
NCBITaxonomy.jl - rapid biological names finding and
reconciliation

Timothée Poisot 1,2, RoryGibb 3,4, Sadie J. Ryan 5,6,7, Colin J. Carlson 8,9

1 Université de Montréal, Départment de Sciences Biologiques, Montréal QC, Canada; 2 Québec Centre for
Biodiversity Science, Montréal, QC, Canada; 3 Centre on Climate Change and Planetary Health, London School
of Hygiene and Tropical Medicine, London, UK; 4 Centre for Mathematical Modelling of Infectious Diseases,
London School of Hygiene and Tropical Medicine, London, UK; 5 Emerging Pathogens Institute, University of
Florida, Gainesville, FL, United States of America; 6 School of Life Sciences, University of KwaZulu-Natal,
Durban, South Africa; 7 Department of Geography, University of Florida, Gainesville, FL, United States of
America; 8 Department of Microbiology and Immunology, Georgetown University Medical Center, Georgetown
University, Washington, D.C., United States of America; 9 Center for Global Health Science and Security,
Georgetown University Medical Center, Georgetown University, Washington, D.C., United States of America

Correspondance to:
Timothée Poisot — timothee.poisot@umontreal.ca

Keywords:
biodiversity
taxonomy

NCBI
fuzzy matching

NCBITaxonomy.jl is a package designed to facilitate the reconciliation and cleaning of taxonomic names,
using a local copy of the NCBI taxonomic backbone (Federhen 2012, Schoch et al. 2020); The basic
search functions are coupled with quality-of-life functions including case-insensitive search and cus-
tom fuzzy string matching to facilitate the amount of information that can be extracted automatically
while allowing efficient manual curation and inspection of results. NCBITaxonomy.jl works with ver-
sion 1.6 of the Julia programming language (Bezanson et al. 2017), and relies on the Apache Arrow
format to store a local copy of the NCBI raw taxonomy files. The design of NCBITaxonomy.jl has been
inspired by similar efforts, like the R package taxadb (Norman et al. 2020), which provides an offline
alternative to packages like taxize (Chamberlain and Szöcs 2013).

Unambiguously identifying species is a far more challenging task than it may appear. There are a vast
number of reasons for this. Different databases keep different taxonomic “backbones,” i.e. different
data structures in which names are mapped to species, and organised in a hierarchy. Not all names
are unique identifiers to groups. For example, Io can either refer to a genus of plants from the aster
family, or to a genus of molluscs; the genusMus (of which the house mouseMusmusculus is a species),
contains a sub-genus also named Mus. Conversely, the same species can have several names, which
are valid synonyms: for example, the domestic cow Bos taurus admits Bos primigenius taurus as a valid
synonym. Taxonomic nomenclature also changes regularly, with groups being split, merged, or moved
to a new position in the tree of life; this is, notably, a common occurrence with viral taxonomy, each
subsequent version of which can differ markedly from the last; compare, e.g Lefkowitz et al. (2018) to
Walker et al. (2020).

To add to the complexity, one must also consider that most taxa names are at some point manually
typed, which has the potential to introduce additional mistakes in raw data; it is likely to expect that
suchmistakes may arise when attempting to write down the (perfectly valid) names of the bacterial iso-
late known as Myxococcus llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochensis, or of the
crowned slaty flycatcher Griseotyrannus aurantioatrocristatus. These mistakes are more likely when
dealing with hyper-diverse samples, like plant census (Dauncey et al. 2016, Wagner 2016, Conti et al.
2021). In addition to binomial names, the same species can be known by many vernacular (common)
names, which are language or even region-specific: Ovis aries, for example, has valid English vernacu-
lars including lamb, sheep, wild sheep, and domestic sheep.

October 14, 2021 cb

https://orcid.org/0000-0002-0735-5184
https://orcid.org/0000-0002-0965-1649
https://orcid.org/0000-0002-4308-6321
https://orcid.org/0000-0001-6960-8434

All these considerations are actually important when matching species names both within and across
datasets. Let us consider the following species survey of individual fishes, European chub, Cyprinus
cephalus, Leuciscus cephalus, Squalius cephalus: all are the same species (S. cephalus), referred to as
one of the vernacular (European chub) and two formerly accepted names now classified as synonyms.
A cautious estimate of diversity based on the user-supplied names would give 𝑛 = 4 species, when there
is in fact only one.

