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Abstract

Survivorship under predation exerts strong selection on reproductive traits as well as on 

brain anatomy of prey. However, how exactly predation and brain evolution are linked has 

not been resolved as current empirical evidence is inconclusive. This may be due to 

predation pressure having different effects across life stages and/or due to confounding 

factors in ecological comparisons of predation pressure. Here, we used adult guppies 

(Poecilia reticulata) to experimentally test the impact of a period of strong predation on 

brain anatomy and reproduction of surviving individuals. We compared the survivors to 

control fish, which were exposed to visual and olfactory predator cues but could not be 

predated on, and found that predation impacted the relative size of female brains. This 

effect was dependent on body size as larger female survivors showed relatively larger 

brains, while smaller survivors showed relatively smaller brains when compared to control 

animals. There were no differences in male relative brain size between the treatments, nor 

for any specific relative brain region sizes for either sex. Moreover, survivors produced more

offspring, but did not show shorter interbrood intervals than controls. Our results 

corroborate the important, yet complex, role of predation as an important factor behind 

variation in brain anatomy. 
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Introduction 

Predation pressure is a key ecological factor in shaping the evolution of morphological, 

physiological, behavioural, and life-history traits (Reznick & Endler 1982; Lima & Dill 1990; 

Heinen-Kay & Langerhans 2013). Predators drive prey trait evolution over generations 

through non-random mortality (natural selection) or elicit changes in morphology, 

behaviour, or decision-making processes within a generation (phenotypic plasticity; Lima & 

Dill 1990; Kondoh 2010). One key trait for which predation has been identified as an 

important evolutionary selective force is vertebrate brain size (Burns & Rodd 2008; 

Kotrschal et al. 2015; van der Bijl et al. 2015; Walsh et al. 2016). This is because individuals 

may differ in their ability to assess predators due to differences in cognitive abilities 

associated with brain size (Striedter 2005; Moller & Erritzoe 2014; Samuk et al. 2018). 

Larger-brained prey could be more effective at avoiding predators given their likely better 

ability to alter their behavioural responses to specific predator encounters (Shultz & Dunbar 

2006). Conversely, predicting the likelihood of a predator attack requires gathering and 

processing information, at which individuals with larger brains might be better (Moller & 

Erritzoe 2014; van der Bijl et al. 2015). Correlational studies in birds have shown that species

with larger brains experience lower rates of adult mortality when compared to smaller 

brained species (Sol et al. 2007). Another link between predation and brain anatomy in birds

is flight initiation distance. This indicator for assessing and evading predation threat is 

shorter in species with relatively larger brains (Moller & Erritzoe 2014). Potentially, larger-

brained birds benefit from being able to better assess the risk, reducing the costs associated 

with fleeing too often, while remaining safe (Sol et al. 2005). 

The relationship between predation and the brain is not straightforward, with 

ecological comparisons showing evolutionary effects varying in magnitude, direction, 

heritability, and with sex (Gonda et al. 2012; Gonda et al. 2013; Kotrschal et al. 2015; Walsh 

et al. 2016; Samuk et al. 2018). For instance, in guppies artificially selected for large and 

small relative brain size (i.e. brain size relative to body size), large-brained females survived 

longer under predation in a semi-natural setting, while no effect was found for males

(Kotrschal et al. 2015). However, male but not female guppies exposed to cues of predation 
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risk in the laboratory or actual predation risk in the wild developed heavier brains (Reddon 

et al. 2018). Predator-prey comparisons across different fish species have also revealed that 

larger brained predators tend to prey on larger-brained prey, but that prey’s relative brain 

size is larger than that of the predator (Kondoh 2010). 

On the other hand, large brains may not always be beneficial in a predatory 

environment as high metabolic costs (Niven & Laughlin 2008) can outweigh the cognitive 

benefits of larger brains. Indeed, in Trinidadian killifish (Rivulus hartii), males from sites with 

large piscivores, which predate on adults, have evolved smaller brains when compared with 

fish from sites that lack piscivorous fish (Walsh et al. 2016). In contrast, when comparing 

sites that differ in juvenile predation, there was no association between predation and adult

brain size (Beston et al. 2017). Moreover, sticklebacks from complex marine environments 

characterized by high levels of predation and lower prey densities have smaller brain size 

than fish from simple pond environments that lack predators (Gonda et al. 2011). Similarly, 

