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ABSTRACT 13 

1. Environmental conditions during early-life development can have lasting effects on 14 

individual quality and fitness. Telomere length (TL) may correlate with early-life 15 

conditions and may be an important mediator or biomarker of individual quality or 16 

pace-of-life, as periods of increased energy demands can increase telomere attrition due 17 

to oxidative stress. Thus, knowledge of the mechanisms that generate variation in TL, 18 

and the relation between TL and fitness, is important in understanding the role of 19 

telomeres in ecology and life-history evolution.  20 
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2. Here, we investigate how environmental conditions and morphological traits are 21 

associated with early-life TL and if TL predicts natal dispersal probability or 22 

components of fitness in two populations of wild house sparrows (Passer domesticus).  23 

3. We measured morphological traits and blood TL in 2746 nestlings from 20 cohorts 24 

(1994-2013) and retrieved data on weather conditions. We monitored population 25 

fluctuations, and individual survival and reproductive output using field observations 26 

and genetic pedigrees. We then used generalized linear mixed-effects models to test 27 

which factors affected TL in early-life, and if TL predicted dispersal propensity, or was 28 

associated with recruitment probability, mortality risk, or reproductive success. 29 

4. We found a negative effect of population density on TL, but only in one of the 30 

populations. There was a curvilinear association between TL and the maximum daily 31 

North Atlantic Oscillation (NAO) index during incubation, suggesting that there are 32 

optimal weather conditions that result in the longest TL. Dispersers tended to have 33 

shorter telomeres than non-dispersers. TL did not predict survival, but we found a 34 

tendency for individuals with short telomeres to have higher annual reproductive 35 

success. 36 

5. Our study showed how early-life TL is shaped by effects of growth, weather conditions 37 

and population density, supporting that environmental stressors negatively affect TL in 38 

wild populations. In addition, TL may be a mediator or biomarker of individual pace-39 

of-life, with higher dispersal rates and annual reproduction tending to be associated 40 

with shorter early-life TL in this study. However, clear associations between early-life 41 

TL and individual fitness seems difficult to establish and may differ between different 42 

populations in the wild. 43 
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INTRODUCTION 44 

Telomeres are short repetitive nucleotide sequences capping the ends of linear 45 

chromosomes (Blackburn & Szostak, 1984). Recent studies have shown that individual 46 

variation in telomere dynamics might play an important role shaping the life-history of many 47 

species, including wild birds (Eastwood et al., 2019; Spurgin et al., 2018; Vedder et al., 2021), 48 

reptiles (Olsson et al., 2018a), mammals (Foley et al., 2020; van Lieshout et al., 2019) and fish 49 

(McLennan et al., 2016). Telomeres shorten during growth due to cell divisions and oxidative 50 

damage (Jennings et al., 1999; von Zglinicki, 2002). Individual differences in telomere length 51 

(TL) are established early in life (Entringer et al., 2018; Martens et al., 2021) and may reflect 52 

cumulative effects of physiological stress incurred during early life (Chatelain et al., 2020; 53 

Nettle et al., 2017; Ridout et al., 2018).  54 

From an eco-evolutionary perspective, individual telomere dynamics are interesting 55 

because they have been shown to be associated with survival and reproductive success in some 56 

free-living animal populations (Chatelain et al., 2020; Fairlie et al., 2016; Froy et al., 2021; 57 

Haussmann et al., 2005; Heidinger et al., 2021; Olsson et al., 2018b; Sudyka, 2019). 58 

Furthermore, TL has been shown to predict individual health, quality, or lifespan within several 59 

species (Asghar et al., 2015; Eastwood et al., 2019; Fairlie et al., 2016; Heidinger et al., 2012; 60 

van Lieshout et al., 2019; Wilbourn et al., 2018). Long telomeres are expected to infer better 61 

immune competency (Blackburn et al., 2015), resistance to oxidative damage and metabolic 62 

aging (Muñoz-Lorente et al., 2019) and hence higher survival probability (Wilbourn et al., 63 

2018). Covariation between TL dynamics and fitness therefore suggests that TL could act as 64 

mediator of the life-history trade-offs between growth, survival, and reproduction (Heidinger 65 

et al., 2021; Monaghan, 2014; Monaghan & Haussmann, 2006). Alternatively, TL may be a 66 

transient, environmentally pliant trait reflecting experienced stress (i.e. a biomarker, Bateson 67 

& Poirier, 2019; Boonekamp et al., 2013), but with few direct fitness consequences.  68 
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Whether telomere dynamics underpin constraints in individual variation in life-history 69 

strategies remains debated (Monaghan, 2010; Vedder et al., 2017). Giraudeau et al. (2019a) 70 

speculated that TL could act as an important physiological mediator of the individual variation 71 

in suites of life-history traits (pace-of-life syndromes, e.g. Reale et al., 2010) within species. It 72 

has also been suggested that telomere dynamics may underlie behavioral patterns or individual 73 

animal personalities (Adriaenssens et al., 2016; Bateson & Nettle, 2018; Espigares et al., 2021). 74 

However, studies have yet to identify the mechanisms underlying TL dynamics in natural 75 

populations and the potential of using TL as a biomarker of physiological costs of individual 76 

experiences, or somatic redundancy, in the wild (Bateson & Poirier, 2019; Boonekamp et al., 77 

2013; Pepke et al., 2021c). To understand the ecological and evolutionary significance of TL 78 

it is therefore important to identify causes and consequences of individual variation in TL. 79 

Several environmental stressors may induce oxidative stress-mediated effects on TL, in 80 

particular harsh abiotic conditions, poor nutrition, or pathogen infection has been identified 81 

(Chatelain et al., 2020; Pepper et al., 2018). Harsh weather conditions are expected to 82 

negatively affect TL through an increased stress response elevating glucocorticoid hormone 83 

concentrations (Lemaître et al., 2021; Quirici et al., 2016) and metabolic rate resulting in 84 

increased production of reactive oxygen species (ROS, e.g. Casagrande et al., 2020; Metcalfe 85 

& Olsson, 2021). Weather conditions may thus have direct effects on TL, e.g. through 86 

thermoregulation and metabolic activity (Angelier et al., 2018), or indirect effects, e.g. changes 87 

in food availability (Criscuolo et al., 2020; Spurgin et al., 2018) or pathogen prevalence 88 

