistic.) Empirical

values of
∑n

i<j r
2
ij can be compared with the normal distribution with the above mean and

variance (eq. 16), and a large deviation can be seen as evidence against the null hypothesis,

suggesting concentration of vectors. Schott (2005) showed by simulations that this test has a

reasonable type I error rate (although slightly too liberal when p or n is small, e.g., <16) and a

power usually superior to that of the conventional likelihood-ratio test.

An obvious caveat on this procedure is that the test statistic does not convey information

on the signs of correlation coefficients (neither do the eigenvalues). Therefore, this test does

not distinguish parallel and antiparallel signals. At least the original correlation matrix or PC

scores should be inspected to surmise what type of deviation from the null is present (De Lisle &

Bolnick, 2020).

2.5 Rayleigh test for unimodal concentration

The test of no correlation described above is a generic way to detect concentration of random

vectors in any form. If the detection of parallel signal is of particular interest, it is probably

more adequate to use the Rayleigh test from directional statistics (Mardia et al., 1979; Mardia &

Jupp, 1999). It aims to test whether the sample is from the uniform distribution (the null) or a

unimodal distribution (the alternative) on the unit hypersphere. In particular, the von Mises–

Fisher distribution—an analogue of the normal distribution for directional data—is assumed as

a model.

The Rayleigh test proceeds as follows. Let zi denote the rows of Z defined above (eq. 11);

these are p-dimensional vectors for n lineages, standardised to have the length of unity. In

addition, define the mean vector as z̄ =
∑n

i=1 zi/n. Clearly, z̄ lies within the unit hypersphere as

it is the centroid of zi’s. Under the null hypothesis of uniform distribution, z̄ should lie close to

the origin. The more (unimodally) concentrated zi’s are, the farther apart z̄ lies from the origin.

Under the null hypothesis, the expectation and variance of zi are 0 and p−1Ip, respectively (see

Mardia et al., 1979; Anderson, 2003). It then follows from the classic central limit theorem

that z̄ is normally distributed with mean 0 and variance (np)−1Ip as n → ∞ under the null

hypothesis. Therefore, it is possible to construct a test based on the following test statistic and

the asymptotic null distribution:

S = np∥z̄∥2 ∼ χ2
p, n → ∞, (17)
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where χ2
p denotes the chi-square distribution with p degrees of freedom. For a large value of S,

the null hypothesis is rejected, suggesting concentration of random vectors. It is recommended to

use the following correction, which is known to yield a better approximation of the same limiting

distribution (Mardia & Jupp, 1999):

S∗ =

(
1− 1

2n

)
S +

1

2n(p+ 2)
S2. (18)

The Rayleigh test is a particularly powerful test to detect unimodal concentration of random

directional vectors (Mardia et al., 1979; Mardia & Jupp, 1999), and is also known to be robust

against high p/n ratios (Ley & Verdebout, 2017). However, it is insensitive to such forms of

concentration that yield z̄ near the origin. Examples include balanced multimodal concentration

(e.g., equal parallel and antiparallel signals) and uniform distribution on a large circle. There

exist several other tests of concentration for those cases (Mardia & Jupp, 1999; Cai et al., 2013;

Pewsey & Garćıa-Portugués, 2021), among which Schott’s (2005) test described above could be

placed as well.

3 Example analysis

Stuart et al.’s (2017) dataset of lake–stream divergence in the threespine stickleback (Gasterosteus

aculeatus) is re-analysed here for demonstration. The original data were pre-processed as described

in Appendix B. The resultant dataset consists of 13 phenotypic change vectors in 80 nominal

morphological traits: 41 linear measurements, 38 Procrustes-aligned shape coordinates and 1

centroid size (from 2-dimensional geometric morphometric analysis of 19 full landmarks). The

effective dimensionality of the vectors is 80− 4 = 76, as 4 degrees of freedom is lost by Procrustes

alignment (assuming that the configurations were projected onto the tangent space; when this

was not done, complexity would arise because the coordinates are nonlinearly dependent).

The resultant 78 pairwise angles ranged from 0.49 to 2.62 (28.0°–149.9°). Compared with

the null distribution of angles in the 76-dimensional space (eq. 9), 38 and 29 out of these were

closer to parallel and antiparallel, respectively, than expected from random directions by chance

alone (two-sided test at α = 0.05; no rigorous error rate control is deemed necessary for this

demonstrative analysis; Fig. 3A). The mean angle of 1.50 (86.0°) was closer to parallel than

expected for a mean of 78 random angles (P < 1 × 10−5 based on a Monte Carlo simulation

with 105 iterations; Fig. 3B). This interpretation is in stark contrast with that of Stuart et al.