experimental exposure to predators in sticklebacks resulted in smaller relative brain sizes 

when compared to control populations (Samuk et al. 2018). One cause of variation in the 

effect of predation in ecological comparisons may be other environmental factors. For 

instance, in studies of the guppy (Poecilia reticulata), high- and low-predation populations 

are usually separated by waterfalls which larger predatory fish cannot cross. Predation also 

drives population demographics by reducing densities, and by changing intra and 

interpecific competition dynamics (Magurran & Phillip 2001; Reznick et al. 2001; Reznick et 

al. 2012). These factors are likely to affect brain size through energetic trade-offs (Isler & 

van Schaik 2006), and provide an alternate explanation for the higher growth rates and 

reproductive productivity shown on high predation fish (Arendt & Reznick 2005). Hence, 

despite a wealth of data showing correlations between predation and aspects of brain 

anatomy, empirical evidence for a direct effect of predation on the brain is currently lacking.

We examined how predation impacts brain morphology and reproductive traits, 

while controlling for non-lethal effects of visual and olfactory predation cues. All individuals 

were bred and raised in similar conditions and were sexually mature young adults when 

exposed to a predator for the first time. We focused on the effect of direct removal by 

predators while controlling for potential foraging effects by providing food ‘ad libitum’, 
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allowing us to test the link between survival and brain size driven by direct predation in the 

adult stage. Guppies are livebearing fish that naturally occur in streams where the presence 

and abundance of predators differ, mainly cichlids and killifish (Reznick & Endler 1982), and 

where predation pressure has been shown to correlate with brain anatomical differences

(Kotrschal et al. 2017c). While we expected predation to impact brain anatomy in our 

experiment, predation likely also impacts the life-history traits of surviving animals. For 

example, killifish from high predation populations allocate more energy to reproduction 

than those from populations that lack predators (Walsh & Reznick 2008). Guppies are a 

classic system for investigating how predation pressure impacts life history traits (Reznick & 

Endler 1982), and it is well established that guppies from high predation sites mature at an 

earlier age, have higher reproductive effort per pregnancy, and have more but smaller 

offspring per brood in high compared to low predation populations (Reznick et al. 1990; 

Reznick et al. 1996). Moreover, larger brain sizes may be negatively associated with 

reproductive effort due to the costs associated with maintaining a large brain (Isler & van 

Schaik 2006). However, which aspects of predation underlie differences in reproductive 

output, and how they may relate to brain size investment, are not well resolved.

We predicted that fish surviving predation events would reproduce faster and have 

more offspring, in line with previous life-history evidence in guppies (Reznick & Endler 

1982). We also predicted survivors would have a larger relative brain size, and more 

specifically larger structures related to perception or learning (in particular telencephalon 

and optic tectum), than fish from the control treatment. This is because the telencephalon is

associated with spatial learning and memory in fish (Broglio et al. 2003), which could 

increase the accuracy or speed of decisions. Similarly, elelctrical stimulation in the the optic 

tectum elicits coordinated body movements and motor patterns (Broglio et al. 2003), that 

would allow individuals to have a better response to avoid predators. Both brain regions 

have been shown to be positively associated with predator pressure in the wild (Kotrschal et

al. 2017b).

Methods

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133



We examined the effect of direct predation on relative brain size, as well as on reproductive 

traits (number of offspring and interbrood interval), by comparing fish that were exposed to 

visual and olfactory cues but could not be predated (control treatment) with fish that 

survived exposure to a predator (predation treatment). 

We used laboratory descendants of Trinidadian guppies originated from large high 

predation populations, but that have not been exposed to predators for 16 years. We set up

110 breeding pairs, from which individuals for three replicates were produced, and we 

additionally included 100 fry from the stock population. Fry were kept in 4L tanks until their 

sex could be identified (females by their gravid spot, and males by the presence of a 

modified anal fin called a gonopodium). Mature individuals were kept in single-sex 50L tanks

until the start of the experiment. For each replicate, a total of 200 mature individuals of 

each sex were used; 180 individuals were randomly selected for the predation treatment 

and 32 individuals for the control treatment, and we conducted three replicates per sex. 