(Asghar et al., 2015; Giraudeau et al., 2019b). Depending on the species-specific optima and 89 

the range of weather conditions experienced there could be linear or non-linear associations 90 

between environmental conditions and TL (Axelsson et al., 2020).  91 

Local demography such as population density may influence the competitive regimes 92 

experienced by parents during breeding (Dhondt, 2010). In populations of house sparrows 93 
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(Passer domesticus), density regulation affected recruit production, which generated variation 94 

in pace of life-history strategies across populations (Araya-Ajoy et al., 2021). However, 95 

physiological mechanisms mediating such demographic and evolutionary processes remain 96 

largely unknown (e.g. Edwards et al., 2021). Changes in TL dynamics may underpin 97 

physiological stress responses to changes in demography (Bergman et al., 2019; Gangoso et 98 

al., 2021). For instance, Spurgin et al. (2018) found weak evidence for a negative effect of 99 

population density on early-life TL and telomere attrition in an island population of Seychelles 100 

warblers (Acrocephalus sechellensis). They also found that TL was positively associated with 101 

abundance of insects, the main food resource for the warblers, indicating that increased food 102 

availability may have masked negative effects of increased density on TL (Brown et al., 2021). 103 

Short telomeres may predispose individuals to opt for a faster pace-of-life (Giraudeau 104 

et al., 2019a), which could involve an increased probability of dispersal (Cote et al., 2010; 105 

Dingemanse et al., 2020). Alternatively, TL may act as a cue that tracks features of the 106 

surroundings, such as changes in the environment (e.g. weather conditions and food 107 

availability) or demographic changes (e.g. population density) that could influence dispersal. 108 

Thus, individuals with long telomeres may be less likely to disperse, if long telomeres are an 109 

internal state indicator of an overall benign habitat (mild weather conditions, abundant food 110 

resources, or low competition, Wilbourn et al., 2017), which may not induce emigration (Lin 111 

& Batzli, 2001). However, if dispersal is condition-dependent (Ims & Hjermann, 2001), and 112 

the telomere–survival relationship is causal (Wilbourn et al., 2018) even in early life 113 

(Monaghan & Ozanne, 2018), short telomeres may have physiological consequences that 114 

prevent dispersal, rendering individuals with long telomeres more likely to become successful 115 

dispersers. However, little is known about the physiological mechanisms that could mediate 116 

suites of traits associated with dispersal (Clobert et al., 2012). Investigating spatiotemporal 117 

variation in traits such as TL that may be involved in producing individual variation in life-118 
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history traits therefore seems to be fundamental to a proper understanding of population 119 

ecology and life-history evolution. 120 

In this study, we investigate causes and consequences of spatiotemporal variation in 121 

early-life TL across two decades in two populations of wild house sparrows located within a 122 

large island metapopulation study system (see Fig. S1.1 in Appendix S1 in the Supporting 123 

Information). The two populations in our study occupy contrasting habitats: One farm-living 124 

population with access to shelter and food throughout the year, and one garden-living 125 

population that may be more exposed to weather conditions (Pärn et al., 2009). We have 126 

previously showed that there is a low heritability of early-life TL (h2=0.04) in this 127 

metapopulation, and that individual variation in TL is mainly driven by environmental (among 128 

year) variance resulting in consistent cohort effects in early-life TL (Pepke et al., 2021a). This 129 

long-term study allows us to disentangle the effects of weather conditions during pre- and post-130 

natal stages on variation in TL. First, we investigate functional relationships between early-life 131 

TL, fledgling body size and condition, local population density fluctuations, weather variables 132 

and habitat type. Second, we test if early-life TL is associated with natal dispersal within the 133 

metapopulation. We hypothesize that short TL may be associated with exploratory behavior 134 

(Adriaenssens et al., 2016) that increases the chance of dispersal (Dingemanse et al., 2003). 135 

Finally, we quantify consequences on recruitment probability, mortality risk, and reproductive 136 

success of variation in early-life TL and whether these differ between habitat types.  137 

 138 

MATERIALS AND METHODS 139 

Study system and field data collection 140 

We monitored two insular house sparrow populations; one on Hestmannøy (66°33’N, 141 

12°50‘E, 12.9 km2) in the years 1994-2020, and one on Træna (i.e. Husøy island, 66°30’N, 142 

12°05‘E, 1.5  km2) from 2004-2020, both located in an archipelago in northern Norway (Fig. 143 
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S1.1). These islands are characterized by heathland, mountains, and sparse forest. On 144 

Hestmannøy (“farm island”), close to the mainland, cultivated grassland (silage production and 145 

grazing) dominates the landscape, and the sparrows live closely associated with humans on 146 

dairy farms, where they have access to food (grain) and shelter (barns) all year. Most nests are 147 

found in cavities inside sheltered or heated barns. In contrast, on Træna (“non-farm island”), 148 

ca. 34 km further out into the sea (Fig. S1.1), there are no farms, but a small village largely 149 

consisting of detached houses. Here, the sparrows live in gardens and urban spaces, and nest 150 

in artificial nest boxes on the outside walls of the houses. Nests were visited at least every 9th 151 

day during the breeding season (May-August) to record hatch day. Fledglings were ringed with 152 

a unique color combination at around 10 days old (5-14 days) and tarsometatarsus (tarsus) was 153 

measured using calipers to nearest 0.01 mm. Body mass was measured using a Pesola spring 154 

balance to nearest 0.1 g. Nestling body condition was then calculated as the residuals of a 155 

regression of log10-transformed mass against log10-transformed tarsus length (Schulte-156 

Hostedde et al., 2005). Because tarsus length increases with nestling age, we used the residuals 157 

from a regression of tarsus length on age and age squared as a measure of age-corrected (age-158 

standardized) tarsus length (Appendix S1). Birds were observed or captured using mist nets 159 

during summer and autumn (May-October). Blood samples (25 μL) were collected by 160 

venipuncture and stored in 96% ethanol at room temperature in the field and at -20°C in the 161 

laboratory until DNA extraction. 162 

Molecular methods 163 

Molecular sexing and microsatellite pedigree construction for this study was carried out 164 

as described in Jensen et al. (2003) and Rønning et al. (2016) and briefly summarized in 165 

