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Abstract 10 

1. Historical and long-term environmental datasets are imperative to understanding how 11 

natural systems respond to our changing world, setting baselines and establishing 12 

trajectories of change. Although immensely valuable, these data are ultimately at risk of 13 

being lost unless they are actively managed, curated, and eventually archived on data 14 

repositories.  15 

2. The practice of data rescue, which we define as identifying, preserving, and sharing 16 

valuable data and associated metadata at risk of loss, is an important means of ensuring 17 

the long-term viability and accessibility of such datasets. Improvements in policies and 18 

best practices around data management will hopefully limit the future need for data 19 

rescue; these changes, however, do not apply retroactively. While the concept of rescuing 20 

data is not new, the term lacks a formal definition, is often conflated with other terms 21 

(i.e., data reuse), and lacks general recommendations.  22 

3. Here, we outline seven key guidelines for effective rescue of historically-collected and 23 

unmanaged datasets. We discuss how to prioritize which datasets to rescue, form 24 

effective data rescue teams, prepare the data and related metadata, and ultimately archive 25 

and share the rescued data.  26 

4. In an era of rapid environmental change, the best policy solutions will require evidence 27 

from both contemporary and historical sources. It is, therefore, imperative that we 28 

identify and preserve valuable, at-risk environmental data before they are lost to science. 29 
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Why Rescue Data? 49 

Data are among the primary units of research and scholarship. Not only are data used to 50 

help answer important questions, but they can also be used to inform new lines of inquiry, new 51 

testable hypotheses, and future data collection efforts. Observational and experimental data 52 

derived from ecology, evolution, conservation and environmental sciences (hereafter 53 

environmental data) are essential to establishing historical trajectories of ecosystems (i.e., 54 

baselines; McClenachan et al., 2012), understanding how species and communities respond to 55 

environmental change (Gatti et al., 2015), and designing and evaluating the outcomes of 56 

management efforts (Hawkin et al., 2013; Willis et al., 2007). Moreover, while data collection is 57 

often targeted to a particular population, community, or location, the reuse (i.e., aggregation, 58 

collation, and synthesis) of data from different systems and contexts is essential to establishing 59 

broader ecological knowledge and informing conservation management. Yet, despite their high 60 

value and central role in research, data are often misplaced, filed away, or otherwise rendered 61 

unusable, often through poor data management practices (Vines et al., 2014). In their unusable 62 

and “at-risk” state, these data represent an egregious waste of resources expended on their 63 

collection (Buxton et al., 2021; Box 1). Languishing data, however, also offer an enormous 64 

opportunity. Data rescue—defined here as the identification, preservation, and sharing of 65 

valuable data and associated metadata at risk of loss—has the potential to realize huge benefits 66 

for society, especially considering the crucial roles that baseline data play in informing 67 

management and policy decisions. The ultimate goal of data rescue is to make previously 68 

inaccessible or poorly preserved data available for (re)use, ideally through archiving them in a 69 

permanent, publicly accessible, and reusable format.  70 
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 In recent years, there has been a strong push from within the scientific and scholarly 71 

communities for increased transparency and openness in the practice of science, including in 72 

ecology and evolution (e.g., O’Dea et al., 2021). Calls for more transparency and accessibility in 73 

science are not new (e.g., Eamon, 1985); the term “open science” itself was coined more than 20 74 

years ago. However, the last decade has seen a surge in general awareness and promotion of 75 

open science practices (e.g., open access publishing and open data, code, software, and peer-76 

review) and their benefits (Powers & Hampton, 2019). These initiatives have not been without 77 

criticism, with many researchers unsure about sharing their data due to real or perceived 78 

concerns about data misuse and loss of control (Roche et al., 2014; Mills et al., 2015; Smith & 79 

Roberts, 2016; Stieglitz et al., 2020). Others have acknowledged important caveats to the general 80 

appeal for openness (e.g., valid considerations about security, confidentiality, equity, and 81 

Indigenous data sovereignty and governance; Borgman, 2018; Walter & Suina, 2018; Lennox et 82 

al., 2020; Buck, 2021). Despite the legitimacy of (some of) these concerns, the benefits of data 83 

sharing to individuals, the scientific community and the general public are apparent (Powers & 84 

Hampton; 2019; Soeharjono & Roche, 2021). And yet, large amounts of data remain private, 85 

unavailable for reuse by other scientists, and inaccessible to researchers and the public who 86 

ultimately provided the funding and infrastructure for the data’s collection. For example, in a 87 

sample of more than 4,000 ecology and evolution papers, only one in five papers (21.5%) had a 88 

data availability statement or associated open data (Roche et al., 2021), and less than half of 89 

archived datasets in ecology and evolution are reusable (Roche et al., 2015; Roche et al., 2021). 90 

Open science initiatives have developed rapidly, and the last few years have seen a rise in 91 

the number of institutions, governments, funding agencies, and publishers who have 92 

implemented policies that require the open, permanent, and accessible sharing of data (e.g., 93 



 

6 

FAIR data principles (see Data sharing below; Wilkinson et al., 2016), the Ecological Society of 94 

America’s new Open Research policy, and the European Commission’s OpenAIRE open access 95 

and open data policy). These requirements, and participation by scientists, will enhance our 96 

ability to evaluate, reuse, and synthesize increasingly rich and complex ecological data. 97 

However, open data policies are not retroactive and, therefore, do relatively little to address the 98 

issue of access to and preservation of previously-collected data (Vines et al., 2014). Arguably, 99 

data collected prior to the adoption of widespread sharing practices remain a public good, funded 100 

by taxpayers and governments, so rescuing datasets to ensure their longevity and accessibility 101 

should be seen as an ethical imperative.  102 

Here, we present guidelines for implementing data rescue; although we focus on 103 

environmental data, our guidelines are applicable more broadly. These guidelines are proposed 104 

based on past and ongoing data rescue projects by the Living Data Project, an initiative of the 105 

Canadian Institute of Ecology and Evolution (CIEE), which aims to identify and secure 106 

vulnerable datasets and bring new life to them through collaborative analysis and synthesis. We 107 

include examples using historical (Box 2) and recent data rescue efforts (Box 3). Our hope is that 108 

these guidelines will (a) focus attention on the current threats to the usability and integrity of 109 

previously-collected data, (b) stimulate broader consideration of the utility of previously-110 

collected datasets for current research efforts, (c) encourage people with access to or knowledge 111 

of unarchived data to work towards their preservation, (d) provide a reference for those looking 112 

to apply data rescue techniques in the context of their own work, and (e) help foster a strong 113 

culture of data stewardship such that data rescue becomes unnecessary in the future. 114 

https://www.esa.org/publications/data-policy/
https://www.openaire.eu/open-access-and-open-data-policies-in-the-european-union
https://www.openaire.eu/open-access-and-open-data-policies-in-the-european-union
https://www.openaire.eu/open-access-and-open-data-policies-in-the-european-union
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Guidelines for data rescue 115 

Imperiled data can be found nearly everywhere, such as non-profit organizations, 116 

conservation councils, academic institutions, and government agencies (think: historical data 117 

only available on paper records in basement filing cabinets, digitized data stored only on floppy 118 

disks, etc.). Finding data to rescue is usually the easiest part of the process; how to implement a 119 

successful data rescue mission, however, requires a more strategic approach (Fig. 1). Some of the 120 

steps involved in data rescue are closely aligned with recommended practices in research data 121 

management (see Metadata, Data Compilation, Validation, Archiving and Sharing sections 122 

below). Several resources have already outlined “best” practices for data collection (Broman & 123 