A package with the ability to handle the sources of errors outlined above, and especially while provide
an authoritative classification, can accelerate the work of consuming large volumes of biodiversity data.
For example, this packagewas used in the process of developing theCLOVER database (Gibb et al. 2021)
of host-virus associations, by reconciling the names of viruses andmammals from four different sources,
where all of the issues described above were present.

1

Overview of functionalities

An up-to-date version of the documentation for NCBITaxonomy.jl can be found online at https://
docs.ecojulia.org/NCBITaxonomy.jl/stable/, including examples and a documentation of every
method. The package is released under the MIT license. Contributions can be made in the form of
issues (bug reports, questions, features suggestions) and pull requests. The package can be checked out
and installed anonymously from the central Julia repository:

using Pkg

This line should go in the Julia configuration file - note that the path
will be created if it doesn't exist, and will be used to store the
raw taxonomic table
ENV["NCBITAXONOMY_PATH"] = joinpath(homedir(), "data", "NCBITaxonomy.jl")

Pkg.add("NCBITaxonomy") # Dowloading the files may take a long time

The package will download the most recent version of the NCBI taxonomy database, and transform in
into a set of Apache Arrow files ready for use. Note that the NCBITAXONOMY_PATH can specified on a per-
project basis, and as long as the package is not re-built, the local set of tables downloaded from NCBI
will not change; this way, users can re-run an analysis with a guarantee that the underlying taxonomic
backbone has not changed.

1.1. Improved name matching Name finding is primarily done through the taxon function, which
admits either a uniqueNCBI identifier (e.g. taxon(36219) for the bogueBoops boops), a string (taxon("Boops
boops")), or a data frame with a restricted list of names (see the next section). The taxonmethod has
additional arguments to perform fuzzymatching in order to catch possible typos (taxon("Boops bops";
strict=false)), to perform a lowercase search (useful when alphanumeric codes are part of the taxon
name, like for some viruses), and to restrict the the search to a specific taxonomic rank.

The lowercase search can be a preferable alternative to fuzzy string matching. Consider the string
Adeno-associated virus 3b - it has three names with equal distance (under the Levensthein string
distance function):

julia> similarnames("Adeno-associated virus 3b"; threshold=0.95)
3-element Vector{Pair{NCBITaxon, Float64}}:

Adeno-associated virus - 3 (ncbi:46350) => 0.96
Adeno-associated virus 3B (ncbi:68742) => 0.96

Adeno-associated virus 3A (ncbi:1406223) => 0.96

Depending on the operating system, either of these three names can be returned; compare to the output
of a case insensitive name search:

2 of 4

https://docs.ecojulia.org/NCBITaxonomy.jl/stable/
https://docs.ecojulia.org/NCBITaxonomy.jl/stable/

julia> taxon("Adeno-associated virus 3b"; casesensitive=false)
Adeno-associated virus 3B (ncbi:68742)

This returns the correct name.

1.2. Name matching output and error handling The taxon function will either return a NCBITaxon
object (made of a name and id), or throw either a NameHasNoDirectMatch (with instructions about how
to possible solve it, using the similarnames function), or a NameHasMultipleMatches (listing the pos-
sible valid matches, and suggesting to use alternativetaxa to find the correct one). Therefore, the
common way to work with the taxon function would be to wrap it in a try/catch statement:

try
taxon(name)
Additional operations with the matched name

catch err
if isa(err, NameHasNoDirectMatch)

What to do if no match is found
elseif isa(err, NameHasMultipleMatches)
What to do if there are multiple matches

else
What to do in case of another error that is not NCBITaxonomy specific

end
end

These functions will not demand any user input in the form of key presses (though they can be wrapped
in additional code to allow it), as they are intended to run on clusters without supervision. The taxon
function has good scaling using muliple threads. For convenience in rapidly getting a taxon for demon-
stration purposes, we also provide a string macro, whereby e.g. ncbi"Procyon lotor" will return the
taxon object for the raccoon.

1.3. Name filtering functions As the full NCBI names table has over 3 million entries at the time
of writing, we have provided a number of functions to restrict the scope of names that are searched.
These are driven by the NCBI divisions. For example nf = mammalfilter(true) will return a data
frame containing the names of mammals, inclusive of rodents and primates, and can be used with e.g.
taxon(nf, "Pan"). This has the dual advantage of making search faster, but also of avoiding matching
on names that are shared by another taxonomic group (which is not an issue with Pan, but is an issue
with e.g. Io as mentioned in the introduction).