Appendix S1. Genetic pedigrees were reconstructed for individuals born or captured from 166 

1993-2013. The sampling of nestlings included 1314 males, 1348 females, and 84 individuals 167 

of unknown sex (total n=2746). Relative TLs of DNA extracted from whole blood (mainly 168 
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erythrocytes) were measured on 70-90 % of the nestlings (5-14 days old) ringed each season 169 

on Hestmannøy in the years 1994-2013 (n=2110, 20 cohorts) and Træna from 2004-2013 170 

(n=636, 10 cohorts, Table S1.1 in Appendix S1). Relative TLs (T/S ratios) were measured 171 

using the qPCR method as described in Pepke et al. (2021a; 2021b) and validated by Ringsby 172 

et al. (2015). Briefly, telomeric DNA was amplified using real-time qPCR and the telomere 173 

repeat copy number was estimated relative to an invariant control gene (GAPDH, Atema et al., 174 

2013) and a reference sample (Appendix S1). Data was analyzed using the qBASE software 175 

(Hellemans et al., 2007) controlling for inter-run variation. Plate efficiencies were all within 176 

100±10% (see Pepke et al., 2021a).  177 

Factors affecting early-life telomere length 178 

 Previous studies have shown TL to be affected by body size or growth (Monaghan & 179 

Ozanne, 2018; Pepke et al., 2021b), age (Remot et al., 2021; Salomons et al., 2009), body 180 

condition (Barrett et al., 2013; Rollings et al., 2017b), hatch day (Beaulieu et al., 2017), and 181 

habitat quality (Angelier et al., 2013; McLennan et al., 2021; Spurgin et al., 2018; Watson et 182 

al., 2015; Wilbourn et al., 2017), or that there are sex-differences in TL (Barrett & Richardson, 183 

2011; López-Arrabé et al., 2018). To examine factors that influence individual variation in TL 184 

in house sparrow nestlings (response variable, n=2456 excluding individuals with missing 185 

morphological measurements [n=224] and/or missing sex [n=84]), we constructed 27 candidate 186 

linear mixed effects models (LMMs) with a Gaussian error distribution fitted with maximum 187 

likelihood (ML) using the package lme4 (Bates et al., 2015) in R v. 3.6.3 (R Core Team, 2020). 188 

The models were compared using Akaike’s information criterion (Akaike, 1973) corrected for 189 

small sample sizes (AICc, Hurvich & Tsai, 1989) to identify the models best underpinned by 190 

the data. Sex and island identity (Hestmannøy or Træna) were included as fixed effects in all 191 

models, including combinations of age (number of days since hatching), age-corrected tarsus 192 

length, body condition, hatch day (mean centered ordinal day of the year), population density 193 
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(spring pre-breeding census in the hatch year mean centered within populations), and an 194 

interaction term between population density and island identity. TL was log10-transformed for 195 

normalization of residuals. To account for the possible non-independence and temporal 196 

heterogeneity in broods and cohorts, random intercepts for brood identity (n=947, nested under 197 

hatch year) and hatch year (cohort identity, n=20) were included in all models. Models were 198 

validated visually using diagnostic plots and all model parameters are from models refitted 199 

with restricted maximum likelihood (REML).  200 

Effects of weather on early-life telomere length 201 

We compiled data on daily mean temperature (K), total daily amount of precipitation 202 

(mm) and mean daily atmospheric pressure (hPa) from the nearest weather station at the island 203 

of Myken (Fig. S1.1, around 30 km from both populations) from The Norwegian 204 

Meteorological Institute (2018). The daily North Atlantic Oscillation (NAO) index was 205 

retrieved from the National Oceanic and Atmospheric Administration (2019). The effects of 206 

weather conditions on TL were analyzed using a sliding window approach (van de Pol et al., 207 

2016) to determine the best weather predictors within a range of time frames leading up to the 208 

TL measurement. TL was measured in nestlings at around 10 days after hatching, which had 209 

been preceded by a continuous incubation time of up to 14 days that often begins after laying 210 

of the penultimate egg (Anderson, 2006). The approximate time from conception to TL 211 

measurement is therefore around 30 days, which was used as the total relative timeframe (days 212 

before individual TL measurement date) for relevant weather factors affecting TL. We used 213 

the R package climwin and its dependencies (Bailey & van de Pol, 2016) to identify the optimal 214 

time frame during which TL is most sensitive to weather effect. This approach also allowed 215 

identifying the best descriptive weather metric (mean, maximum, minimum or sum across the 216 

time frame to reflect cumulative environmental effects on TL) and type of relationship (linear 217 

or quadratic) between TL and the weather variable (temperature, precipitation, pressure, and 218 
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the NAO index). Analyses using minimum daily precipitation were not included since this 219 

variable would too often be zero within multiday timeframes, which prevented model 220 

convergence. All possible timeframes for each weather metric and relationship were then 221 

compared using AICc (van de Pol et al., 2016). As the baseline model (without climate effects) 222 

we used the best model of non-weather factors affecting early-life TL (n=2462) identified from 223 

the analyses described above. Weather variables are correlated across the study system 224 

(Ringsby et al., 2002), but the microclimate may differ between the two structurally different 225 

habitats (Hestmannøy and Træna). We therefore also tested models including an interaction 226 

term between island identity and the respective weather variable. In total, 60 models were 227 

compared using AICc (Table S2.1 in Appendix S2). Hatch year and nested brood identity were 228 

included as random intercepts in all models. We tested for over-fitting by randomizing data 229 

and re-running the analyses 100 times using the randwin and pvalue functions provided in 230 

climwin (Bailey & van de Pol, 2016).  231 

A positive summer NAO is often associated with warmer and drier weather in 232 

northwestern Europe (Bladé et al., 2012; Folland et al., 2009). To understand the relationship 233 

between the NAO index and local weather conditions (Stenseth et al., 2003), we tested for 234 

intercorrelation among all four weather variables (Table S2.2) within the total time frame 235 

actually included in the analyses (effectively between April 4th, corresponding to 30 days 236 

before the earliest nestling sampling date until the last sampling date of August 19th, from 1994-237 