The experimental tank was 12011070 cm, filled with 220L of water, with a 

bottom layer of multicoloured limestone gravel (3-8 mm grain size) with which we crafted 

areas of different depths, so that the water depth ranged from 5-17 cm (Fig. 1). The shallow 

area provided a refuge for the guppies where the predator could not hunt. One cichlid 

(Chrenicicla alta) was placed at the deepest area of the tank and provided a clay pipe as a 

shelter (Fig. 1). The cichlids used were acquired through the aquarium trade and fed with 

live guppies prior to the experiment. Note that this is a sister species to C. frenata, the 

guppy’s natural predator. Control fish (16 individuals per tank) were held in two 11L 

transparent tanks which were located at each side of the experimental tank. We installed 

two Eheim filter pumps (60L  h-1 per pump) outside the 11L tanks and directed the water 

flow into each of these 11L tanks to provide olfactory cues for the control fish. Thus, control 

fish had visual exposure to the cichlid, to the behaviour and density of guppies in the full 

tank, and were exposed to the same water. This setup had the potential limitation that 

control fish were in a more constrained area, which may affect their growth and 

development. However, we prioritised standardising the visual and olfactory cues of 

predation which are known to have strong developmental effects on guppies (Torres-

Dowdall et al. 2012; Ghalambor et al. 2015) , including on their relative brain size (Reddon 
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et al. 2018). Thus we effectively controlled for these effects to better focus on selective 

survival. 

Figure 1. Set up of the experimental tank (view from above). Fish from the predation 

treatment were allowed to swim freely in the tank (N=180), whereas control fish were 

placed in 11L transparent tanks (N=16 each, shown in dashed squares) to provide visual 

cues, with a filter pump that allowed water to get into the tank to provide olfactory cues. 

Water flow from the pumps is indicated with arrows. A predatory cichlid was placed at the 

deepest area with a clay pipe for shelter. Different shades of blue represent different 

depths. 

During the first two days of the experiment, we placed a mesh enclosure around the 

cichlid so guppies could escape easily, acclimatise, and learn about the position and 

potential danger of the predator. This mesh was removed on the third day. We visually 

monitored the amount of fish in the tanks daily. When the number of surviving fish seemed 

to have reached our target (15% of the group,  30 individuals), they were captured with a 

net to be counted. If more than the desired number of survivors was counted, they were 

returned to the tank. Due to logistical constraints, the final percentage of survivors varied 

from 13 to 23% between replicates. The number of weeks fish were in the treatment varied 
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from 3 to 7 weeks for males, and from 11 to 14 weeks for females. See Supplementary 

material Section 1 for details. Because one predator showed signs of stress (hiding and very 

little feeding), it was replaced with another cichlid after 28 days. Fish were kept at 24C 

under a 12:12 light:dark cycle and fed flake food daily and freshly hatched brine shrimp at 

least three times per week. 

Reproductive traits

Once a replicate for each sex was completed, a male and a female from the same treatment 

(control or predation) were paired up to produce fry. Individuals were placed in a 4L tank 

with a mesh in the front to allow fry to shelter. Tanks were then checked daily (or every 

other day due to logistical constraints) and the number of fry and date of birth was noted. 

Fish were allowed to breed between 15 and 24 weeks. Note that the variation on time 

allowed to breed depended on the number of fry produced, as a minimum number of 

offspring were needed for another experiment. After breeding, fish were euthanised with an

overdose of benzocaine and fixed with 4% formalin in buffered phosphate buffer saline 

(PBS) solution. 

Body size and brain measurements 

To test for differences in body size between treatments, photographs of fish were taken 

before and after the predation event by placing 30 fish at a time in a 4L tank with 2cm of 

water and photographed from above with a Nikon DSLR camera. Images were then 

measured using Image J software (Abramoff et al. 2004) to obtain individual’s standard 

length (from the tip of the snout to the end of the caudal peduncle). 

To test for differences in relative brain size and relative brain regions, 12 individuals 

from each sex, replicate, and treatment group (N=144) were randomly selected and their 

standard length was measured to the nearest 0.01 mm using a digital calliper. Fish were 

then placed under a dissection microscope (Leica MZFLIII) and brains dissected and stored in

PBS. To quantify brain region volumes, brains were photographed from the dorsal, ventral, 

left, and right side under the dissection microscope with an attached digital camera (Leica 
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DFC 490) and then weighed to the nearest 0.01 mg (VWR SM-425i-C precision scale). The 

length, width, and height of the olfactory bulbs, telencephalon, optic tectum, hypothalamus,

cerebellum, and dorsal medulla were then measured using Image J following (Kotrschal et 

al. 2012). See Supplementary material Section 7.2.1 for details. The volume of each of the 

brain regions was estimated using: V=(L×W ×H )
π
6

. All body size and brain 

measurements were taken blind to treatment. 