Woo, 2018), management (e.g., British Ecological Society’s “Data Management” Guide, 2018), 124 

and archiving (Cook et al., 2001; Whitlock, 2011; White et al., 2013), yet these are written with 125 

current or future data collection in mind and do not address historically-collected or unmanaged 126 

data. Below, we outline seven key steps for data rescue, from identifying high-priority datasets to 127 

archiving and sharing them for (re)use. 128 

1. Data prioritization 129 

Prioritizing data for rescue requires a consideration of both the scientific value of the data 130 

and the potential risk that the data will be lost (Fig. 2). Data of high value and at high risk of 131 

being lost should be given highest priority, while data which rank highly along just one of the 132 

axes of value and risk should be considered moderate priorities. The concepts of value and risk 133 

of loss are, of course, subjective, but there are some general factors to consider when 134 

determining these characteristics of a dataset.  135 
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High-value environmental datasets have some common features. Scale is a key factor, as 136 

datasets comprising long time series or covering a broad spatial extent are often important for 137 

establishing temporal and spatial dynamics of change (e.g., population declines, range shifts, 138 

etc.). The age of a dataset may be relevant, as older datasets can establish important baselines for 139 

a species or system; the value of such datasets increases with time. The subject of the data is also 140 

critical, as the societal value of the data may be higher when it involves species or ecosystems 141 

with conservation, cultural, or economic value (e.g., datasets pertaining to species at risk have 142 

higher conservation value). Additional considerations are the rarity of the data (e.g., data from an 143 

under-sampled region or ecosystem), their uniqueness or irreplaceability (e.g., data from a 144 

historical event, such as a natural disaster), and the potential costs of recollecting the data, if this 145 

is possible (e.g., costs of re-running major experiments or extensive surveys). Finally, a key test 146 

for the importance of a dataset is how it might be re-used in the future, with the most important 147 

datasets having many immediate potential usescenarios. This is, perhaps, the most difficult (and 148 

subjective) factor to assess. 149 

The risks of data loss are similarly multifold. Data can be physically lost, and this risk is 150 

highest for datasets for which there is only one copy (paper or digital). Data can also be 151 

functionally lost when the datasets are unreadable because they are in older or defunct file 152 

formats (e.g., Lotus 1-2-3) or in obsolete storage media (e.g., floppy disks). Data can also be 153 

functionally lost when vital knowledge about collection or meaning of the data is lost (e.g., 154 

because the collector/creator of the data is deceased, retired, or otherwise unreachable). 155 

Ultimately, successfully balancing the value of the data with the risk of its loss is essential for 156 

effective prioritization of data rescue efforts. 157 
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2. Team creation 158 

Data rescue takes a team, with different roles needed at different points in the rescue 159 

process. We first consider those currently in possession of the data, which may include data 160 

creators, data collectors, and data stewards: data creators are typically involved in generating the 161 

ideas that lead to the data’s collection and retain the intellectual property rights and 162 

responsibilities for the data, even if not directly involved in collecting or managing the data 163 

products; data collectors generate or collect the original data and, therefore, provide valuable 164 

input for documenting the data (see Metadata creation); and data stewards are responsible for 165 

managing and maintaining the data (i.e., organizing and keeping data safely archived, including 166 

instances where researchers have been bequeathed data or organizations that act as custodians of 167 

data collected by past employees). In ecology and evolution, these roles are often played by the 168 

same person, though not always. For example, in a mentee-mentor relationship such as that 169 

between a graduate student and supervisor, the student may play all three roles as data creator, 170 

collector, and (temporary) steward, while the advisor may retain the data long-term as the 171 

principal investigator, thereby acting as data creator and (long-term) steward. Having at least one 172 

person who is a data creator, collector, or steward, if not more, as part of the data rescue team is 173 

imperative for a successful data rescue mission.  174 

A data management expert is another key role in the data rescue process. Usually, a data 175 

manager is the one that plans the data lifecycle, but in a data rescue project, this role is mainly 176 

focused on organizing and documenting the digitized datasets. This person will have the skills to 177 

connect different datasets, clean and manage data, and compile previously unwritten information 178 

in detailed metadata files. Additionally, if there are any data that have not been entered into a 179 

digital format, a data entry technician will be an integral part of the team, ensuring that all 180 
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necessary data have been digitized in the appropriate format and validated against the original 181 

records. 182 

3. Metadata creation 183 

Metadata are information about the data, typically contained in a file separate from the 184 

dataset (Michener et al., 1997). The metadata generally describe the data collection process 185 

(including the types of data collected, methodology, and contributors, among other information), 186 

a description of all the variables in the dataset (e.g., column headings for tabular data), 187 

abbreviations, units of measurement, and other relevant information necessary to understanding 188 

how the data were generated and how to (re)use them (e.g., why some measurements are lacking; 189 

British Ecological Society, 2018). We recommend early creation of the metadata, as this will 190 

often inform the rest of the data rescue process and, ultimately, the structure of the compiled 191 

data. 192 

For datasets with more than one associated file, the metadata should also include a 193 

description of the database structure, which data are contained in each file, and how files or 194 

tables relate to each other. For datasets which include ongoing data collection, detailed metadata 195 

files are important to ensure that subsequent data added to the database conform to the 196 

appropriate standards and match the existing structure (Yenni et al., 2019). The metadata will 197 

likely need to be revised after Data compilation (Step 5) and before Data archiving (Step 6) to 198 

incorporate details about the data rescue process (e.g., data manipulation, validation, or changes 199 

to the structure of the dataset or database; see below; Fig. 1). 200 

The metadata file format varies (often dependent on the type of data or chosen 201 

repository). Metadata are often found in a “README” style text file. Another useful format is a 202 

text file written in Extensible Markup Language (XML; some examples and basics of XML can 203 
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be found at https://www.xmlfiles.com/xml/). Tools like XML have been developed for the 204 

express purpose of writing and storing metadata and other information in a format that is both 205 

human and machine readable, which not only ensures that prospective end users understand the 206 

data structure and how it was created but also facilitates use by other software/programming 207 

tools (e.g., search engines) that may rely on metadata being available in a standardized form. 208 

Each variable is stored as “tags,” and its description is stored between tags. In ecology, there is a 209 

set of suggested tags that should be used in such files, forming a variation of XML called 210 

Ecological Metadata Language (EML; Fegraus et al., 2005; Jones et al., 2019; see 211 

https://eml.ecoinformatics.org/).  212 

4. Data transfer and compilation 213 

For the data rescue team to work most effectively, all team members should have access 214 

to the data and metadata files. However, this might only be possible if all files are already in a 215 

digital format; if there are physical copies, they should either be photographed or scanned first or 216 

entrusted to the team member responsible for data entry and validation. From there, discussion 217 

about how the data should be compiled most effectively can ensue. While the details of data 218 

compilation will need to be tailored to each dataset, the workflow should be as reproducible as 219 

possible. At a minimum, all major decisions should be documented in the metadata. For 220 

example, any edits made to the data should be done in a file separate from the original; a digital 221 

file with the untouched original data should always remain.  222 

In structuring the data, we generally suggest following Wickham’s (2014) “tidy data” 223 

principles, which consist of 3 main concepts: (1) each variable has its own column, (2) each 224 

observation has its own row, and (3) each type of observational unit is in its own data table, (e.g., 225 

individual-level measurements from a population, such as mass, in one table and population-226 

https://www.xmlfiles.com/xml/
https://eml.ecoinformatics.org/
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level metrics, such as abundance, in another). If there are multiple data tables, they should be 227 

connected to each other by one or more variables that uniquely identify individual observations 228 

(i.e., a primary key in a relational database design; Codd, 1990). While we advocate for tidy data 229 

principles, as they are most likely to generate a data structure that will be useful in subsequent 230 

analyses, sometimes other formats may be more relevant or efficient (e.g., a species by site 231 

matrix).  232 

5. Data cleaning and validation 233 

Following data entry and compilation, data cleaning can be one of the most time-234 

intensive steps of the data management process. Data cleaning refers specifically to the process 235 

of identifying and fixing issues in the dataset, such as data entry errors or incomplete records. 236 

The importance of thorough and accurate data cleaning should not be overlooked, since, as the 237 

adage “garbage in, garbage out” suggests, the inference drawn from an analysis is only as strong 238 

as the inputs. In addition to common steps like correcting typographical or data entry errors, data 239 

cleaning commonly includes checking for data completeness (i.e., that the data from all records 240 

are fully and correctly transcribed) and uniformity (i.e., that variables are recorded in a consistent 241 

way for all records, ensuring common measurement units, etc.), and otherwise ensuring the data 242 

conform to expected standards. For environmental data, other common data cleaning steps 243 

include checking for common date formats (e.g., the International Organization for 244 