2013). This showed that a high daily NAO index primarily reflects a high daily amount of 238 

precipitation (Pearson’s r=0.13, p<0.0001) during spring and summer in this area of the 239 

Norwegian coast. However, high daily amounts of precipitation were also negatively correlated 240 

with mean daily temperature and atmospheric pressure (Table S2.2).  241 

Does early-life telomere length predict natal dispersal? 242 
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House sparrows generally show strong site fidelity and dispersal occurs mainly among 243 

juveniles in the autumn (i.e. natal dispersal, Altwegg et al., 2000) and over short distances 244 

(Anderson, 2006; Tufto et al., 2005). All islands surrounding Hestmannøy and Træna and the 245 

inhabited areas on the mainland shores (Fig. S1.1) were visited regularly to identify dispersers 246 

(Ranke et al., 2021; Saatoglu et al., 2021). To reduce effects of any selective disappearance of 247 

certain phenotypes before registration of dispersal, only individuals that survived until the 248 

following spring (i.e. recruits), were included in the analyses. A total of 41 individuals (18 [6 249 

males, 12 females] out of 342 from Hestmannøy and 23 [14 males, 9 females] out of 113 from 250 

Træna) were observed on islands different from their natal islands within their first year of life 251 

(out of n=455 recruits). We used logistic regression with a binomial error distribution (using 252 

the ‘bobyqa’ optimizer throughout to facilitate model convergence, Bates et al., 2014) to test if 253 

early-life TL predicts the probability of successful natal dispersal. Within this house sparrow 254 

metapopulation, dispersal is female-biased and dispersal rates depend on habitat type (Ranke 255 

et al., 2021; Saatoglu et al., 2021). We therefore included sex and island identity as covariates 256 

in explaining dispersal propensity in all models. Hatch year was included as random intercept. 257 

We also included two- and three-way interactions between TL, sex, and island identity to test 258 

for differing relationships between TL and dispersal across sexes and island types. With this 259 

approach, a total of nine candidate models were compared using AICc. 260 

Fitness consequences of variation in early-life telomere length  261 

We used three approaches to investigate the consequences of variation in early-life TL 262 

on fitness (survival and reproduction). First, we tested if TL predicts whether an individual 263 

survives its first year (n=445, excluding individuals with missing tarsus length measurements) 264 

or not (n=2017), i.e. recruitment probability, using a logistic regression with a binomial error 265 

distribution and a logit link function (lme4 package). Explanatory variables were TL, tarsus 266 

length, non-linear effects of TL (TL2) and tarsus length (tarsus length2), and interaction terms 267 



12 
 

between island identity and tarsus length and TL, respectively. Sex and island identity were 268 

included as fixed effects, and year and nested brood identity as random intercepts, in all models. 269 

A total of 14 candidate models were constructed. 270 

Second, we used Cox proportional hazards regression to test whether TL predicted 271 

mortality risk over the lifespan using the survival package (Therneau, 2015). The last 272 

observation of an individual was used as an estimate of minimum lifespan (number of days 273 

since hatching). Birds were assumed to have died if they had not been observed during two 274 

subsequent field seasons. Only two individuals (out of n=2462) may still have been alive when 275 

observations ended (autumn 2020) and were therefore right-censored (Cox, 1972). We 276 

constructed the same 14 candidate models as in the first-year survival analyses above. Brood 277 

identity was included as a random effect (cluster) and model assumptions were tested using the 278 

Schoenfeld test. To meet model assumptions, data was stratified by island identity, allowing 279 

for different hazard functions within each population (strata). The simPH package was used to 280 

simulate and plot the effects of the predictor variables on the hazard ratios (Gandrud, 2015). 281 

Finally, we used the Kaplan-Meier method to construct cumulative survival curves (survminer 282 

package, Kassambara et al., 2020). 283 

Third, we tested if TL predicts annual reproductive success (ARS; the number of 284 

recruits produced per year by an individual) among individuals that survived their first year 285 

and were thus able to breed (starting from year 1995). Genetic parenthood data was not 286 

available after 2013, so subsequent years were excluded from the analysis. We fitted 287 

generalized LMMs with a Poisson distribution using the package glmmTMB (Brooks et al., 288 

2017) to test whether TL predicts ARS (n=709 annual reproductive events of n=396 289 

individuals). Tarsus length and non-linear effects of TL and tarsus length were included in 14 290 

candidate models (same as described above). All models included sex and island identity as 291 

fixed factors, and individual identity (n=396) and year (n=19) as random intercepts. Models 292 
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were validated using the DHARMa package (Hartig, 2020). The 14 candidate models within 293 

each of the three approaches above were compared using AICc. 294 

 295 

RESULTS 296 

Factors affecting early-life telomere length 297 

There was considerable variation in TL among cohorts with no obvious directional 298 

trend (Fig. S2.1). The best model of variation in TL included a negative effect of tarsus length 299 

(βtarsus=-0.0038±0.0016, CI=[-0.0079, -0.0006], Tables 1 and 2) indicating that larger 300 

individuals had shorter telomeres. The model also included evidence for an interaction term 301 

between population density and island identity (βisland*density=0.0008±0.0004, CI=[0.4E-4, 302 

0.0016], βdensity=-0.0008±0.0004, CI=[-0.0015, -0.5E-4]), indicating that individuals born in 303 

years with higher population densities had shorter telomeres, but only in the Træna (non-farm) 304 

population (Fig. 1a). Thus, there was apparently no evidence for an effect of variation in 305 

population density on TL in the Hestmannøy population (Fig. 1b). The second-best model 306 

(∆AICc=0.4, Table 1) did not include the effects of population density. The third and fourth 307 

best models included very uncertain effects of hatch day and age, respectively (Table 1). 308 

Effects of weather on early-life telomere length 309 

 The best model (ΔAICc=-13.49 compared to a model without weather effects, Table 310 