Statistical analyses 

We first tested whether the likelihood of producing offspring varied between survivor fish 

from the predation treatment and control fish using a generalised linear model (GLM, 

binomial distribution) using lme4 (Bates et al. 2015), with treatment and replicate as 

predictors. We then evaluated whether the number of offspring differed between 

treatments using a GLM (Poisson distribution) for both the first brood and when including all

broods. We tested the first brood separately as we expected an immediate response after 

fish had been exposed to the predator (or its cues for the control fish). To test whether 

interbrood interval differed between the treatments we ran two linear models with the 

same predictors as above. We ran one for the time to produce the first brood, and another 

one for interbrood interval for fish that had more than one brood. Note that for interbrood 

interval we present models where time between broods was log transformed as this 

improved normality. When we tested the likelihood of producing offspring across all broods,

the number of broods was also added as a predictor, where a maximum of four was 

included as pairs that produced more than four were very unlikely.

To test whether body size before and after the predation event differed between 

treatments we calculated the standardised mean difference for each group (SMD, Hedges & 

Olkin 1985), which is the difference in body size between the time fish started the 

experiment and when they finished the experiment. Note that fish were not individually 

marked, and that sample sizes were the same in the control treatment before and after the 

experiment but different in the predation treatment as at the end of the experiment we 

could only measure survivors. SMDs for each observation with their associated variances 
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were used as dependant variables in a random meta-regression model using the metaphor 

package (Viechtbauer 2010). We included treatment and replicate as fixed effects, and 

observation ID as a random effect. We ran these models separately for males and females as

sex differences in guppies are considerable. 

To test whether female reproductive success was associated with body size, we used

a subsample of 72 females and evaluated whether the number of offspring differed 

between treatments using a GLM (Poisson distribution), with body size (log-transfomed), 

treatment, replicate, and total number of broods as predictors. We note that because 

individuals were not individually marked when fish went into the treatment, the body size 

measurements were obtained when dissecting the females for brain measurements.

To test for differences in relative brain size and relative brain regions between 

treatments, we log-transformed body size (mm), brain weight (mg), and brain region volume

(mm3) before the analyses. These analyses were fitted separately for males and females as 

treatment duration (the time in the predator tank) varied between the sexes (est males = -

51, se= 10.970, F = 21.615, p = 0.009), and the highly pronounced sexual dimorphisms make 

sex comparisons not too meaningful.

To test for differences in relative brain size, we ran a linear model for brain weight, 

with the predictors of treatment, body size, replicate, and all two-way interactions. Log-

body size was fitted as a covariate to account for allometry and focus on treatment 

differences in relative brain size. We checked whether replicate interacted with treatments 

or allometries, but as these were not parameters of biological interest we removed non-

significant interactions from the model (all p>0.2). 

To test for an effect of predation treatment on relative brain region volumes, we 

fitted a multivariate linear model for each sex with the predictors of treatment, brain 

weight, replicate, and all two-way interactions. All interactions in this model were non-

significant and uninformative for our research question and therefore removed (all p>0.9). 

We also ran univariate models for each brain region (details for those models and results 

are available in the Supplementary Material). All statistical analyses were performed in R 
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v.3.6.1 (R Development Core Team 2012) and model terms were tested for significance 

using the ANOVA function in the car package (Fox & Weisberg 2011) specifying Type III Wald

chi-square tests. The model results and code are available in the Supplementary Material  

https://osf.io/42cpt/?view_only=540a73672a594597b51d9345d9fea1a1. 

Results 

Effects on reproductive traits

Surviving fish from the predation treatment were more likely to breed than control fish 

(97% vs 90%, est = 1.288, se= 0.686, 2 = 4.072, p = 0.044), which was consistent across the 

three replicates (Anova replicate: 2 = 0.708, p = 0.702). Across all broods, survivors 

produced more offspring than controls (est predation treatment = 0.123, se= 0.055, 2 = 

5.018, p = 0.025), with a non-significant tendency to vary between replicates (2 = 5.863, p =

0.053). The number of offspring also differed between broods (2 = 36.322, p <0.001), with 

an increasing number of offspring in broods two and three. This tendency of survivors 

producing more fry appeared consistent when considering the first brood only, albeit non-

significant likely due to lower power (est predation treatment = 0.128, se= 0.067, 2 = 3.645,

p = 0.056). The number of offspring differed between replicates (2 = 22.002, p < 0.001). The

time to produce a first brood and the interbrood interval when considering all broods did 

not differ between treatments (2 = 0.158, p = 0.691; 2 = 3.695, p = 0.054, respectively). 