Standardization (ISO) 8601 standard recommends date-time objects be recorded as YYYY-MM-245 

DD hh:mm:ss + UTC offset), ensuring geographic coordinates are complete and standardized 246 

(e.g., ISO 6709 applies to the representation of spatial information), and correcting misspellings 247 

or synonyms in taxonomic information. Many tools have been developed to help with specific 248 
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aspects of data cleaning (e.g., the taxize package in R can be used to check and correct 249 

taxonomies; Chamberlin & Szocs, 2013). 250 

Related to data cleaning, data validation involves the comparison of the dataset against a 251 

set of assertions determined a priori (e.g., dry body mass of an organism should be less than its 252 

wet mass) or post hoc (e.g., the ratio of dry to wet mass should be similar among replicates). 253 

Data validation is important for ensuring data quality and integrity by evaluating the data against 254 

a set of expectations to confirm the structure and content of the data are appropriate. In the case 255 

of data rescue projects, unlike most recently or currently collected data, data validation may 256 

come with the extra challenge that the original data creator or collector may be unreachable or 257 

deceased. As such, having as many original members of the data team (Fig. 1, Step 2; see Team 258 

creation) is particularly beneficial for effective data validation. Common data validation 259 

techniques include plotting the data in various ways to assist with identifying incorrect or 260 

improbable values, checking that the contents (e.g., number of unique values in a column) or 261 

dimensions of the data are in line with expectations following data manipulation, cross-checking 262 

data from different columns or tables for mutual compatibility (i.e., to ensure that combinations 263 

of data are within the realm of possibility), and evaluating summary statistics or other outputs 264 

that characterize the data. In addition, many tools exist to help with the data validation process, 265 

including open-source, “point-and-click” software (e.g., OpenRefine) as well as a number of 266 

programming tools (e.g., the assertr and validate packages in R; Fischetti, 2020; van der Loo & 267 

de Jonge, 2021).  268 

Although the exact implementation of data cleaning and validation steps will vary 269 

depending on the nature of the dataset, many of the same general principles described in the 270 

Data transfer and compilation section are also relevant here. Validation should be conducted in 271 
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as reproducible a way as possible (e.g., in a script file that can be run on the original or cleaned 272 

data files), and any errors identified during the validation process should be corrected without 273 

manipulating the original (raw) data files. Importantly, any changes made based on these checks 274 

should be well documented (e.g., as comments in the script or as notes in the metadata), as 275 

should the rationale behind the corrections. More generally, the metadata are a critical source of 276 

information for understanding the provenance of the data—that is, documentation of where the 277 

data came from, how they were collected or generated, and the steps taken to clean and compile 278 

the final dataset. Hence, thorough documentation of data validation steps is a key component of 279 

Metadata creation and open and reproducible data sharing. 280 

6. Data archiving 281 

Archiving data in non-proprietary formats is imperative for longevity and future 282 

accessibility. Non-proprietary software or file formats are those which do not have a copyright or 283 

trademark and are, therefore, part of the public domain. Using non-proprietary formats ensures 284 

that anyone can access the data without needing a specific (and often expensive) software 285 

program or in the event that the program becomes defunct. For example, tabular data should be 286 

stored in comma-separated values (.csv) format or text files (.txt) rather than in proprietary 287 

formats such as Microsoft Excel files (.xls or .xlsx).  288 

There is a strong and growing movement to archive data on public (and open) data 289 

repositories rather than, or in addition to, private or institutional systems (e.g., a lab hard drive). 290 

Indeed, many governments and funding agencies have recently implemented new data 291 

management protocols that either encourage or mandate the archiving—though not necessarily 292 

sharing—of all data generated using their resources (see below; e.g., Canada’s Tri-agency 293 

Research Data Management Policy). The benefits of public archiving are clear. With each year 294 

https://www.science.gc.ca/eic/site/063.nsf/eng/h_97610.html
https://www.science.gc.ca/eic/site/063.nsf/eng/h_97610.html
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that passes after a publication, data that have not been publicly archived are 17% less likely to be 295 

recoverable (Vines et al., 2014; see also Tedersoo et al., 2021). As a result, we also consider 296 

public archiving to be an essential part of data rescue, since private archiving does not mitigate 297 

the possibility that the data will need to be “re-rescued” in the future. Once the data and metadata 298 

are compiled and validated, they should be placed in a data repository to maintain the data in a 299 

secure and retrievable format for the future. Importantly, the push for public archiving does not 300 

contradict the need for privacy or sensitivity associated with some datasets; it is possible to 301 

publicly archive data while maintaining restrictions on when and how the data are accessed (see 302 

below). In general however, we suggest that most environmental data should be openly 303 

accessible upon archiving; exceptions include, for example, data pertaining to threatened species 304 

and considerations of Indigenous data sovereignty. 305 

There are now a number of excellent data repositories from which to choose, with some 306 

being very generalized (e.g., Dryad, Dataverse, Figshare, Zenodo) while others cater to specific 307 

types of data (e.g., DataONE for environmental data, GenBank for genetic sequences, Global 308 

Biodiversity Information Facility (GBIF) for biodiversity data). Data repositories tend to use a 309 

distributed (i.e., decentralized) approach to storing the data and have contingency plans in place 310 

to ensure the longevity of the archived datasets (see r3data.org for a comprehensive list). Which 311 

repository to choose will also be influenced by whether the data will remain private or be made 312 

openly—and publicly—available upon upload or sometime in the near future (i.e., following an 313 

embargo period; Roche et al., 2014). Some repositories allow for the long-term preservation of 314 

datasets regardless of whether they are made openly available (e.g., Dataverse); others require 315 

that the data be open access if they are to be hosted by the repository (e.g., Dryad). Many 316 

archives also offer an option to place an embargo, or delay, on the publication of data. Most data 317 

https://www.re3data.org/
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repositories will establish a Digital Object Identifier (DOI), a unique identifier which will remain 318 

constant for the lifetime of the object, even if the object or metadata change. If the data will be 319 

openly available, we recommend explicitly stating the terms of use for said data, such as noting 320 

that authors should be contacted if the data are to be included in a publication or adding a 321 

copyright statement, such as those from Creative Commons (e.g., CC0, CC-BY, etc.). 322 

7. Data sharing 323 

A final step to the data rescue workflow is to ensure that the data meet the open science 324 

standards and that their use can be tracked. Open science principles and values entail 325 

transparency, participation, and accessibility (Bartling & Friesike, 2014). These values can be 326 

addressed in different ways and, because of that, ensuring a dataset meets these standards can be 327 

overwhelming for researchers who are not trained in data management. These values can be met 328 

with a combination of actions, some of which are summarized in the FAIR and CARE principles; 329 

the first focuses on how data can be made useful and the second on how we can promote justice 330 

through responsibly sharing open data. 331 

The FAIR principles aim to improve Findability, Accessibility, Interoperability and 332 

Reusability of datasets (Wilkinson et al., 2016). Providing human- and machine-readable 333 

metadata improves both the findability and accessibility of a dataset. Combined with proper 334 

archiving and identification, strong metadata may also help with the automatic discoverability of 335 

datasets. As mentioned in the Data archiving section, tagging a dataset with a DOI makes it 336 

trackable and citable, which improves the reproducibility of analyses. Many online data 337 

repositories provide DOIs for datasets, and they are crucial to connect the actual dataset to its 338 

metadata (which will also be registered under the same DOI). A comprehensive metadata file 339 

also allows interoperability, or the ability of the data to be combined with other datasets in 340 
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different ways and in different systems. Additionally, accessibility and reusability can be 341 

achieved through licenses, which explicitly describe the usage and attribution rights of the data. 342 

The CARE principles focus on datasets that used traditional knowledge or benefited 343 

somehow from Indigenous lands, promoting transparency and participation of open data (Carroll 344 

et al., 2020). They aim to address and encourage consideration of the Collective benefit for 345 

Indigenous Peoples, Authority to control (recognizing Indigenous data sovereignty), 346 

Responsibility to be respectful with Indigenous Peoples involved in the dataset collection, and 347 