(2017), who regarded their mean of 81.1° with 84 traits as ‘nearly orthogonal’ without considering

the dimensionality. Note, however, that this test is for illustrative purposes only, as the mean

pairwise angle lacks a clear interpretability (see above).

Schott’s (2005) test described above was applied to the inter-lineage correlation matrix

C. Sum of the 78 squared correlations was 24.25, whereas the null expectation and standard

deviation (eq. 16 with n = 13 and p = 76) were 1.03 and 0.16, respectively, indicating a

statistically significant deviation from the null hypothesis of independent directions (Z = 144.08;

P < 1 × 10−10). The Rayleigh test also detected a significant concentration (S∗ = 141.49; 76

degrees of freedom; P = 0.000008), although the interpretation is not so obvious in the presence

of both parallel and antiparallel signals in the dataset.
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Figure 3. Re-analysis of Stuart et al.’s (2017) dataset. A) Histogram of 78 pairwise angles between
the phenotypic change vectors in 13 lineages of Gasterosteus aculeatus, compared with a scaled density
of random angles for p = 76 (eq. 9). Regions outside the 2.5 and 97.5 percentiles of the density are
shown with solid orange fills. B) Mean of the 78 pairwise angles (blue arrow) compared with the null
distribution (histogram) based on 100,000 Monte Carlo simulation runs. C–F) Principal component plots
of phenotypic change vectors with different visualisations. C) PCA biplot showing scores (points) and
coefficients (arrows) of PC1 and PC2. The scaling parameter α was set to 1, so that Euclidean distances
between observations are maximally preserved (see Appendix C). Blue arrows denote Procrustes shape
coordinates, which cannot be interpreted individually, whereas orange ones denote the other traits, some
of which are labelled. The inner axis labels are for coefficients, whereas the outer ones are for scores. D)
Pairwise angles shown with colour-scaled segments. E) Clouds of bootstrap replicates and approximate
95% confidence ellipses. Ellipses are based on 5000 replicates of PC scores, but only 1000 replicates are
shown for visual clarity. F) Grouping with k-means clustering shown with colours and convex hulls. This
grouping gave the smallest within-group sum of squares for (arbitrarily chosen value of) k = 5. Squares
denote group centroids. Note that the clustering was conducted on the full trait space rather than this
2-dimensional plane. Acronyms for watersheds are as in Stuart et al. (2017).

Ordination from PCA of the standardised phenotypic change vectors Z is shown in Figure

3C–F with different visualisations (see Appendix C for details). PCA biplot shows that the first

two PCs are strongly loaded with standard length and other traits highly correlated with it, while

additional variation is provided by traits like pelvic girdle width and body depth (Fig. 3C). The

vectors of some lineages appear closely clustered with one another, but distribution of PC scores

across the origin indicates that not all lineages had similar divergence (Fig. 3D). Nonparametric

bootstrapping suggests that differences between vectors are mostly larger than what would

be expected from sampling error alone except in most similar pairs (Fig. 3E). Nevertheless,

the magnitude of sampling error appears heterogeneous among lineages, cautioning against

face-value interpretation of differences; for example, sampling error is evidently large for the

Moore watershed, and this is not due to small sample size (or distortion of the plot). Potential
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clustering was explored with k-means clustering with varying numbers of clusters, and the result

for k = 5 is shown as an example (Fig. 3F). The results collectively indicate that both parallel

and antiparallel signals are present, as previously found by De Lisle & Bolnick (2020) from their

re-analysis of the same dataset.

4 Discussion

Angles have been commonly used in quantitative analyses of parallel evolution, but their properties

in multidimensional spaces have not attained due attention from biologists. As clarified by the

above analysis, angles between randomly directed vectors is peaked around the right angle in

multidimensional spaces (eq. 9; Fig. 1). It is therefore inadvisable to interpret angles at face

value, e.g., angles closer to 90° than 0° regarded as evidence against parallel evolution on their

own (Stuart et al., 2017; Oke et al., 2017). In addition, the dependency of the peakedness on

dimensionality (eq. 9; Fig. 1C) renders angles incomparable across different dimensions. Thus,

direct comparison of angles or pooled meta-analysis across varying dimensionalities (Oke et al.,

2017; Haines et al., 2020; Radersma et al., 2020) will not be meaningful, unless dimensionality is

sensibly taken into account. A potentially useful standardisation in this respect is
√
k − 2(π/2−θ),

whose distribution under the null condition (eq. 9) converges to the standard normal distribution

as k → ∞ (Cai et al., 2013); when k is sufficiently large, this quantity could be used as an effect

size against the null distribution.