However, these varied between replicates (2 = 14.547, p <0.001; 2 = 23.399, p <0.001, 

respectively). Interbrood interval differed between broods (2 = 308.610, p <0.001), with fish

producing broods more frequently with time. 

Effects on body size

We found sex-dependent effects of predation on body size. In females, body size differed 

between treatments, with surviving females being larger than control females (est = 1.322, 

s.e. = 0.505, Z = 2.619 p = 0.008; Fig. 2a; Suppl. 5.2.2 & 5.2.3). The magnitude of this 
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difference in body size varied between replicates (est replicate 2 = 1.094, s.e. = 0.602, Z = 

1.817, p = 0.069; est replicate 3 = 2.673, s.e. = 0.625, Z = 4.277, p <0.001). 

In males, body size between survivors and controls did not differ (est = 0.303, s.e. = 0.187, Z 

= 1.622, p = 0.105; Fig. 2b; Suppl. 5.2.2 & 5.2.4), nor was it affected by replicate (Suppl. 

5.2.4).

Figure 2. Raw data for mean body size  SD for a) females and b) males for control (open 

symbols) and predation (filled symbols) treatment fish. Three replicates were measured for 

control and predation fish before (T0) and after (T1) the predation event. Each replicate is 

shown with a different symbol. 

Linking body size and reproductice traits

Bigger females had more offspring (body size est= 1.397 s.e. = 0.478, 2 = 8.572, p = 0.003; 

Suppl. 6), although there was no difference in the allometry between the treatments (est= 

0.067, s.e. = 0.058, 2 = 1.343, p = 0.246; Suppl. 6). The total number of offspring produced 
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differered between replicates (2 = 12.418, p = 0.002), but in the same direction across 

replicates. As expected, females having more broods had more offspring (est= 0.523, s.e. = 

0.039, 2 = 247.5556, p <0.001; Suppl. 6). 

Effects on relative brain size 

In females, we found that predation impacted the allometry between brain weight and body

size, with surviving females having relatively larger brains than controls at large body sizes 

and relatively smaller brains at smaller body sizes (treatment  body size est = 0.825, s.e. = 

0.260, F1,66= 19.051, p = 0.002; Fig. 3a). Note that at smaller to intermediate sizes, the 

difference between surviving females and controls was not as large (Fig. 3a). These results 

varied between replicates (F2,66 = 17.378, p <0.001). In males, we found no difference in the 

allometry between brain weight and body size between treatment groups (treatment  

body size est = 0.328, s.e. = 0.327, F1,66= 1.006, p = 0.319; Fig. 3b). Additionally, overall 

relative brain size was similar between treatments (treatment est = - 0.871, s.e. = 0.902, 

F1,66= 0.933, p = 0.338; Suppl. Section7). We observed a body size effect on relative brain 

independent of treatment; larger males had relative bigger brains (body size est = 0.807, s.e.

= 0.239, F1,66= 11.429, p = 0.001; Suppl. Section7). These results varied between replicates 

(F2,66 = 3.672, p = 0.031), but note there was no replicate by treatment interaction. 

Effects on relative brain region size

The multivariate analyses of brain region volumes (olfactory bulb, telencephalon, optic 

tectum, hypothalamus, cerebellum, and dorsal medulla) for females and for males after 

accounting for the allometries associated with brain weight (females: F6,62 = 25.030, p < 

0.001; males: F6,62 = 13.449, p < 0.001) revealed no effect of treatment on relative brain 

region volumes for either sex (females: F6,62 = 0.479, p = 0.821; males: F6,62 = 1.130, p = 

0.356). Univariate models of each brain region supported the lack of differences and are 

available at the Suppl. Section 7. 
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Figure 3. Differences in brain size between the control (grey circles) and predation (purple 

triangles) treatments for a) females and b) males. Model predictions are plotted as the best 

fit line. 

Discussion 

We compared fish that survived a predation event (survivors) to fish that were exposed to 

olfactory and visual predator cues only (controls), and found that survivors were more likely 

to reproduce and had overall more offspring in an equal number of broods than controls. 