Ethics (by assuring participation of Indigenous Peoples in the assessment of benefits, harms and 348 

usability of the data; Carroll et al. 2020). These principles are meant to begin addressing the 349 

larger, complicated history of colonialism in ecology, evolution, and related disciplines. While 350 

these guidelines were written with current and future data collection in mind, they are equally 351 

applicable to and important for previously collected data, and we recommend that all researchers 352 

who are rescuing datasets take these principles into consideration. 353 

Ongoing data rescue initiatives 354 

Data rescue is not a new concept (e.g., Hawkins et al., 2013; Specht et al., 2018), and a 355 

number of examples have been noted in both the scientific and grey literature (e.g., Box 2; 356 

Norton et al., 2000; Hawkings et al., 2013; Kelly et al., 2016; Specht et al., 2018; Knockaert et 357 

al., 2019). That said, the approach lacks a formal definition and can be conflated with other 358 

terms, such as data reuse. It also lacks general guidelines and best practices, of which we have 359 

offered a brief overview in this paper.  360 

Some data rescue efforts have embraced community science, using crowdsourcing 361 

platforms such as Zooniverse to facilitate data rescue (e.g., Unearthing Michigan Ecological 362 

Data). Additionally, there are currently a few organizations focused on preserving ecological 363 

https://daily.zooniverse.org/2020/02/20/behind-the-scenes-unearthing-michigan-ecological-data/
https://daily.zooniverse.org/2020/02/20/behind-the-scenes-unearthing-michigan-ecological-data/


 

18 

data at risk. For example, the Canadian Institute for Ecology and Evolution (CIEE/ICEE) started 364 

the Living Data Project (LDP) in 2018 with a mission to rescue and breathe new life into 365 

languishing ecological, evolutionary, and environmental datasets (Box 3). Other organizations 366 

practicing organized data rescue include (but are not limited to) the Atmospheric Circulation 367 

Reconstructions over the Earth (ACRE) and the International Environmental Data Rescue 368 

Organization (IEDRO). 369 

Conclusion 370 

Ultimately, we hope to reach a point where data rescue is no longer needed. This requires 371 

researchers, funding agencies, and publishers to align their views around ethical and professional 372 

obligations to archive data and make them publicly accessible where appropriate. It also requires 373 

a culture change that sees best practices in data managing, archiving, and publicly sharing data 374 

become the default in publicly funded research. While there has been movement in this direction, 375 

we are still far from the ideal. To achieve this goal, data sharing and accessibility need to be 376 

prioritized as a critical component of the scientific enterprise. We believe that the solution to 377 

shifting the culture around data sharing is two-fold. First, there must be continued, long-term 378 

investment in data management (Mons, 2020; Ritchie, 2021). Such investment includes not only 379 

infrastructure but also training and support for students and personnel (Soeharjono & Roche, 380 

2021). Additionally, publishers, employers and funding agencies must require some level of 381 

accountability from researchers to preserve data in accessible, non-proprietary formats and, if 382 

appropriate, make those data openly available to anyone interested (Mons, 2020). Until these 383 

large, institutional-level paradigm shifts occur, however, smaller-scale and innovative data 384 

rescue is an integral part of environmental data curation.  385 

https://www.ciee-icee.ca/data.html
https://www.met-acre.net/data%20rescue.htm
https://www.met-acre.net/data%20rescue.htm
http://iedro.org/data-rescue-process/
http://iedro.org/data-rescue-process/
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Currently, training in data management and shifting regulations regarding data 386 

availability have, rightfully, focused on present and future data and data practices. With such a 387 

strong eye to the future, however, much of the data of the past is being left behind. Data rescue 388 

presents an opportunity to mitigate this loss of past data while also providing additional, less 389 

tangible benefits. In the LDP, our mission of breathing life into languishing data is concomitant 390 

with training the next generations of scientists in data management best practices and forging 391 

connections amongst researchers across a wide variety of career stages and trajectories, thus 392 

ensuring the longevity of scientific knowledge and preparing students for a data-rich future. 393 
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Figure 1. Steps in the data rescue process. 417 

 418 

Figure 1. Steps in the data rescue process. First, data must be prioritized for rescue (Step 1). 419 

After team creation (Step 2) and metadata creation (Step 3), the data must be transferred and 420 

compiled into a consistent and effective format (Step 4). After data cleaning and validation (Step 421 

5) is complete, the finalized data and metadata should be archived on a long-term data repository 422 

(Step 6). The ultimate goal is to have the rescued data openly available for reuse (Step 7).  423 
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Figure 2. Prioritizing data for rescue: balancing the value of the 424 

data and its risk of loss. 425 

 426 

Figure 2. Prioritizing data for rescue: balancing the value of the data and its risk of loss. With 427 

many datasets in need of preservation and limited resources, the first step in the data rescue 428 

process requires developing a list of priorities for consideration and identifying relevant datasets 429 

(Fig. 1). We consider data prioritization to be a balance between the assessed value of a dataset 430 

in question and the potential risk of its loss in the absence of intervention (see Data prioritization 431 

under Guidelines). While the process of prioritization is inherently subjective, we suggest that 432 

considerations of value and risk can provide a useful heuristic for practitioners looking to best 433 

target their time and effort.434 
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Box 1. Spilt oil, spent money, and lost data: Exxon-Valdez oil spill as a 435 

case study on the costs of data loss. 436 

In 1989, the oil tanker Exxon Valdez struck the Bligh Reef in Prince William Sound, less 437 

than 2.5 km from the Alaskan shore. As a result, approximately 37,000 tonnes of crude oil 438 

spilled into the sound, leading to catastrophic short- and long-term ecological consequences. The 439 

Exxon Valdez Oil Spill Trustee Council (EVOSTC) was established in 1991 to oversee the 440 

spending of funds from a civil settlement in 1991 between Exxon, the United States federal 441 

government and the state government of Alaska. A large portion of the funds were directed 442 

towards determining and monitoring the impacts of the oil spill on oceanographic, 443 

environmental, and ecological conditions. Prior to 2003, there was no requirement for data 444 

preservation or availability; afterwards, all projects were awarded under explicit conditions from 445 

EVOSTC that data be preserved and made publicly available (Jones et al., 2018). In their annual 446 

report from 2010, the EVOSTC notes that the amount of funds spent on “Research, Monitoring, 447 

and General Restoration” during 1992-2010 fiscal years was $151.2 million USD (EVOSTC, 448 

2012). The majority of funding went to state and federal agencies, though a few projects were 449 

awarded to universities, professional societies, consultants, and other private entities (EVOSTC, 450 

2018). 451 

From 2012-2014, a group of researchers from the National Center for Ecological 452 

Analysis & Synthesis (NCEAS) worked to recover the historical datasets funded by EVOSTC, 453 

focusing specifically on data collected between 1989-2010 (Jones et al., 2018). Of the 419 454 

projects determined to have been funded by EVOSTC during this time, only 27% of the datasets 455 

were able to be recovered; after a total of 5 years hunting down datasets, this grew to 30% (Jones 456 
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et al., 2018). Using these numbers, we can calculate a rough estimate of money spent on research 457 

for which the data are not recoverable (70% of datasets): approximately $105 million USD was 458 

spent collecting data which are no longer recoverable and, therefore, effectively lost to 459 

science. While we do not know the distribution of years from which data were recovered or how 460 

money was divided by year, $105 million USD is likely a conservative estimate, given that the 461 

original cost does not include the first 3 years following the spill, when extensive ecological 462 

assessments would have been completed. Similarly, this valuation does not include any of the 463 

nearly $50 million USD spent towards “Scientific Management, Public Information & 464 

Administration” (EVOSTC, 2012).  465 

The group tasked with recovering these historic datasets also noted the reasons for their 466 

inability to recover the data. Instances in which data collectors specifically stated that the data 467 

were lost or unrecoverable were rare (Jones et al., 2018). Instead, over 80% of datasets which 468 

were unrecovered were lost due to a lack or failure of communication (~50% categorized as 469 

“communication lost”); the authors of the final report, however, interpret much of this lack of 470 

communication as an unwillingness or inability by the data owners to share data (Jones et al., 471 