This review concentrated on the null hypothesis that vectors are independent and have

no preferred directions, which is just one of many hypotheses of potential biological interest

(Bolnick et al., 2018; De Lisle & Bolnick, 2020). This is not to claim for superior biological

importance of this hypothesis over another, but rather to present it as a baseline for analysing

multidimensional vectors. On the other extreme, the hypothesis of completely parallel vectors

(in the population) could be tested, if interest is in detecting deviation from parallelism (Bolnick

et al., 2018). It is, however, more difficult to define a unified procedure for testing this null

hypothesis than it may seem. It should in principle be possible to extend the present parametric

framework into any arbitrary population values of correlation (although the distributions are

substantially more complex). However, a practical test procedure will need to incorporate

sampling error, whose nature and magnitude would largely depend on individual study systems.

This is partly because complete (anti)parallelism in the population eliminates any room for

sampling variation, thereby trivially yielding sample correlation coefficient exactly 1 or −1 with

probability 1. A more realistic option will be to adopt one of the resampling-based approaches

(Klingenberg, 1996; Adams & Collyer, 2009; Collyer & Adams, 2013; Sheets & Zelditch, 2013),

as is done in the original phenotypic trajectory analysis. However, it should be remembered

that a resampling-based test, although being nominally nonparametric, is usually not free from

the assumption that the populations share the same form of distribution, potentially differing

only in the quantity to be looked at (e.g., Anderson, 2001; Manly & Navarro Alberto, 2020).

Between-group heteroscedasticity, whose presence was also suggested in the present re-analysis

(Fig. 3E), can possibly undermine adequacy of tests of this type. Robustness of resampling-based

tests against such cases needs to be critically assessed. The literature of directional statistics

(e.g., Mardia & Jupp, 1999; Ley & Verdebout, 2017; Pewsey & Garćıa-Portugués, 2021) may
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potentially provide useful directions for alternatives.

Apart from hypothesis testing, exploratory methods such as ordination and clustering can

provide useful insights into variation among phenotypic change vectors (Appendix C). It should be

straightforward to apply concepts and techniques originally devised for the analysis of allometric

space to phenotypic change vectors. Examples include quantification of allometric disparity (e.g.,

Gerber et al., 2008; Urošević et al., 2013), test for shared trajectories in subspaces (Klingenberg,

1998; Mitteroecker et al., 2005; Gerber et al., 2007), and simultaneous visualisation with phylogeny

(Baliga & Mehta, 2018). Although not fully discussed here, clustering approaches may also be

useful in detecting and summarising patterns in multiple phenotypic change vectors (Fig. 3F;

Appendix C).

A paramount assumption in almost any geometric analysis in a trait space (Adams & Collyer,

2009; Stayton, 2015; Bolnick et al., 2018) is that vectors can be meaningfully compared across

different regions of the trait space. This is, for example, when all traits are measured in the same

unit and no bounds exist (at least in the region of practical concern). If traits are in different

units (e.g., linear measurements and mass) or of different nature (e.g., continuous and count

variables), geometry of the trait space will be of questionable interpretability. Standardisation of

traits by their mean or standard deviation would make traits nominally dimensionless, but it is

generally an open question whether this procedure ensures interpretability of vectors and angles,

which needs to be assessed in individual analyses.