S2.1 and Fig. S2.2) identified from the sliding window analysis of weather variables included 311 

a negative quadratic effect of the maximum NAO index during 26 to 12 days before TL 312 

sampling (Table 3 and Fig. 1c), which corresponds approximately to the timing of the 313 

incubation phase. This suggests that there is a set of (optimal) environmental conditions, 314 

reflected by intermediate values of the maximum NAO index during incubation, that results in 315 

the longest telomeres in fledglings. The model output was unlikely to be a result of overfitting 316 

(p=0.001, see Fig. S2.2). The second-best model, which differed by ΔAICc=-12.82, included 317 
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only a linear negative effect of maximum NAO during approximately the same time window 318 

(30 to 16 days before sampling, Table S2.1).  319 

Does early-life telomere length predict natal dispersal? 320 

 Four of the six models with ΔAICc<2 describing variation in successful natal dispersal 321 

probability included a tendency for a negative association between TL and dispersal probability 322 

(model ranked second with ΔAICc=0.0; βTL=-0.795±0.630, CI=[-2.248, 0.268],Table S2.3 and 323 

Fig. 3). The two highest ranked models (both ΔAICc=0.0) included an interaction between 324 

island and sex, indicating a tendency for males from Træna to be more likely to disperse than 325 

males from Hestmannøy (βisland (Hestmannøy)*sex (female)=1.196±0.713, CI=[-0.189, 2.659], βisland 326 

(Hestmannøy)=-2.434±0.558, CI=[-3.526, -1.341], βsex (female)=-0.496±0.497, CI [-1.512, 0.472]). 327 

The model ranked third (ΔAICc=0.6) included a three-way interaction term between TL, island 328 

identity, and sex, suggesting that the negative association (tendency) between dispersal 329 

probability and TL was strongest in males from Hestmannøy (βTL*island (Hestmannøy)*sex (male)=-330 

3.049±1.765, CI=[-9.988, -0.862], see full model in Table S2.4 and the effect in Fig. 3).  331 

Fitness consequences of early-life telomere length  332 

 There was no evidence of an effect of TL on first-year survival (Table S2.5 and Fig. 333 

3b). There was however evidence for a positive association between tarsus length and first-334 

year survival probability in all top models with ΔAICc<2 (model ranked 1: βtarsus=0.040±0.009, 335 

CI=[0.057, 0.023], Table S2.5). The best model also included a weak curvilinear effect of tarsus 336 

length (βtarsus^2=-0.042±0.029, CI=[-0.101, 0.11]), indicating that survival probability increased 337 

less or even decreased with tarsus length in the largest individuals (Fig. 3a). 338 

 There was no evidence of an effect of TL on mortality risk (Table S2.6 and Fig. 4b). 339 

The Cox hazard regression analyses showed however that there was a strong negative 340 

association between tarsus length and mortality risk (model ranked 1: βtarsus=-0.120±0.017, 341 

CI=[-0.157, -0.083], Table S2.6). The best model also included a weak curvilinear effect of 342 
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tarsus length (βtarsus^2=0.011±0.006, CI=[-0.002, 0.024]), indicating that the decrease in the risk 343 

of mortality with increased tarsus length reached a plateau at large values (Fig. 4a).  344 

We found weak evidence of an inverse relationship between TL and ARS (model 345 

ranked 1: βTL=-0.446±0.275, CI=[-0.985, 0.092], n=709, Table S2.7 and Fig. 5b), indicating 346 

that individuals with long TL had lower ARS than individuals with short TL. The second 347 

ranked model (∆AICc=0.1) additionally included a weak positive effect of tarsus length on 348 

ARS (βtarsus=0.106±0.075, CI=[-0.042, 0.253], Fig. 5a). It was thus difficult to separate models 349 

including a positive effect of tarsus length and/or a negative effect of TL on ARS (Table S2.7). 350 

 351 

DISCUSSION 352 

In this study, we have shown how individual variation in early-life telomere length is 353 

related to structural growth, weather conditions during incubation, and population density in a 354 

long-term study of two island populations of wild house sparrows. This suggests a mechanistic 355 

link between environmental change and physiological change mediated by TL dynamics in 356 

early-life (Chatelain et al., 2020; Giraudeau et al., 2019a). TL has been shown to be associated 357 

with important components of fitness in some wild species (Eastwood et al., 2019; Froy et al., 358 

2021; van Lieshout et al., 2019; Wilbourn et al., 2018). However, we found little evidence that 359 

variation in TL in early life had any fitness consequences in terms of survival, but there was a 360 

tendency for a negative effect of TL on reproductive success (Tables S2.4-2.6). Instead, fitness 361 

was mainly determined by body size (Ringsby et al., 1998) with larger individuals having 362 

higher short-term survival (Fig. 3a), lower long-term mortality (Fig. 4a), and somewhat higher 363 

reproductive success (Fig. 5a). Larger individuals had shorter telomeres (Table 2), as 364 

documented previously in several species (Monaghan & Ozanne, 2018), including house 365 
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sparrows (Pepke et al., 2021a; Pepke et al., 2021b; Ringsby et al., 2015), but little of the residual 366 

variation in fitness appeared to be explained by TL. 367 

Recent studies have established early-life environmental conditions as important 368 

drivers of TL dynamics in free-living organisms (Angelier et al., 2018; Chatelain et al., 2020; 369 

Foley et al., 2020; Herborn et al., 2014; Nettle et al., 2015; Spurgin et al., 2018). 370 

Thermoregulatory and nutritional stress can increase production of ROS resulting in stress-371 

induced changes in TL (Friesen et al., 2021; Reichert & Stier, 2017). Effects of weather 372 

conditions on telomere dynamics is known from other wild animal populations, including dark‐373 

eyed juncos (Junco hyemalis), in which females experienced greater telomere loss during 374 

breeding at colder temperatures, probably due to cold stress (Graham et al., 2019). In black‐375 

tailed gulls (Larus crassirostris), telomeres were even elongated during an El Niño year, in 376 

which weather was generally milder and sea surface temperatures lower, resulting in improved 377 

foraging conditions (Mizutani et al., 2013). Similarly, the change in TL in greater-eared bats 378 

(Myotis myotis, Foley et al., 2020) and early-life TL in European badgers (Meles meles, van 379 