2018), highlighting the importance of proper documentation and putting datasets in publicly 472 

available data repositories for longevity.  473 
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Box 2. From fur trappers to fundamental ecological theory: how a data 474 

rescue effort shaped our understanding of population cycling. 475 

Charles Sutherland Elton (29 May 1900 – 01 May 1991) was a British ecologist, whose major 476 

contributions included work on population cycling and community dynamics. In 1932, Elton 477 

established and became the first director of the Bureau of Animal Population (BAP) at Oxford 478 

University and the inaugural editor of the Journal of Animal Ecology later the same year. As part 479 

of their work on population cycling, Elton and his colleague Mary Nicholson endeavoured to 480 

recover historical records on the number of Canada lynx (Lynx canadensis) furs collected by 481 

Hudson’s Bay Company (HBC) trappers in Canada (Box 2.S1; Elton & Nicholson, 1942). In an 482 

effort that spanned more than 15 years, Elton and Nicholson used these and other records to 483 

collate information on trapping activities across the whole of Canada from 1886 to 1940 and as 484 

far back as 1821 for areas in the Mackenzie River District, Northwest Territories. Much of this 485 

work was akin to data rescue, including correspondence between Elton and the original data 486 

owners (see Elton’s description of the process in a letter to Ralph King in Box. 2.1; Elton & 487 

Nicholson, 1942), collation of data from different sources, as well as data cleaning and 488 

validation. This work was not only central to compiling one of the longest time series of animal 489 

populations and revealing the now classical example of ~12-year population cycles in snowshoe 490 

hare and Canada lynx abundances (Box 2.2) but has spurred an entire field of ecology 491 

(population/community cycling) and many decades of ecological research in the Canadian 492 

Arctic. This is just one, elegant example of the immense value of historical data—even those 493 

from unconventional places (like the legers of a colonial fur-trading company)—and the 494 

importance of working to identify and preserve them. 495 
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Box 2.1. Letter from Charles S. Elton (Bureau of Animal Population, Oxford University) to 496 

Ralph T. King (SUNY College of Environmental Science and Forestry), dated 01 July 1932.  497 

In this letter, Elton expresses his interest in King’s recent article on “saving vanishing data” 498 

(King, 1932), which regarded many aspects of what we are calling “data rescue” and was itself 499 

based on a paper of the same name written some three decades earlier (Haddon, 1903). Elton 500 

goes on to describe his efforts to reconstruct time series of hares and lynx from HBC records. 501 

This letter is not only an important historical artifact, but also highlights a “tradition” of data 502 

rescue that dates to the formalization of ecology as a discipline. This letter was provided to us 503 

courtesy of Dr. Adam T. Ford and is available through the Elton Archive at Oxford (Elton, 504 

1932).  A transcription of the letter’s text is available in the Supporting Information (Box 2.S2). 505 

  506 
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Box 2.2. Time series of the numbers (in thousands) of Canada lynx and snowshoe hare pelts 507 

provided to the Hudson’s Bay Company. 508 

 509 

  510 
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Box 3. Recent data rescue examples from the Living Data Project. 511 

As part of its core mission to contribute to and preserve ecological knowledge, the Living 512 

Data Project (LDP) aims to rescue valuable ecological and environmental data at risk of being 513 

lost. To achieve this objective, the LDP provides training opportunities for graduate students at 514 

Canadian universities, including courses on topics and skills related to data rescue (data 515 

management, reproducibility, and collaboration), and opportunities to put these skills into 516 

practice through paid, short-term internships. The LDP partners with a variety of external 517 

organizations, including government agencies, universities, and non-profits. These partners 518 

propose potential data rescue projects, which are prioritized by a selection committee and 519 

matched to graduate student interns with the relevant skills specific to each project (e.g., with 520 

considerations for coding, database design, geospatial software, and language skills). Interns 521 

work as part of a team comprised of representatives from the partner organization as well as 522 

postdoctoral and faculty mentors from the LDP. Below we describe two recent data rescue 523 

projects completed by LDP interns.  524 

Seeing the Forest Data for the Trees 525 

As researchers retire, they often think about the legacies they leave behind. Frequently, 526 

however, curating the data they have collected in order to cement their legacies is not at the 527 

forefront of their minds. Upon the retirement or death of a professor, students or colleagues often 528 

must take the reins and piece together documents and data from decades-old research projects to 529 

ensure the data’s own legacy. 530 

Dr. George H. La Roi was a professor of forest ecology at the University of Alberta for 531 

35 years. In 2016, he composed an email to colleagues asking for help archiving his extensive 532 
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long-term survey data from the boreal forests in Alberta. Before this could be accomplished, 533 

however, Dr. La Roi passed away in 2018. Upon his passing, La Roi’s children bequeathed much 534 

of his legacy of highly valuable data to his former colleague, Dr. Ellen Macdonald, who had 535 

earlier taken over sampling some of his long-term plots. With no living data creator and with 536 

much of the data in unorganized boxes containing unsorted datasheets, various documents, CD-537 

ROMs, and picture slides, the data was at high risk of being lost. Macdonald knew she would not 538 

be able to tackle the boxes of materials on her own and joined forces with another University of 539 

Alberta colleague, Dr. Justine Karst, who had also come into possession of some of La Roi’s 540 

boxes of data by way of University of Alberta’s Botanic Garden. Together, they wrote an 541 

application for an LDP data rescue internship. With the data being highly valuable long-term 542 

data and also at a high risk of loss, this dataset was deemed to be of high priority for rescue. 543 

Over the course of two data rescue internships, graduate students Jenna Loesberg and 544 

Amelia Hesketh, along with a handful of undergraduate data entry technicians, sorted, entered, 545 

and digitized the data. They determined that there were data from two different locations—the 546 

Hondo-Slave Lake region and the Athabasca Oil Sands region—both of which included data on 547 

vascular plant cover, bryoid cover, and forest mensuration, among other datasets. Some data 548 

were found only on printed-out scans of hand-written datasheets and needed to be entered into a 549 

digital format. Other data, which had already been entered and digitized, were stored in hundreds 550 

of text files which required extensive reformatting and cleaning before they could be compiled 551 

into usable datasets. Metadata also needed to be written and consolidated into one document for 552 

future reuse; while most of the data had clear documentation, some data were lost, as no 553 

documentation about the meaning of the variable names or the values in the column could be 554 

found or determined. With all of this work completed, the data and metadata of this rich and 555 
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expansive dataset will be archived and made publicly available through University of Alberta’s 556 

Dataverse repository and hopefully published as a data paper. 557 

 558 

Box 3.1. Photograph of researchers collecting data in the Athabasca Oil Sands region of 559 

northern Alberta in 1982. This is one of 16 sites established by Dr. George La Roi in the region 560 

in the 1980s to study seasonal and annual dynamics of boreal forests. Image credit: unknown. 561 

 562 

 563 

Box 3.2. Photograph of loose data sheets, maps, reports, and picture slides; these items and 564 

many more filled the boxes of research material left behind by Dr. George La Roi after his 565 

passing in 2018. Image credit: A. Hesketh. 566 

 567 
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Out of the Archives and into the (Digital) Light of Day 568 

The archived theses and dissertations of former graduate students represent a rich, though 569 

not fully realized, source of historical data. In particular, those prepared prior to the advent of 570 

modern computer technologies and software, such as word processors and tools for statistical 571 

analysis, contain troves of raw and summary data that have not been digitized and archived, and 572 

so remain inaccessible to present-day researchers. As a result, the reuse of any raw or 573 

summarized data from the thesis would first require data extraction and digitization.  574 

Urban areas have expanded in size, number, and human population density in recent 575 

decades, accompanied by changes in the abundance and diversity of bird populations that inhabit 576 

these regions. Determining how biodiversity has changed in response to historical changes in 577 

human activity and land use is central to understanding the impacts of these environmental 578 

changes and predicting the potential for future declines. In a data rescue project proposed to us 579 

by a then-doctoral student, Dr. Harold Eyster, LDP intern Andrea Brown worked to secure the 580 

data contained in three University of British Columbia graduate theses (Weber, 1972; Lancaster, 581 