The concentration of random angles around the right angle is just one of the potentially

counterintuitive properties of high-dimensional spaces. Other superficially well-known concepts,

such as volumes, Euclidean distances, and shapes of cubes and hyperspheres, also show peculiar

behaviours in high-dimensional spaces (see Blum et al., 2020; Rohlf, 2021). If biologists are

to explore evolution in high-dimensional spaces, they ought to well familiarise themselves with

properties of the quantities they work with. Even if the primary interest is in biology rather

than geometry, basic geometric properties of the trait space should not be ignored.
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Appendix A Comment on eigenanalysis

A.1 Singular value decomposition

De Lisle & Bolnick (2020) proposed to capture the magnitude of parallelism via analysis of

eigenvalues of ZZT . Here, it is argued that this procedure should be based on the eigenanalysis of

ZTZ instead (or, more conveniently, singular value decomposition of Z) by reviewing well-known

results of matrix analysis. Readers familiar with singular value decomposition may simply skip

this subsection. In the text, Z was defined as the n× p (lineage × trait) matrix, with the rows

standardised to have the unit length, so that C = ZZT is interpreted as an n× n inter-lineage

13



correlation matrix. Let its spectral decomposition (or eigendecomposition) be

C = ULUT , (A.1)

where U is an n × n matrix of eigenvectors and L = diag(li) is an n × n diagonal matrix of

eigenvalues li. The symmetry of C ensures the orthonormality of U: UTU = UUT = In (or

U−1 = UT ; e.g., Schott, 2016). The eigenvectors U represent major axes of variation in the

(standardised) n-dimensional lineage space, each of whose coordinate axes represents trait values

of a lineage, whereas the eigenvalues describe the variances along these axes. Note that this is

not in the trait space, whose coordinate axes represent traits.

On the other hand, define the p×p inter-trait cross-product matrix A = ZTZ and its spectral

decomposition

A = VKVT , (A.2)

where V is a p×p matrix of eigenvectors and K = diag(ki) is a p×p diagonal matrix of eigenvalues

ki. The eigenvectors V represent major axes of variation in the p-dimensional trait space, whereas

the eigenvalues are sums of squares (n times variances) along these axes. Right-multiplication

with V projects Z onto the p-dimensional principal component (PC) space, so that ZV is an

n× p matrix of PC scores for the n lineages. (We could equivalently consider A/n as the p× p

inter-trait covariance matrix, centred at the origins of phenotypic change vectors rather than

sample means.) Clearly, if we are interested in variation in the trait space as intended by De Lisle

& Bolnick (2020), attention should be directed to the eigendecomposition of A, which pertains

to the trait space, rather than that of C, which pertains to the lineage space. The eigenanalysis

of A is also known in directional statistics as the analysis of principal directions (Mardia et al.,

1979).

In fact, it is to be seen that, from CU = ZZTU = UL (eq. A.1), A(ZTU) = ZTZZTU =

(ZTU)L, and hence ZTU is a matrix of eigenvectors for A, with non-zero elements of L being

common eigenvalues of C and A (see, e.g., Schott, 2016). In other words, for the eigenvalues of

C and A (arranged in decreasing order),
(l1, . . . , ln, 0, . . . , 0) = (k1, . . . , kn, kn+1, . . . , kp), n < p.

(l1, . . . , ln) = (k1, . . . , kp), n = p.

(l1, . . . , lp, lp+1, . . . , ln) = (k1, . . . , kp, 0, . . . , 0), n > p.

(A.3)

This leads to a useful matrix factorisation known as singular value decomposition. For the n× p

matrix Z of non-zero rank, we can find the decomposition

Z = UDVT , (A.4)

where U and V are n× n and p× p, respectively, orthogonal matrices. D is an n× p matrix

with the form: 
(
∆ 0

)
, n ≤ p(

∆

0

)
, n ≥ p
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where ∆ is a diagonal matrix with the dimensionality min(n, p), and 0 denotes a matrix of 0’s

of an appropriate dimension (which disappears when n = p). The diagonal elements of ∆ are

called singular values of Z (which can contain one or more 0’s if and only if Z is rank-deficient).

Observe

ZZT = UDVTVDTUT = UDDTUT , (A.5)

ZTZ = VDTUTUDVT = VDTDVT , (A.6)

so that the decompositions of equations A.1 and A.2 can be constructed with the same U and

V, by letting DDT = L and DTD = K. In other words, the singular values are square roots of

the non-zero eigenvalues considered above. This result is often utilised in practical calculation

of PCs (Jolliffe, 2002). It also clarifies how eigenvectors of C can be ‘related back’ to the trait

space (De Lisle & Bolnick, 2020: equation 7 and figure 2):

ZTUT−1
= ZTU = VDT . (A.7)

This p × n matrix equals the eigenvectors V of A scaled to have the lengths equal to square

root of the corresponding eigenvalues. Although eigenvectors of C convey information regarding

how the lineages are loaded on PCs, the same information can be obtained from PC scores

with respect to A, namely, ZV = UD. It may be worth noting that De Lisle & Bolnick’s

(2020) original suggestion is essentially to conduct principal coordinate analysis with C as the

inter-lineage similarity matrix, which yields the same coordinates UD in this case. In any case,

all the relevant information can be extracted from singular value decomposition of Z.