Lieshout et al., 2021) was positively associated with generally good weather conditions (higher 380 

temperatures and favorable rainfall). Furthermore, in house sparrow nestlings, TL was 381 

positively associated with the NAO index averaged across approximately two weeks before 382 

and after hatching, which locally reflected higher temperatures, lower rainfall, and lower wind 383 

speed (Pepke et al., 2021b). Bird embryos are effectively ectothermic during incubation, 384 

justifying a comparison with studies on ectothermic species, in which temperature may be more 385 

directly affecting ROS production and cell division through increased metabolic activity and 386 

growth (Friesen et al., 2021; Olsson et al., 2018a). Accordingly, in brown trout (Salmo trutta, 387 

Debes et al., 2016) and Siberian sturgeon (Acipenser baerii, Simide et al., 2016), higher 388 

temperatures led to shorter telomeres, possibly caused by heat stress, but also increased growth. 389 

Similarly, TL decreased with higher temperatures experienced by common lizards (Dupoué et 390 
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al., 2017), desert toad-headed agamas (Phrynocephalus przewalskii, Zhang et al., 2018), and 391 

dairy cattle (Bos taurus, Seeker et al., 2021), but not in Gouldian finches (Chloebia gouldiae, 392 

Fragueira et al., 2019). However, TL increased with higher temperature in Eastern 393 

mosquitofish (Gambusia holbrooki, Rollings et al., 2014), spotted snow skinks (Niveoscincus 394 

ocellatus, Fitzpatrick et al., 2019), and dark-eyed juncos (Graham et al., 2019) and there was 395 

no effect of temperature manipulation on TL in Atlantic salmon (Salmo salar, McLennan et 396 

al., 2018) or three‐spined sticklebacks (Gasterosteus aculeatus, Kim et al., 2019). Axelsson et 397 

al. (2020) documented a thermal optimum associated with long telomers in sand lizards 398 

(Lacerta agilis). These idiosyncratic patterns demonstrate how environmental factors and 399 

degree of harshness may trigger a physiological stress response (Chatelain et al., 2020) with 400 

different consequences on TL dynamics depending on the deviation from species-specific 401 

environmental optima (Axelsson et al., 2020; McLennan et al., 2016). In our study, we 402 

observed a similar curvilinear association between fledgling TL and the maximum NAO index 403 

during the incubation phase, suggesting that this weather variable best reflects the effects of 404 

environmental conditions on TL, and that there are optimal environmental conditions that result 405 

in the longest TL. A two week period corresponds to the summer NAO life cycle (see Feldstein, 406 

2007), and the maximum summer NAO may reflect extreme weather events such as drought 407 

or flooding (Drouard et al., 2019; Folland et al., 2009). At our study site, the daily NAO index 408 

was primarily positively correlated with the daily amount of precipitation (Table S2.2). Rainfall 409 

may have immediate effects on food availability and hence nest attendance (Bambini et al., 410 

2019) and incubation temperature (Simmonds et al., 2017), which can elicit a stress response 411 

in the organism with effects on TL (Dupoué et al., 2020; Stier et al., 2020; Vedder et al., 2018). 412 

Prenatal exposure to environmental stressors can also have significant negative effects on 413 

embryonic TL (Entringer et al., 2011; Noguera & Velando, 2019). Variation in the NAO index 414 

locally captures complex associations between weather variables reflecting “harsh” or 415 
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“benign” weather conditions (Folland et al., 2009; Stenseth et al., 2003), and it has been linked 416 

to morphological and demographic changes in several northern hemisphere species (Ottersen 417 

et al., 2001; Hallett et al., 2004; Stenseth et al., 2002; Stenseth et al., 2003). For instance, the 418 

NAO index may reflect insect abundance and phenology (Nott et al., 2002; Welti et al., 2020; 419 

Westgarth-Smith et al., 2012). The NAO can have considerable lagged effects on weather 420 

(Halkka et al., 2006), or there may be developmental time lags between weather conditions and 421 

the response in insect abundance (Visser et al., 2006). Thus, the effect of NAO during 422 

incubation may be acting on food availability during the important nestling growth stage. Food 423 

availability was positively associated with TL and TL lengthening in Seychelles warblers 424 

(Brown et al., 2021; Spurgin et al., 2018), but negatively associated with TL in American black 425 

bears (Ursus americanus, Kirby et al., 2017). In African striped mice (Rhabdomys pumilio), 426 

TL decreased during the dry season, when food availability was low, and increased during the 427 

wet season, when food availability was high (Criscuolo et al., 2020). Such associations may be 428 

complicated by the fact that some level of food restriction may reduce oxidative damage during 429 

growth (Noguera et al., 2011). Accordingly, the curvilinear effect of weather conditions on TL 430 

(Table 3) may therefore also reflect the growth conditions optimizing TL (Monaghan & 431 

Ozanne, 2018). 432 

Habitat quality may be an important driver of differences in TL dynamics across 433 

populations (McLennan et al., 2021; Wilbourn et al., 2018). We found evidence for an 434 

interaction effect between habitat type (island) and population density (Table 2), suggesting 435 

that pre-breeding population density was negatively related to TL on the non-farm island 436 

(Træna), but not on the farm-island (Hestmannøy). On Hestmannøy, which holds a larger 437 

sparrow population than Træna (Fig. S2.1 and Table S1.1), the sparrows live and nest in a 438 

sheltered environment around farms, in contrast to Træna, where the sparrows nest in artificial 439 

nest boxes in a village environment. House sparrows are gregarious but exhibit territorial 440 
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behavior by defending nest sites during the breeding season (Anderson, 2006). Thus, there may 441 

be more competition for nest sites on Træna compared to Hestmannøy at high population 442 

densities. Furthermore, as population density increases, competition increases, and poorer 443 

quality nest and foraging sites are increasingly occupied (Møller et al., 2018; Newton, 1998). 444 

The farms on Hestmannøy provide adults with a continuous supply of grain or food pellets and 445 

we speculate that the intensity of competition for resources may therefore be higher in the more 446 

unpredictable habitats on Træna, when population size is relatively larger (e.g. Dhondt, 2010). 447 

Again, malnutrition or exposure to suboptimal microclimatic conditions during early-life, may 448 

lead to elevated levels of oxidative stress and hence shorter telomeres in fledglings, consistent 449 

with our observations. Similar negative effects of population density on TL have been observed 450 

in griffon vultures (Gyps fulvus, Gangoso et al., 2021) and Atlantic salmon (Salmo salar, 451 