1976; Melles, 2000), with a particular focus on data pertaining to surveys of bird abundances at 582 

various locations around Greater Vancouver, British Columbia, Canada. While the specific 583 

questions and research topics differed between these theses, the fact that all three surveyed the 584 

same (or nearby) sites in Greater Vancouver over the span of several decades means that, in 585 

combination, they present an opportunity to establish a baseline against which to compare 586 

current and future trends (Box. 3.3 shows an example of the change in conditions at one of the 587 

sites sampled by Weber (1972)). This project was identified as a priority for the LDP because the 588 

data were both at-risk (much of the data existed only in non-digital formats and none of the 589 
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datasets are in active use) and high value (the data provide a valuable frame of reference for 590 

studying changes in urban bird diversity). 591 

During her internship, Brown first worked to transcribe the data from the earlier two of 592 

the theses, Weber (1972) and Lancaster (1976), which were archived as scans of typewritten 593 

documents and did not have data available in digital form. Among other challenges, digitization 594 

required the conversion of non-standard data types (see, e.g., Box 3.4) into “tidy” forms that 595 

could be used and interpreted programmatically. Data from the third thesis, Melles (2000), were  596 

made available by the original author in a Microsoft Excel spreadsheet, and so only required 597 

cleaning and manipulation, and conversion to a non-proprietary format. Later work included 598 

efforts to rationalize the datasets so that they might be used in combination with each other (e.g., 599 

standardizing column names and other formatting, or combining similar or related tables into a 600 

single file). Given the extensive data manipulation required, clear metadata were developed to 601 

document the various steps taken to generate the final dataset and document other details from 602 

the theses that were not captured during the digitization process. The data have been archived on 603 

the UBC Dataverse repository (Brown, Eyster, & Lancaster, 2021; Brown, Eyster, & Melles, 604 

2021; Brown, Eyster, & Weber 2021) and linked with the original theses. 605 

  606 
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Box 3.3. Comparison of the historical and current appearance of one of the sampling locations 607 

for urban bird surveys conducted in Vancouver, British Columbia, Canada. Photographs show 608 

the view looking west from the intersection of 24th Avenue West at Wallace Street (49.251ºN, 609 

123.191ºW). The historical reference is reproduced from Weber (1972); the contemporary image 610 

is shared with permission from the photographer. 611 

 612 

       April 1970 (Image credit: W.C. Weber)         October 2021 (Image credit: © C.N. Nemeth) 613 

Box 3.4. Example of non-standard (untidy) data to be rationalized and digitized. This example 614 

table contains symbolic data representing the significance of correlations between habitat 615 

features. These symbols were converted to numeric factors during digitization. Reproduced with 616 

modification from Lancaster (1976; see: Appendix 4, p. 103-104 therein). 617 

618 



 

34 

References 619 

Bartling, S., & Friesike, S. (2014). Opening Science: The Evolving Guide on How the Internet is 620 

Changing Research, Collaboration and Scholarly Publishing. Springer Open. ISBN: 978-621 

2-319-00025-1. 622 

Borgman, C. L. (2018). Open data, grey data, and stewardship: universities at the privacy 623 

frontier. Berkeley Technology Law Journal, 33, 365-412. 624 

https://doi.org/10.15779/Z38B56D489  625 

British Ecological Society. (2018). A guide to data management in ecology and evolution. BES 626 

Guides to Better Science. British Ecological Society, London, UK. 627 

https://www.britishecologicalsociety.org/wp-content/uploads/2019/06/BES-Guide-Data-628 

Management-2019.pdf 629 

Broman, K. W., & Woo, K. H. (2018). Data organization in spreadsheets. American Statistician, 630 

72, 2-10. https://doi.org/10.1080/00031305.2017.1375989  631 

Brown, A., Eyster, H., & Lancaster, R. K. (2021). Data for: Bird communities in relation to the 632 

structure of urban habitats. Scholars Portal Dataverse. 633 

https://doi.org/10.5683/SP2/YD6N7C  634 

Brown, A., Eyster, H., & Melles, S. J. (2021). Data for: Effects of landscape and local habitat 635 

features on bird communities: a study of an urban gradient in greater Vancouver. 636 

Scholars Portal Dataverse. https://doi.org/10.5683/SP2/BPLPAP  637 

Brown, A., Eyster, H., & Weber, W. C. (2021). Data for: Birds in cities: a study of populations, 638 

foraging ecology and nest-sites of urban birds. Scholars Dataverse Portal. 639 

https://doi.org/10.5683/SP2/K5LMLA  640 

https://doi.org/10.15779/Z38B56D489
https://www.britishecologicalsociety.org/wp-content/uploads/2019/06/BES-Guide-Data-Management-2019.pdf
https://www.britishecologicalsociety.org/wp-content/uploads/2019/06/BES-Guide-Data-Management-2019.pdf
https://doi.org/10.1080/00031305.2017.1375989
https://doi.org/10.5683/SP2/YD6N7C
https://doi.org/10.5683/SP2/BPLPAP
https://doi.org/10.5683/SP2/K5LMLA


 

35 

Buck, S. (2021). Beware performative reproducibility. Nature, 595, 151. 641 

https://doi.org/10.1038/d41586-021-01824-z  642 

Buxton, R. T., Nyboer, E. A., Pigeon, K. E., Raby, G. D., Rytwinski, T., Gallagher, A. J., 643 

Schuster, R., Lin, H.-Y., Fahrig, L., Bennett, J.R, Cooke, S.J., & Roche, D.G. (2021). 644 

Avoiding wasted research resources in conservation science. Conservation Science and 645 

Practice, 3(2), e329. https://doi.org/10.1111/csp2.329     646 

Carroll, S. R., Garba, I., Figueroa-Rodríguez, O. L., Holbrook, J., Lovett, R., Materechera, S., 647 

Parsons, M., Raseroka, K., Rodriguez-Lonebear, D., Rowe, R., Sara, R., Walker, J. D., 648 

Anderson, J., & Hudson, M. (2020). The CARE principles for Indigenous data 649 

governance. Data Science Journal, 19, 43. https://doi.org/10.5334/dsj-2020-043 650 

Chamberlain, S., & Szocs, E. (2013). taxize – taxonomic search and retrieval in R. F1000 651 

Research, 2, 191. https://doi.org/10.12688/f1000research.2-191.v2  652 

Codd, E. F. (1990). The Relational Model for Database Management: Version 2. Addison-653 

Wesley Longman Publishing. 654 

Cook, R. B., Olson, R. J., Kanciruk, P., & Hook, L. A. (2001). Best practices for preparing 655 

ecological data sets to share and archive. Bulletin of the Ecological Society of America, 656 

82, 138-141. https://www.jstor.org/stable/20168543  657 

Eamon, W. (1985). From the secrets of nature to public knowledge: the origins of the concept of 658 

openness in science. Minerva, 23, 321-347. https://doi.org/10.1007/BF01096442  659 

Elton, C. S. (1932). Letter to Ralph T. King, 01 July. MS. Eng. c3328 A72, Elton Archives, 660 

Weston Library, University of Oxford. 661 

Elton, C. S., & Nicholson, M. (1942). The ten-year cycle in numbers of the lynx in Canada. 662 

Journal of Animal Ecology, 11, 215-244. https://www.jstor.org/stable/1358  663 

https://doi.org/10.1038/d41586-021-01824-z
https://doi.org/10.1111/csp2.329
https://doi.org/10.5334/dsj-2020-043
https://doi.org/10.12688/f1000research.2-191.v2
https://www.jstor.org/stable/20168543
https://doi.org/10.1007/BF01096442
https://www.jstor.org/stable/1358


 

36 

EVOSTC (Exxon Valdez Oil Spill Trustee Council) (2012). 2010 Annual Report. 664 

https://evostc.state.ak.us/media/4411/2010annualreport.pdf 665 

EVOSTC (Exxon Valdez Oil Spill Trustee Council) (2018). Exxon Valdez Oil Spill Fnal 666 

and Annual Reports. https://evostc.state.ak.us/media/4291/finalandannualreports.pdf 667 

Fegraus, E. H., Andelman, S., Jones, M. B., & Schildhauer, M. (2005). Maximizing the 668 

Value of Ecological Data with Structured Metadata: An Introduction to Ecological 669 