A.2 Eigenvalue dispersion and squared correlations

The equivalence between eigenvalue dispersion and sum of squared correlations mentioned in

equation 15 can be confirmed as follows. Let rij be the (i, j)-th elements of the correlation

matrix C (the diagonal elements are unity; rii = 1 for all i), and tr(·) denote the matrix trace

operator (sum of diagonal elements). It is easily confirmed that tr(ST) = tr(TS) holds for any

arbitrary matrices S and T where the products can be defined (e.g., Schott, 2016), and hence

n =
∑n

i=1 rii = tr(C) = tr(ULUT ) = tr(LUTU) = tr(L) =
∑n

i=1 li = nl̄, where l̄ is the average

of eigenvalues (which equals 1). Then,

2

n∑
i<j

r2ij =

n∑
i ̸=j

r2ij =

n∑
i,j=1

r2ij −
n∑

i=1

r2ii = tr(C2)− n

= tr(ULUTULUT )− n

= tr(L2)− n =
n∑

i=1

l2i − 2
n∑

i=1

li + n

=

n∑
i=1

(
li − l̄

)2
. (A.8)

Equation A.8 holds for any correlation matrix in general (e.g., Gleason & Staelin, 1975; Durand

& Le Roux, 2017; Watanabe, 2021). Also, by equation A.3,
∑n

i=1 l
m
i =

∑p
i=1 k

m
i holds for any
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integer m. Therefore,

p∑
i=1

(
ki − k̄

)2
=

p∑
i=1

k2i −
1

p

(
p∑

i=1

ki

)2

=
n∑

i=1

l2i −
n2

p

=
n∑

i=1

(
li − l̄

)2
+ n− n2

p
. (A.9)

Equations A.8 and A.9 together indicate that the sum of squares of the eigenvalues of C and A

around the respective averages are simple linear functions of each other and of sum of squared

correlations in C (eq. 15).

A.3 Dimensionality of parallelism?

In proposing their eigenanalysis framework, De Lisle & Bolnick (2020) declared two objectives:

quantifying the magnitude of parallelism; and determining the dimensionality of parallelism.

The present study primarily concerns the first point, partly because working on the second

point requires much more conceptual and methodological elaboration than can be presented

here. Nevertheless, it seems pertinent to make a cautionary note; in short, it is rather obscure

what quantity their original procedure aims to evaluate, beyond testing the null hypothesis of no

concentration of phenotypic change vectors.

Problematically, De Lisle & Bolnick (2020) did not formally state their hypotheses for

identifying the dimensionality of parallelism or how they can be tested, be it with statistical

null-hypothesis testing or any other framework. They mentioned comparing observed eigenvalues

with Monte Carlo distributions, but were not explicit as to which eigenvalue is compared in

what criterion. Nevertheless, their writing seems to imply that all observed eigenvalues are

compared with the null distributions of eigenvalues generated with Monte Carlo simulations,

and that the eigenvalues larger than the null distributions are considered ‘significant’. Their

allusion to the number of ‘significant’ eigenvalues is reminiscent of the traditional component

retention framework in PCA, where a small number of leading PCs (those corresponding to

large eigenvalues) are retained while the others are discarded (e.g., Jolliffe, 2002; Peres-Neto

et al., 2005; Schott, 2006; Dray, 2008; Vieira, 2012; Björklund, 2019). The premise there is that

trailing PCs tend to be dominated by noise—most typically, measurement error—and hence are

unlikely to be meaningfully interpreted. For this purpose, it is insensible to compare all observed

eigenvalues with Monte Carlo distributions simultaneously, for the following two reasons. First,

due to the scaling of Z, the eigenvalues of A (or C) are constrained to sum to n (see above).

This means that, if there is any detectably large eigenvalue, other ones are necessarily small, even

if the PCs corresponding to the latter may still convey informative signals. Hence, potentially

meaningful information can be lost if eigenvalues smaller than the simultaneous null distributions

are discarded altogether. Second, it is conceivable that, say, the second and third eigenvalues are

smaller and larger, respectively, than their respective critical points. Although such a situation

may arguably be of rare occurrence in practice, it is not obvious which components are to be
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retained or discarded. The simultaneous comparison is valid for testing the null hypothesis

Γ = In, provided that the appropriate null distributions are used (see text), but is unlikely to

serve for determining the number of ‘significant’ eigenvalues.