McLennan et al., 2021), and in crowding experiments with mice (Mus musculus, Kotrschal et 452 

al., 2007).  453 

We found some evidence for successful dispersers to have shorter telomeres prior to 454 

dispersal than non-disperser, especially among males from the farm-island (Hestmannøy, with 455 

only 6 dispersers out of 167 males, Fig. 3). These analyses were limited by the relatively small 456 

number of dispersers. In the introduction we suggested that short telomeres may inform a 457 

dispersal syndrome (pace-of-life), where bolder and faster-lived individuals are more likely to 458 

disperse. Short telomeres have been correlated with bold, aggressive, pessimistic, or impulsive 459 

behavior in fish and birds (Adriaenssens et al., 2016; Bateson et al., 2015; Espigares et al., 460 

2021). Increases in the level of glucocorticoids are linked to dispersal in birds (Belthoff & 461 

Dufty, 1998; Silverin, 1997), which indicate the relevance of oxidative stress and hence that 462 

TL may be associated with successful dispersal (Casagrande & Hau, 2019; Récapet et al., 463 

2016). Although Pegan et al. (2019) found a small negative effect of corticosterone treatment 464 

on TL in wild tree swallows (Tachycineta bicolor), this did not affect the age of initial departure 465 
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from the natal site. Boonekamp et al. (2014) compared telomere loss within the first month of 466 

life among philopatric and dispersing jackdaws (Coloeus monedula), but did not find any 467 

differences, however their study was limited by a small sample size (5 dispersers out of 30 468 

recruits). House sparrows are short-distance dispersers (Tufto et al., 2005), and TL may not be 469 

a generally significant physiological indicator of dispersal probability at the scale of 470 

metapopulations. In contrast, metabolically demanding long-distance migration or dispersal 471 

increases oxidative stress (Costantini et al., 2007) and may thus have direct negative impacts 472 

on TL, as observed in migratory birds (Angelier et al., 2013; Bauer et al., 2016; Schultner et 473 

al., 2014). 474 

In several species, longer TL is associated with higher survival (Bichet et al., 2020; 475 

Crocco et al., 2021; Eastwood et al., 2019; Froy et al., 2021; Heidinger et al., 2021; Ilska-476 

Warner et al., 2019; van Lieshout et al., 2021; Wilbourn et al., 2018, but see Vedder et al., 477 

2017). We found no evidence for an association between TL and first-year survival or mortality 478 

over the lifespan in house sparrows (Figs. 3b and 4b). Perhaps early-life TL is uncoupled from 479 

survival because of high extrinsic mortality of (primarily juvenile) house sparrows (Fig. S2.3) 480 

not related to early-life TL (e.g. Criscuolo et al., 2020; Eastwood et al., 2019; Wood & Young, 481 

2019). Alternatively, house sparrows may be able to mitigate negative effects of short 482 

telomeres later in life through telomere maintenance (e.g. Vedder et al., 2017). Pepke et al. 483 

(2021b) also found no associations between TL and first-year survival in house sparrows from 484 

two populations that were part of a bidirectional artificial body size selection experiment. 485 

However, both short and long early-life TL tended to be weakly associated with the lowest 486 

mortality rates over the lifespan in that study (Pepke et al., 2021b), suggesting disruptive 487 

selection on TL. Furthermore, some studies have showed that early-life TL was a poor predictor 488 

of survival, which was instead predicted by changes in TL (Boonekamp et al., 2014; Seeker et 489 

al., 2021; Wood & Young, 2019), which we did not measure in this study.  490 
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We found a tendency for a negative association between ARS and TL even when 491 

accounting for the positive effect of body size on ARS, i.e. individuals with short TL tended to 492 

produce more recruits annually (Fig. 5b). Within species, individuals with short telomeres may 493 

exhibit a faster pace-of-life reflected in higher ARS, while individuals with longer telomeres 494 

allocate more resources into self-maintenance (Giraudeau et al., 2019a; Rollings et al., 2017a; 495 

Young, 2018). Perhaps individuals with short TL adopt a terminal investment strategy 496 

(Clutton-Brock, 1984). Interestingly, across bird species, the reciprocal relationship emerges, 497 

i.e. species with short telomeres are slow-lived (Pepke et al., 2021d). Heidinger et al. (2021) 498 

found no associations between early-life TL and annual reproductive performance (number of 499 

offspring) in wild American house sparrows. However, they found a positive relationship 500 

between early-life TL and lifespan in females, but a negative trend between TL and lifespan in 501 

males. They therefore suggested that TL reflected differences in quality or condition in females, 502 

but did not predict pace-of-life (Heidinger et al., 2021). It will be interesting to see if other 503 

studies find contrasting associations between TL and fitness across different populations within 504 

the same species in the wild. 505 

There is some evidence that telomere loss rates are higher in longer telomeres (Atema 506 

et al., 2019; Atema et al., 2021; Verhulst et al., 2013; Victorelli & Passos, 2017) suggesting 507 

that early-life TL may not be a good linear predictor of later-life TL. Alternatively, individual 508 

TL changes in response to environmental variables through life (Brown et al., 2021; Chatelain 509 

et al., 2020) suggesting that TL must be measured closer to reproduction events (Marasco et 510 

al., 2021). 511 

Our study suggests that environmental stressors negatively affected TL in young house 512 

sparrows, probably through the action of oxidative damage by ROS, but questions the common 513 

expectation of long-term fitness costs associated with shorter early-life TL in the wild. We also 514 

found some evidence that TL may be a biomarker of pace-of-life syndromes with fast-paced 515 
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individuals with short telomeres tending to have higher dispersal rates and higher ARS. Thus, 516 

there may be few long-term physiological disadvantages associated with having short 517 

telomeres in early-life in wild populations, but TL may rather act as a biomarker of individual 518 

pace-of-life. However, associations between early-life TL, individual fitness, and  complex 519 

environmental interactions seems difficult to establish and may vary between populations in 520 

the wild.  521 
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TABLES AND FIGURES 1091 