Note that the use of a restricted list of names can have significant performance consequences: compare,
for example, the time taken to return the taxon Pan (ID 9596) in the entire database, in all mammals,
and in all primates:

Names list Fuzzy matching Time (ms) Allocations Memory allocated

all no 23 34 2 KiB
yes 105 2580 25 MiB

mammalfilter(true) no 0.55 32 2 KiB
yes 1.9 551 286 KiB

primatefilter() no 0.15 33 2 KiB
yes 0.3 92 27 KiB

Clearly, the optimal search strategy is to (i) rely on name filters to ensure that search are conducted
within the appropriate NCBI division, and (ii) only rely on fuzzy matching when the strict or lower-
case match fails to return a name, as fuzzy matching can result in order of magnitude more run time
and memory footprint. These numbers were obtained on a single Intel i7-8665U CPU (@ (1.90GHz).
Using "chimpanzees" as the search string (the NCBI recognized vernacular for Pan) gave qualitatively
similar results, suggesting that there is no performance cost associated with working with synonyms or
verncular input data.

3 of 4

1.4. Quality of life functions In order to facilitate working with names, we provide the authority
function (gives the full taxonomic authority for a name), synonyms (to get alternative valid names),
vernacular (for English common names), and rank (for the taxonomic rank).

1.5. Taxonomic lineages navigation The children functionwill return all nodes that are directly de-
scended from a taxon; the descendants function will recursively apply this function to all descendants
of these nodes, until only terminal leaves are reached. The parent function is an “upwards” equivalent,
giving that taxon from which a taxon descents; the lineage function chains calls to parent until either
taxon(1) (the taxonomy root) or an arbitrary ancestor is reached.

The taxonomicdistance function (and its in-place equivalent, taxonomicdistance!, whichusesmemory-
efficient re-allocation if the user needs to change the distance between taxonomic ranks) uses the Shi-
matani (2001) approach to reconstruct a matrix of distances based on taxonomy, which can serve as a
rough proxy when no phylogenies are available.

Acknowledgements: This work was supported by funding to the Viral Emergence Research Initia-
tive (VERENA) consortium including NSF BII 2021909 and a grant from Institut de Valorisation des
Données (IVADO), by the NSERCDiscovery Grants and Discovery Acceleration Supplement programs,
and by a donation from the Courtois Foundation. Benchmarking of this package on distributed sys-
temswas enabled by support provided by Calcul Québec (www.calculquebec.ca) and Compute Canada
(www.computecanada.ca). TP wrote the initial code, TP and CJC contributed to API design, and all au-
thors contributed to functionalities and usability testing.

References

Bezanson, J. et al. 2017. Julia: A Fresh Approach to Numerical Computing. - SIAM Review 59: 65–98.

Chamberlain, S. A. and Szöcs, E. 2013. Taxize: Taxonomic search and retrieval in R. - F1000Research
2: 191.

Conti, M. et al. 2021. Match Algorithms for Scientific Names in FlorItaly, the Portal to the Flora of Italy.
- Plants 10: 974.

Dauncey, E. A. et al. 2016. Common mistakes when using plant names and how to avoid them. -
European Journal of Integrative Medicine 8: 597–601.

Federhen, S. 2012. The NCBI taxonomy database. - Nucleic acids research 40: D136–D143.

Gibb, R. et al. 2021. Data proliferation, reconciliation, and synthesis in viral ecology. - bioRxiv: 2021.01.14.426572.

Lefkowitz, E. J. et al. 2018. Virus taxonomy: The database of the International Committee on Taxonomy
of Viruses (ICTV). - Nucleic Acids Research 46: D708–D717.

Norman, K. E. A. et al. 2020. Taxadb: A high-performance local taxonomic database interface. - Meth-
ods in Ecology and Evolution 11: 1153–1159.

Schoch, C. L. et al. 2020. NCBI Taxonomy: A comprehensive update on curation, resources and tools.
- Database in press.

Shimatani, K. 2001. On the Measurement of Species Diversity Incorporating Species Differences. -
Oikos 93: 135–147.

Wagner, V. 2016. A review of software tools for spell-checking taxon names in vegetation databases. -
Journal of Vegetation Science 27: 1323–1327.

Walker, P. J. et al. 2020. Changes to virus taxonomy and the Statutes ratified by the International Com-
mittee on Taxonomy of Viruses (2020). - Archives of Virology 165: 2737–2748.

4 of 4

	Overview of functionalities
	Improved name matching
	Name matching output and error handling
	Name filtering functions
	Quality of life functions
	Taxonomic lineages navigation

	References