If one is interested in determining the number of components that exceed the magnitude

of noise and hence are interpretable on their own, then a potential option is to use one of the

component retention methods (see papers cited above), perhaps with appropriate modifications.

However, most of these methods proceed with stepwise null-hypothesis testing—test of the

equality of adjacent population eigenvalues—at the risk of committing type I or type II error at

each step. Therefore, the resultant number of significant eigenvalues would need to be viewed

with much caution. Inaccuracy in the number of significant eigenvalues is not a serious concern

in ordinary applications of PCA since the primary goal is usually to obtain a convenient low-

dimensional approximation, but it will be a crucial issue if the number of components itself is

the target of inquiry.

Determination of matrix dimensionality is also a matter of interest in quantitative genetics,

where a lack of full dimensionality in an additive genetic covariance matrix is regarded as evidence

for genetic constraint (e.g., Kirkpatrick, 2009; Hine et al., 2014). Adopting one of the techniques

there (Hine & Blows, 2006; Pavlicev et al., 2009b) might potentially be another option for

determining the dimensionality of parallelism. Although superficially similar to the previous

problem of component retention, they test different statistical hypotheses and typically require

an estimate of error.

In any case, determination of the dimensionality of parallelism requires more conceptual

clarification and methodological rigour. It is beyond the scope here to elaborate on potential

adequacy of all the different methods mentioned above. Apart from the determination of

dimensionality, it would be worth remembered that reduced-rank inferences are prone to induce

inaccuracy in many biological settings (see Meyer & Kirkpatrick, 2008; Uyeda et al., 2015; Adams

& Collyer, 2018). Thus, for many purposes, treating high-dimensional data as they are seems a

favourable option in general.

Appendix B Dataset for example analysis

In the text, Stuart et al.’s (2017) dataset of lake–stream divergence in the threespine stickleback

(Gasterosteus aculeatus) is re-analysed. The dataset analysed here consists of 80 nominal

morphological traits (see text). The 4 meristic traits originally included in the dataset were

excluded from the present analysis because mixing different types of traits might compromise

interpretability (although results were qualitatively similar even when these were involved).

Raw data and codes were retrieved from http://web.corral.tacc.utexas.edu/Stuart_2017_

NatureEE_Data_Code/ on 17th August 2021. Individuals with any missing data entries were

excluded from analysis. As a result, the vectors for 13 watersheds, out of the original 16,

were retained; the excluded localities were Boot, Pye, and Village Bay, which lacked complete

observations in at least one of the ancestor or descendant population. The variables were

standardised by the pooled standard deviations across all localities, rather than by the standard

deviations for each watershed as was originally done in Stuart et al. (2017). These procedures

are primarily for ease of the demonstrative analyses, and not to be advocated for methodological
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adequacy. Codes to reproduce the re-analysis are provided as Supplemental Material.

Appendix C Exploratory analysis

This section briefly discusses exploratory and visualisation methods for phenotypic change vectors.

It is straightforward to treat phenotypic change vectors—rows of X or Z defined in the text—as

‘observations’, as has been done for the analysis of allometric space (Klingenberg & Froese, 1991;

Gerber et al., 2008; Gerber & Hopkins, 2011). The space of phenotypic trajectories could be

called trajectory space. When the vectors are normalised to have unit length, the resultant

space is on the unit hypersphere in the p-dimensional space. Visualisation can be achieved via

dimension reduction or ordination methods. For example, eigenanalysis of the p × p (inner)

cross-product matrix A or equivalently covariance matrix A/n can be used to visualise variation

in phenotypic change vectors via PCA. As defined in the text, these are centred at the origins

of each phenotypic change vector. Alternatively, the columns of Z could be mean-centred, or

A could be scaled as a correlation matrix, each giving a different interpretation. It would be

useful to visualise estimates of sampling errors or confidence regions for trajectories by plotting

these quantities at the same time (Klingenberg & Froese, 1991; Fig. 3E). One caveat is that

typical 2- or 3-dimensional plots usually give distorted visualisations of the space, especially when

the vectors are widely spread across the hypersphere. For this reason, it is always advisable to

supplement this visualisation with inspection of the angles/distances (e.g., Fig. 3D). Specialised

methods for directional data (reviewed in Pewsey & Garćıa-Portugués, 2021) may perhaps help

mitigate such problems.