Table 1: Linear mixed effects models with ∆AICc≤4 of variation in early-life telomere length 1092 
in house sparrow nestlings from two island populations. All models included random intercepts 1093 
for year and brood identity. Models are ranked by AICc, and number of degrees of freedom 1094 
(df) and model weights (w) are shown. 1095 

Model  ∆AICc df w 

1 TL = sex + island + tarsus + density + island*density 0.0 9 0.1405 

2 TL = sex + island + tarsus 0.4 7 0.1138 

3 TL = sex + island + tarsus + density + island*density + hatch 

day 1.0 10 0.0872 

4 TL = sex + island + tarsus + density + island*density + 

condition 1.1 10 0.0814 

5 TL = sex + island + tarsus + density + island*density + age 1.1 10 0.0793 

6 TL = sex + island + tarsus + condition 1.5 8 0.0652 

7 TL = sex + island + tarsus + age 1.6 8 0.0619 

8 TL = sex + island + tarsus + density + island*density + age + 

hatch day 1.9 11 0.0535 

9 TL = sex + island + tarsus + density 2.2 8 0.0460 

10 TL = sex + island + tarsus + density + island*density + 

condition + age 2.2 11 0.0457 

11 TL = sex + island + tarsus + density + island*density + 

condition + age + hatch day 3.0 12 0.0311 

12 TL = sex + island + density + island*density  3.2 9 0.0284 

13 TL = sex + island + tarsus + density + condition 3.4 9 0.0261 

14 TL = sex + island + tarsus + density + age 3.5 9 0.0249 

15 TL = sex + island + hatch day 3.5 7 0.0247 

16 TL = sex + island 4.0 6 0.0191 

 1096 
 1097 

Table 2: Estimates (β) with standard errors (SE) and lower and upper 95% confidence intervals 1098 
(CI) from a linear mixed effects model of variation in telomere length (TL, n=2456). The model 1099 
included random intercepts for brood identity and year. Italics indicate parameters with CIs not 1100 
overlapping zero. 1101 
 1102 

 1103 

 1104 

 1105 

 1106 

 1107 

 1108 

Response variable: TL β SE Lower CI Upper CI 

intercept -0.0205 0.0133 -0.0466 0.0053 

sex (female) -0.0041 0.0041 -0.0121 0.0039 

island (Hestmannøy) -0.0086 0.0093 -0.0269 0.0094 

tarsus -0.0038 0.0016 -0.0070 -0.0006 

density -0.0008 0.0004 -0.0015 -0.5E-4 

island (Hestmannøy)*density 0.0008 0.0004 0.4E-4 0.0016 

σ2
brood ID (n=947) 0.0036  0.0029 0.0043 

σ2
year (n=20) 0.0020  0.0010 0.0039 

Marginal R2 / Conditional R2: 0.007 / 0.410 
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Table 3: Best model identified from sliding window analyses (Table S2.1) of the effect of 1109 

weather variables on telomere length in house sparrow fledglings (n=2462). Italics indicate 1110 
parameters with CIs not overlapping zero. 1111 

Response variable: TL β SE Lower CI Upper CI 

intercept -0.0049 0.0138 -0.0321 0.0220 

sex (female) -0.0052 0.0041 -0.0131 0.0028 

island (Hestmannøy) -0.0125 0.0092 -0.0305 0.0054 

tarsus -0.0042 0.0016 -0.0074 -0.0011 

density -0.0009 0.0004 -0.0016 -0.0002 

island (Hestmannøy)*density  0.0009 0.0004 0.0002 0.0016 

max. NAO26-12 days 0.0124 0.0084 -0.0040 0.0287 

(max. NAO26-12 days)
2 -0.0223 0.0052 -0.0325 -0.0121 

σ2
brood ID (n=948) 0.0033  0.0026 0.0040 

σ2
year (n=20) 0.0022  0.0011 0.0042 

Marginal R2 / Conditional R2: 0.029 / 0.418 

 1112 

 1113 

 1114 

Fig. 1: The effect of population density (mean centered) on log10-transformed early-life 1115 
telomere length in a) the Træna population (negative association) and b) in the Hestmannøy 1116 
population (no association), see Tables 1 and 2. c) The negative quadratic association between 1117 
early-life TL and the best weather variable predictor (max. NAO index during incubation) from 1118 
a sliding window analysis (Tables S2.1 and 3). 1119 

 1120 

 1121 

 1122 

 1123 
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 1124 

Fig. 2: Binomial logistic regression of successful natal dispersal probability predicted by early-1125 

life TL. The highest ranked models (Table S2.3) suggested a weak negative association 1126 

between dispersal probability and TL (black regression line). One of these top models 1127 

suggested that there was a stronger negative association between TL and dispersal probability 1128 

among males born on Hestmannøy (n=167, dark green regression line with 95% confidence 1129 

intervals in grey areas). 1130 

 1131 

 1132 

 1133 

Fig. 3: Relationship between first-year survival (recruitment) probability in two populations of 1134 

house sparrows (grey: Træna, black: Hestmannøy) and a) fledgling tarsus length (negative 1135 
quadratic association) and b) fledgling TL (no evidence for any associations). The logistic 1136 
regression lines are from the top models shown in Table S2.5 including tarsus length (model 1137 

ranked 1) and telomere length (model ranked 4). There was no evidence for differences in first-1138 
year survival probability between the two populations.  1139 

 1140 
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 1141 

 1142 

Fig. 4: Mortality risk measured as hazard ratio in two populations of house sparrows (grey: 1143 

Træna, black: Hestmannøy) as a function of a) fledgling tarsus length (positive quadratic 1144 

association) and b) fledgling telomere length (no evidence for any associations). The regression 1145 

lines (black) show the modelled effect from the top models in Table S2.6 with 95% and 50% 1146 

confidence intervals in light grey and dark grey respectively. 1147 

 1148 

 1149 

 1150 

Fig. 5: The associations between annual recruit production (ARS: annual reproductive success) 1151 

and a) fledgling tarsus length and b) fledgling telomere length. The regressions lines (black, 1152 

with 95% confidence intervals in grey) show the uncertain tendencies (see the main text) 1153 

predicted from the top models in Table S2.7. 1154 