Metadata Language (EML) and Principles for Metadata Creation. Bulletin of the 670 

Ecological Society of America. 86(3), 158-68. 671 

http://www.jstor.org/stable/bullecosociamer.86.3.158. 672 

Fischetti, T. (2020). assertr: assertive programming for R analysis pipelines. R package version 673 

2.7. https://CRAN.R-project.org/package=assertr 674 

Gatti, G., Bianchi, C. N., Parravicini, v., Rovere, A., Peirano, A., Montefalcone, M., Massa, F., 675 

& Morri, C. (2015). Ecological change, sliding baselines and the importance of historical 676 

data: lessons from combining observational and quantitative data on a temperate reef over 677 

70 years. PLoS One, 10, e0123268. https://doi.org/10.1371/journal.pone.0118581 678 

Haddon, A. C. (1903). The saving of vanishing data. Popular Science Monthly, 63, 222-229. 679 

https://en.wikisource.org/wiki/Popular_Science_Monthly/Volume_62/January_1903/The680 

_Saving_of_Vanishing_Data 681 

Hawkings, S. J., Firth, L. B., McHugh, M., Poloczanska, E. S., Herbert, R. J. H., Burrows, M. T., 682 

Kendall, M. A., Moore, P. J., Thompson, R. C., Jenkins, S. R., Sims, D. W., Genner, M. 683 

J., & Mieszkowska, N. (2013). Data rescue and re-use: recycling old information to 684 

inform new policy concerns. Marine Policy, 42, 91-98. 685 

https://doi.org/10.1016/j.marpol.2013.02.001  686 

https://evostc.state.ak.us/media/4411/2010annualreport.pdf
https://evostc.state.ak.us/media/4291/finalandannualreports.pdf
http://www.jstor.org/stable/bullecosociamer.86.3.158
https://cran.r-project.org/package=assertr
https://doi.org/10.1371/journal.pone.0118581
https://en.wikisource.org/wiki/Popular_Science_Monthly/Volume_62/January_1903/The_Saving_of_Vanishing_Data
https://en.wikisource.org/wiki/Popular_Science_Monthly/Volume_62/January_1903/The_Saving_of_Vanishing_Data
https://doi.org/10.1016/j.marpol.2013.02.001


 

37 

Jones, M. B., Blake, R., Couture, J., & Ward, C. (2018). Collaborative data management and 687 

holistic synthesis of impacts and recovery status associated with the Exxon Valdez oil 688 

spill. Exxon Valdez Oil Spill Long-Term Monitoring Program (Gulf Watch Alaska) Final 689 

Report (project 16120120). Exxon Valdez Oil Spill Trustee Council, Anchorage, Alaska. 690 

http://www.gulfwatchalaska.org/wp-content/uploads/2018/08/16120120-Jones-et-al.-691 

2018-Final-Report.pdf  692 

Jones, M. B., O’Brien, M., Mecum, B., Boettiger, C., Schildhauer, M., Maier, M., Whiteaker, T., 693 

Earl, S., & Chong, S. (2019). Ecological Metadata Language version 2.2.0. KNB Data 694 

Repository. https://doi.org/10.5063/F11834T2  695 

Kelly, G., Easterday, K., Rapucciuolo, G., Koo, M. S., McIntyre, P., & Thorne, J. (2016). 696 

Rescuing and sharing historical vegetation data for ecological analysis: the California 697 

Vegetation Type Mapping Project. Biodiversity Informatics, 11, 40-62. 698 

https://core.ac.uk/download/pdf/162636907.pdf 699 

King, R. T. (1932). The saving of vanishing data. Canadian Field Naturalist, 46, 108-111. 700 

https://www.biodiversitylibrary.org/ia/canadianfieldnat1932otta/#page/134/mode/1up 701 

Knockaert, C., Tyberghein, L., Goffin, A., Vanhaecke, D., Ong’anda, H., Wakwabi, E. O., & 702 

Mees, J. (2019). Biodiversity data rescue in the framework of a long-term Kenya-703 

Belgium cooperation in marine sciences. Scientific Data 6(85). 704 

https://doi.org/10.1038/s41597-019-0092-8 705 

Lancaster, R.K. (1976). Bird communities in relation to the structure of urban habitats. Thesis. 706 

Department of Zoology, University of British Columbia. 707 

https://dx.doi.org/10.14288/1.0093863  708 

http://www.gulfwatchalaska.org/wp-content/uploads/2018/08/16120120-Jones-et-al.-2018-Final-Report.pdf
http://www.gulfwatchalaska.org/wp-content/uploads/2018/08/16120120-Jones-et-al.-2018-Final-Report.pdf
https://doi.org/10.5063/F11834T2
https://core.ac.uk/download/pdf/162636907.pdf
https://www.biodiversitylibrary.org/ia/canadianfieldnat1932otta/#page/134/mode/1up
https://doi.org/10.1038/s41597-019-0092-8
https://dx.doi.org/10.14288/1.0093863


 

38 

Lennox, R.J., Harcourt, R., Bennett, J.R., Davies, A., Ford, A.T., Frey, R.M., …, & Cooke, S. J. 709 

(2020). A novel framework to protect animal data in a world of biosurveillance. 710 

BioScience, 70, 468-476. https://doi.org/10.1093/biosci/biaa035  711 

van der Loo, M.P.J., & de Jonge, E. (2021). Data validation infrastructure for R. Journal of 712 

Statistical Software, 97, 1–31. https://doi.org/10.18637/jss.v097.i10  713 

McClenachan, L., Ferretti, F., & Baum, J. K. (2012). From archives to conservation: why 714 

historical data are needed to set baselines for marine animals and ecosystems. 715 

Conservation Letters, 5, 349-359. https://doi.org/10.1111/j.1755-263X.2012.00253.x  716 

Melles, S. J. (2000). Effects of landscape and local habitat features on bird communities: a study 717 

of an urban gradient in Greater Vancouver. Thesis. Department of Forest Sciences, 718 

University of British Columbia. https://dx.doi.org/10.14288/1.0099590  719 

Michener, W. K., Brunt, J. W., Helly, J. J., Kirchner, T. B. & Stafford, S. G. (1997). 720 

Nongeospatial metadata for the ecological sciences. Ecological Applications, 7, 330-342. 721 

Mills, J. A., Teplitsky, C., Arroyo, B., Charmantier, A., Becker, P. H., Birkhead, T. R., Bize, P., 722 

Blumstein, D. T., Bonenfant, C., Boutin, S., Bushuev, A., Cam, E., Cockburn, A., Côté S. 723 

D., Coulson, J. C., Daunt, F., Dingemanse, N. J., Doligez, B., Drummond H., Espie, R. H. 724 

M., et al. (2015). Archiving primary data: solutions for long-term studies. Trends in 725 

Ecology and Evolution, 30, 581-589. https://doi.org/10.1016/j.tree.2015.07.006  726 

Mons, B. (2020). Invest 5% of research funds in ensuring data are reusable. Nature, 578(7796), 727 

491. https://doi.org/10.1038/d41586-020-00505-7  728 

Norton, D. C., Assel, R. A., Meyers, D., Hibner, B. A., Morse, N., Trimble, P. J., Cronk, K., & 729 

Rubens, M. (2000). Great Lakes ice data rescue project (Technical memorandum 730 

GLERL-117). Great Lakes Environmental Research Laboratory, National Oceanographic 731 

https://doi.org/10.1093/biosci/biaa035
https://doi.org/10.18637/jss.v097.i10
https://doi.org/10.1111/j.1755-263X.2012.00253.x
https://dx.doi.org/10.14288/1.0099590
https://doi.org/10.1016/j.tree.2015.07.006
https://doi.org/10.1038/d41586-020-00505-7


 

39 

and Atmospheric Administration (NOAA). 732 

https://repository.library.noaa.gov/view/noaa/11024 733 

O’Dea, R. E., Parker, T. H., Chee, Y. E., Culina, A., Drobniak, S. M., Duncan, D. H., ... & 734 

Nakagawa, S. (2021). Towards open, reliable, & transparent ecology and evolutionary 735 

biology. BMC Biology, 19(1), 1-5. https://doi.org/10.1186/s12915-021-01006-3  736 