Biplots provide useful, simultaneous visualisations of relationships between observations and

variables (see, e.g., Jolliffe, 2002; Greenacre, 2012; Gower et al., 2015). This technique is closely

related to singular value decomposition mentioned in Appendix A. Let q denote the rank of the

data matrix Z. Typically, we consider a factorisation of the form

Z = UDVT = Uq∆VT
q = Uq∆

α∆1−αVT
q , (C.1)

where U, D, V and are as in equation A.4, Uq and Vq are the matrices containing the q columns

of U and V, respectively, corresponding to non-zero entries of D or ∆, and ∆α and ∆1−α are

diagonal matrices whose diagonal elements are αth and (1− α)th powers, respectively, of those

of ∆, with the scaling parameter α usually taken within [0, 1]. If we denote G = Uq∆
α and

H = Vq∆
1−α, G and H convey information pertaining to the lineages and traits, respectively.

The columns of G and H corresponding to the largest singular values provide the best lower-

dimensional approximation of the original data, enabling a useful visualisation. When α = 0,

the rows of G do not preserve Euclidean distances between lineages (but are instead in the

Mahalanobis metric), whereas those of H tend to preserve the covariance structure between traits

(cosines are correlations). When α = 1, the rows of G (ordinary PC scores) preserve Euclidean

metric relationships between lineages, but those of H (ordinary PC coefficients) do not exactly

preserve the covariance structure (for details see Jolliffe, 2002). This technique can be applied

to the analysis of phenotypic change vectors (Fig. 3C). It should be noted that traits like the

Procrustes shape coordinates can be visualised in this way but cannot be interpreted individually
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apart from one another (e.g., Klingenberg, 2013). The procedure described here belongs to the

classical PCA biplot, and there are many variants corresponding to other multivariate analytic

techniques, which may turn useful in certain situations (see Gower et al., 2015).

Klingenberg & Froese (1991) proposed to detect patterns in a set of vectors by applying the

concept of principal points. Principal points are a given number of points in a high-dimensional

space that collectively minimise expected squared Euclidean distances from (the nearest one of)

them in a population (Flury, 1990). In practice, principal points are typically estimated with

k-means clustering, which seeks k such groups of observations that minimise within-group sum

of squares in a sample. Depending on assumptions on the underlying distribution, clustering on

constrained subspaces may yield better estimates of principal points (Flury, 1993). Although it

is beyond the scope here to present an extensive technical overview of various clustering methods

(see e.g., Steinley, 2006), this framework seems to have broad applications in the analysis of

phenotypic change vectors, such as detecting optimal clustering or obtaining representative

vectors from a large number of vectors.

In the present re-analysis, PCA of Z (without mean-centring of columns) was used for

visualisation of the trajectory space (Fig. 3C–F). PCA biplot with α = 1 is shown in Figure

3C. Sampling error in the trajectories were assessed with nonparametric bootstrapping with

5000 replicates, in which individuals were randomly drawn with replacement to match each

within-locality sample size. Only 1000 replicates are plotted in Figure 3E for visual clarity. As the

vectors are lying on the surface of a hypersphere, the 2-dimensional plot is inevitably distorted.

The 95% confidence regions based on the first 2 PC scores of full 5000 replicates are plotted as

ellipses for visual aid, although the assumption of multivariate normality may not be particularly

appropriate here. Grouping of the vectors were explored with k-means clustering of the entire

data Z, via Hartigan and Wong’s (1979) algorithm implemented in the function ‘kmeans’ of

R environment version 3.5.3 (R Core Team, 2019). Clustering performance was assessed by

within-group sum of squares. In order to avoid falling into local minima, clustering was conducted

repeatedly, with all possible combinations of observations used as initial group means, following

Klingenberg & Froese (1991). For each k (varying from 2 to n− 1), the clustering with smallest

within-group sum of squares was retained. Visual inspection suggested that within-group sum of

squares continued to drop up to k = 5 but did not decrease substantially past this point. Hence,

this clustering result is presented in Figure 3F as an example of exploratory analysis, although

the visual inspection is not particularly adequate for determining optimal k (Steinley, 2006).
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