Importantly, survivor females were bigger and showed a body-size-dependent difference in 

brain size compared to controls. There were no such differences in males associated with 

the treatments; and in both sexes, relative brain region volumes were similar between the 

two treatment groups. Our study provides experimental evidence on the impacts of direct 

predation on brain size and reproductive output. 
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We assessed brain anatomy in adult guppies exposed to strong predation and in 

control fish where visual and olfactory cues were provided, in an effort to account for 

phenotypic plasticity to test for an effect of selection. Given the nature of the experiment, 

several weeks passed between the predation event and the assessment of body size and 

brain anatomy, and so we cannot fully disentangle the effects of natural selection and 

phenotypic plasticity. Did non-random predation according to female brain and body size 

lead to our results, or did the period of actual predation threat trigger alternative 

developmental pathways? The literature provides evidence for both those mechanisms. For 

instance, life history traits, growth, and brain anatomy have all been shown to respond 

rapidly to natural selection (Roff 1992; Stearns 1992; de Winter & Oxnard 2001), and adult 

guppies show plasticity in all three traits (Reznick 1990; Reznick & Yang 1993; Burns & Rodd 

2008). More importantly, plasticiy and evolution/natural selection may not necessarily work 

in the same direction. Plasticity for instance could lead to lower somatic growth on body 

size, while the natural selection could increase somatic growth. Evidence suggests however, 

that at least for brain size in guppies, both plasticity and natural selection seem to be in the 

same direction (Reddon et al. 2018). Partitioning evolutionary from plastic effects was not 

the aim of this study. Yet, the strength of our approach is that it revealed, independently of 

ecological confounding factors present in the wild, how life history decisions and brain 

anatomy ‘depend’ on an episode of predation. Moreover, this event occurred during 

adulthood, be it via non-random predation or divergent development. In the following we 

offer several non-mutually exclusive explanations for our results, including the apparent lack

of response in male traits.

The body size difference in survivor and control females that we found can be 

explained by size-selective predation if the pike cichlid preferentially preyed on smaller 

females. Although ‘high predation’ guppies are typically smaller in body size than ‘low 

predation’ fish (Reznick et al. 2001; Reddon et al. 2018), this effect is likely due to the strong

selection for maturing early and at smaller size in risky habitats rather than due to size-

selective predation (Reznick 1990; Reznick et al. 1996). In fact, the relationship between 

body size and predation seems complex. For instance, males guppies from high predation 

sites in the wild are smaller than those from low predation sites, but such differences are 

not apparent for female body size (Reddon et al. 2018). Yet, males exposed to predation risk
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cues in the laboratory during development were bigger than those exposed to control cues, 

with female body size showing no response (Reddon et al. 2018). In another study, a 

comparison of a laboratory-born generation of guppies from high and low predation 

localities showed that females from high-predation sites grew faster than those from low-

predation sites (Arendt & Reznick 2005). While Crenicichla cichlids often prefer larger prey

(Johansson et al. 2004), predation across prey sizes by cichlids, rather than selective 

predation on large guppies has also been described (Mattingly & Butler 1994). Moreover, 

other predators present in wild populations target smaller size classes (Rodd & Reznick 

1997). In our case, smaller females may have been easier to catch than larger ones by the 

cichlid, since body size is a key factor influencing swimming parameters (Rubio-Gracia et al. 

2020), and in our study females were virgin and so were not compromised by swimming 

performance (Banet et al. 2016). This hypothesis may also explain why in our study males 

were predated faster than females. Cichlids would have required more (small) males than 

(large) females to reach satiation (as seen by Mattingly & Butler 1994), thus explaining the 

increased consumption rate of males. The lack of body size differences in males between 

the treatments may be explained by the fact that male guppies show almost determinate 

growth with little additional growth after maturation, while females continue to grow 

substantially during adulthood (Constantz 1989; Arendt & Reznick 2005). Due to the large 

number of animals necessary for this experiment, breeding all animals took several months. 