Powers, S. M., & Hampton, S. E. (2019). Open science, reproducibility, and transparency in 737 

ecology. Ecological Applications, 29, e01822. https://doi.org/10.1002/eap.1822  738 

Ritchie, H. (2021). COVID’s lessons for climate, sustainability and more from Our World in 739 

Data. Nature, 598:9. https://doi.org/10.1038/d41586-021-02691-4  740 

Roche, D. G., Berberi, I., Dhane, F., Lauzon, F., Soeharjono, S., Dakin, R., & Binning, S. A. 741 

(2021). The quality of open datasets shared by researchers in ecology and evolution is 742 

moderately repeatable and slow to change. EcoEvoRxiv. 743 

https://doi.org/10.32942/osf.io/d63js  744 

Roche, D. G., Kruuk, L. E. B., Lanfear, R., & Binning, S. A. (2015). Public data archiving in 745 

ecology and evolution: how well are we doing? PLoS Biology, 13, e1002295. 746 

https://doi.org/10.1371/journal.pbio.1002295  747 

Roche, D. G., Lanfear, R., Binning, S. A., Haff, T. M., Schwanz, L. E., Cain, K. E., Kokko, H., 748 

Jennions, M. D., & Kruuk, L. E. (2014). Troubleshooting public data archiving: 749 

suggestions to increase participation. PLoS Biology, 12(1), e1001779. 750 

https://doi.org/10.1371/journal.pbio.1001779  751 

Smith, R., & Roberts, I. (2016). Time for sharing data to become routine: the seven excuses for 752 

not doing so are all invalid. F1000 Research, 5, 781. 753 

https://doi.org/10.12688/f1000research.8422.1  754 

https://repository.library.noaa.gov/view/noaa/11024
https://doi.org/10.1186/s12915-021-01006-3
https://doi.org/10.1002/eap.1822
https://doi.org/10.1038/d41586-021-02691-4
https://doi.org/10.32942/osf.io/d63js
https://doi.org/10.1371/journal.pbio.1002295
https://doi.org/10.1371/journal.pbio.1001779
https://doi.org/10.12688/f1000research.8422.1


 

40 

Specht, A., Bolton, M. P., Kingsford, B., Specht, R. L., & Belbin, L. (2018). A story of data won, 755 

data lost and data re-found: the realities of ecological data preservation. Biodiversity Data 756 

Journal, 6, e29073. https://doi.org/10.3897/BDJ.6.e28073  757 

Stieglitz, S. Wilms, K., Mirbabaie, M., Hofeditz, L., Brenger, B., López, A., & Rehwald, S. 758 

(2020). When are researchers willing to share their data? - Impacts of values and 759 

uncertainty on open data in academia. PLoS One, 15, e0234172. 760 

https://doi.org/10.1371/journal.pone.0234172  761 

Soeharjono, S., & Roche, D. R. (2021). Reported individual costs and benefits of sharing open 762 

data among Canadian academic faculty in ecology and evolution. BioScience, biab024. 763 

https://doi.org/10.1093/biosci/biab024  764 

Tedersoo, L., Küngas, R., Oras, E., Köster, K., Eenmaa, H., Leijen, Ä., Pedaste, M., Raju, M., 765 

Astapova, A., Lukner, H., Korgerman, K., & Sepp, T. (2021). Data sharing practices and 766 

data availability upon request differ across scientific disciplines. Scientific Data, 8, 192. 767 

https://doi.org/10.1093/biosci/biab024  768 

Vines, T. H., Albert, A. Y. K., Andrew, R. L., Débarre, F., Bock, D. G., Franklin, M. T., Gilbert, 769 

K. J., Moore, J., Renault, S., & Rennison, D. J. (2014). The availability of research data 770 

declines rapidly with article age. Current Biology, 24, 94-97. 771 

https://doi.org/10.1016/j.cub.2013.11.014  772 

Walter, M., & Suina, M. (2018). Indigenous data, indigenous methodologies and indigenous data 773 

sovereignty. International Journal of Social Research Methodology, 22, 233-243. 774 

https://doi.org/10.1080/13645579.2018.1531228  775 

https://doi.org/10.3897/BDJ.6.e28073
https://doi.org/10.1371/journal.pone.0234172
https://doi.org/10.1093/biosci/biab024
https://doi.org/10.1093/biosci/biab024
https://doi.org/10.1016/j.cub.2013.11.014
https://doi.org/10.1080/13645579.2018.1531228


 

41 

Weber, W. C. (1972). Birds in cities: a study of populations, foraging ecology and nest-sites of 776 

urban birds. Thesis. Department of Zoology, University of British Columbia. 777 

https://dx.doi.org/10.14288/1.0101293  778 

Wickham, H. (2014). Tidy Data. Journal of Statistical Software, 59(10). 779 

http://dx.doi.org/10.18637/jss.v059.i10  780 

Wilkinson, M. D., Dumontier, M., Aalbersberg, IJ. J., Appleton, G., Axton, M., Baak, A., 781 

Blomberg, N., Boiten, J., Bonino de Silva Santos, L., Bourne, P. E., Bouwman, J., 782 

Brooke, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., 783 

Finkers, R., Gonzalez-Beltran, A., et al. (2016). The FAIR Guiding Principles for 784 

scientific data management and stewardship. Scientific Data, 3, 160018. 785 

https://doi.org/10.1038/sdata.2016.18  786 

Willis, K. J., Araùjo, M. B., Bennett, K. D., Figueroa-Rangel, B., Freud, C. A., & Myers, N. 787 

(2007). How can a knowledge of the past help to conserve the future? Biodiversity 788 

conservation and the relevance of long-term ecological data. Philosophical Transactions 789 

of the Royal Society B, 362, 175-187. https://doi.org/10.1098/rstb.2006.1977  790 

White, E. P., Baldridge, E., Brym, Z. T., Locey, K. J., McGlinn, D. J. & Supp, S. R. (2013). Nine 791 

simple ways to make it easier to (re) use your data. Ideas in Ecology and Evolution, 6, 1–792 

10. https://doi.org/10.4033/iee.2013.6b.6.f  793 

Whitlock, M. C. (2011). Data archiving in ecology and evolution: best practices. Trends in 794 

Ecology and Evolution, 26, 61-65. https://doi.org/10.1016/j.tree.2010.11.006  795 

Yenni, G. M., Christensen, E. M., Bledsoe, E. K., Supp, S. R., Diaz, R. M., White, E. P., & 796 

Ernest, S. M. (2019). Developing a modern data workflow for regularly updated data. 797 

PLoS Biology, 17(1), e3000125. https://doi.org/10.1371/journal.pbio.3000125  798 

https://dx.doi.org/10.14288/1.0101293
http://dx.doi.org/10.18637/jss.v059.i10
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1098/rstb.2006.1977
https://doi.org/10.4033/iee.2013.6b.6.f
https://doi.org/10.1016/j.tree.2010.11.006
https://doi.org/10.1371/journal.pbio.3000125

	Author affiliations
	Running Headline
	Abstract
	Keywords
	Author contributions

	Why Rescue Data?
	Guidelines for data rescue
	1. Data prioritization
	2. Team creation
	3. Metadata creation
	4. Data transfer and compilation
	5. Data cleaning and validation
	6. Data archiving
	7. Data sharing

	Ongoing data rescue initiatives
	Conclusion
	Acknowledgements
	Figure 1. Steps in the data rescue process.
	Figure 2. Prioritizing data for rescue: balancing the value of the data and its risk of loss.
	Box 1. Spilt oil, spent money, and lost data: Exxon-Valdez oil spill as a case study on the costs of data loss.
	Box 1. Spilt oil, spent money, and lost data: Exxon-Valdez oil spill as a case study on the costs of data loss.
	Box 2. From fur trappers to fundamental ecological theory: how a data rescue effort shaped our understanding of population cycling.
	Box 2. From fur trappers to fundamental ecological theory: how a data rescue effort shaped our understanding of population cycling.
	Box 3. Recent data rescue examples from the Living Data Project.
	Seeing the Forest Data for the Trees
	Out of the Archives and into the (Digital) Light of Day

	References