This means that, while all animals were adults, they were between four and seven months 

old. This produced a larger range in female compared to male body size and hence a 

stronger potential to detect size-selective mortality. Alternatively, in a scenario relying on 

phenotypic plasticity, survivor females may have simply grown faster during the time in the 

predation treatment tank. This could be due to the fact that controls and survivors, although

designed to only differ in the potential for physical contact between guppies and pike 

cichlid, also differed in the space they could utilize. Controls were restricted to smaller tanks

within the predator tanks whereas survivors could use the larger tank. As growth in fish can 

depend on tank size (Espmark et al. 2017), this may have contributed to our results. While 

the lacking body size difference in males may indicate such a secenario is unlikely, the near-

determinate male growth explained above may render this counter-argument invalid. It is 

hence evident that dedicated growth experiments in the set up used here, but without a 
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predator, are needed to conclusively clarify the mechanism by which females that survive 

predation are larger than controls.

The brains of female guppies were affected by the predation treatment. This 

resembles results from a previous study where a large-scale survival experiment under 

semi-natural conditions showed that relative brain size determined survival in females, but 

not in males (Kotrschal et al. 2015). However, the results we report here deviate from this 

previous study and from our predictions as we did not find a clear effect of predation on 

relative brain size. Instead, predation changed the slope of the regression between female 

brain and body size, which resulted in relatively smaller brains in small survivors but 

relatively larger brains in large survivors, compared to controls. This was unexpected but 

interesting, as it suggests that brain-size derived cognitive advantages (e.g. Kotrschal et al. 

2013; Benson-Amram et al. 2016; Buechel et al. 2016) may be size-dependent under 

predation pressure. Relatively larger brains might indeed provide cognitive advantages if 

indeed a relatively larger brain helps to avoid getting eaten (Moller & Erritzoe 2014), but 

may also be costly to maintain. Thus, differential selection of predators (e.g. Johansson et 

al. 2004), or different escape strategies used by small and large fish may be causing the 

allometric effects we found. Such body size-dependent effect of predation on brain size has 

been shown in male killifish when comparing high predation sites versus sites with no 

predators (Dunlap et al. 2019), but seems absent in other studies relating predation 

pressure to brain size (Walsh et al. 2016; Reddon et al. 2018; Mitchell et al. 2020). This may 

be due to a mix of differently-sized predators in the wild, either across predatory species or 

from changes with age/size of gape-size limited predators like Crenicichla.

Variation in specific brain regions may play a fundamental role in how animals 

respond to their environment, and indeed it has been shown that changes in specific brain 

regions can be associated with predation risk (Joyce & Brown 2020). Despite predicting 

differences between treatments on specific brain regions such as the telencephalon and 

optic tectum as they are associated with learning and motor functions (Broglio et al. 2003), 

we found no such effect. There is indeed contradictory evidence on the link between 

predation and brain size (Gonda et al. 2009; Kotrschal et al. 2015; Walsh et al. 2016; Beston 

et al. 2017). Indirect ecological consequences such as density, or food availability were not 
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expected to influence our results, and these have likely contributed to both negative and 

positive results in previous studies, highlighting the multiple mechanisms by which 

predation may shape the brain and its regions’ size. 

We found a higher likelihood to reproduce and higher reproductive output of 

surviving females compared to controls. Our results support, at least partially, an increased 

reproductive effort under high predation pressure. This may be a direct consequence of the 

body size differences in females of those groups, as body size is a strong predictor of 

reproductive output in fish (Lim et al. 2014). However, high mortality rates in guppy 

localities predated by the pike cichlid have been associated with a higher investment in 

reproduction (Reznick 1990; Reznick et al. 1996). It is possible that we did not find more 

differences in reproductive effort between treatments because the risk of predation was no 

longer present when fish were allowed to breed. This is because the costs of behaviours 

related to acquiring a mate, conspicuous displays, or the costs of gravid females having 

lower agility (Magnhagen 1991) were removed when fish were moved to the breeding 

tanks. Interestingly, larger surviving females had bigger brains, and although we cannot 

disentangle fully male and female contribution to reproductive effort, it seems like large 

females with larger brains do not exhibit a larger brain investment at the cost of 

reproductive effort. 

Predation may lead to differences in brain size across species (Moller & Erritzoe 

2014), and even to a large degree of variation among similar populations on the same 

species (Burns & Rodd 2008; Walsh et al. 2016; Kotrschal et al. 2017a). Here we show that 

predation impacts brain size likely through direct lethal effects, and uncover a sex- and 

body-size dependent effect. Our results highlight the need to explore the complex effect of 

predation on brain evolution further, and ultimately incorporate cognitive assays to 

understand whether individuals evolve larger brains and better learning capacities to avoid 

predators. 
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