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Abstract 14 

Historical and long-term environmental datasets are imperative to understanding how natural 15 

systems respond to our changing world. Although immensely valuable, these data are at risk of 16 

being lost unless actively curated and archived in data repositories. The practice of data rescue, 17 

which we define as identifying, preserving, and sharing valuable data and associated metadata at 18 

risk of loss, is an important means of ensuring the long-term viability and accessibility of such 19 

datasets. Improvements in policies and best practices around data management will hopefully 20 

limit future need for data rescue; these changes, however, do not apply retroactively. While 21 

rescuing data is not new, the term lacks formal definition, is often conflated with other terms 22 

(i.e., data reuse), and lacks general recommendations. Here, we outline seven key guidelines for 23 

effective rescue of historically-collected and unmanaged datasets. We discuss prioritisation of 24 

datasets to rescue, forming effective data rescue teams, preparing the data and related metadata, 25 

and archiving and sharing the rescued data. In an era of rapid environmental change, the best 26 

policy solutions will require evidence from both contemporary and historical sources. It is, 27 

therefore, imperative that we identify and preserve valuable, at-risk environmental data before 28 

they are lost to science. 29 
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Why Rescue Data? 44 

Data are among the most valuable outputs of research and scholarship; beyond helping 45 

answer important questions, they inform new lines of inquiry, new testable hypotheses, and 46 

future data collection efforts. Observational and experimental data derived from ecology, 47 

evolution, conservation and environmental sciences (hereafter, environmental data) are essential 48 

to establishing historical trajectories of ecosystems (“baselines”) [1], understanding how species 49 

and communities respond to environmental change [2], and designing and evaluating the 50 

outcomes of management efforts [3]. While data collection is often targeted to particular 51 

populations, communities, or locations, the reuse (i.e., aggregation, collation, and synthesis) of 52 

data from different contexts is essential to establishing broader ecological knowledge and 53 

informing conservation management [4]. Yet, despite their high value, data are often misplaced, 54 

filed away, or otherwise rendered unusable, often through poor data management practices [5]. 55 

In their unusable and “at-risk” state, these data represent an egregious waste of resources 56 

expended on their collection (Box 1) [6]. Languishing data, however, also offer an enormous 57 

opportunity. Data rescue—defined here as the identification, preservation, and sharing of 58 

valuable data and associated metadata at risk of loss—has the potential to realise substantial 59 

benefits for society, especially considering the crucial roles that baseline data play in informing 60 

management and policy decisions. The ultimate goal of data rescue is to make previously 61 

inaccessible or poorly preserved data available for (re)use, ideally through archiving them in a 62 

permanent, publicly accessible, and reusable format.  63 

Data rescue is particularly important in the environmental sciences for three reasons. 64 

First, because environmental processes are context-dependent, they often have historical 65 

components. Such records are essential in understanding the trajectory of environmental change 66 

and guiding policy to mitigate or adapt to this change [7]. For example, information obtained by 67 

rescuing salmon samples collected in the early 20th century dramatically changed our 68 

understanding of how salmon stocks have declined over the last century [8]. Second, 69 

environmental datasets are often small and local, constrained by both organismal-level data 70 

collection and the fine spatial scale of many of the underlying processes. Therefore, to obtain 71 

powerful tests of theory and the generality of mechanisms across heterogeneity in ecosystems 72 

and species, we need to synthesise across datasets; saving data is essential for synthesis. Third, 73 
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there has been a computational revolution in the types of analyses we can do and the amount of 74 

data that can be included [9]. This means that we can now finally perform powerful analyses of 75 

some of the exquisitely detailed data collected before the information revolution. 76 

 In recent years, there has also been a strong push from within scientific and scholarly 77 

communities for increased openness in science, including ecology and evolution (e.g., [10]). 78 

Calls for more transparency and accessibility in science are not new (e.g., [11]); the last decade, 79 

however, has seen a surge in general awareness and promotion of open science practises (e.g., 80 

open access publishing and open data, code, software, and peer-review) and their benefits [12]. 81 

These initiatives have not been without criticism, with many researchers unsure about sharing 82 

their data due to real or perceived concerns about data misuse and loss of control [13-15]. Others 83 

have acknowledged important caveats to the general appeal for openness (e.g., considerations 84 

about security, confidentiality, equity, and Indigenous data sovereignty and governance; [16-85 

19]). Despite the legitimacy of (some of) these concerns, the benefits of data sharing are apparent 86 

[12,20]. Even so, large amounts of data remain private and unavailable for reuse. For example, in 87 

a sample of >4,000 ecology and evolution papers, only one in five papers (21.5%) had a data 88 

availability statement or associated open data [21], and less than half of archived datasets in 89 

ecology and evolution are reusable [21,22]). 90 

Open science initiatives have developed rapidly, and the number of institutions, 91 

governments, funding agencies, and publishers who have implemented policies that require the 92 

open, permanent, and accessible sharing of data is increasing (e.g., FAIR data principles [23], the 93 

Ecological Society of America’s new Open Research policy, the European Commission’s 94 

OpenAIRE open access and open data policy). These requirements, and participation by 95 

scientists, will enhance our ability to evaluate, reuse, and synthesise increasingly rich and 96 

complex ecological data. However, open data policies are not retroactive and, therefore, do little 97 

to address issues of access to and preservation of previously-collected data [5]. Arguably, data 98 

collected prior to the adoption of widespread sharing practices remain a public good, funded by 99 

taxpayers and governments, so rescuing datasets to ensure their longevity and accessibility is 100 

imperative.  101 

Here, we present general guidelines for implementing data rescue, with a focus on 102 

environmental data. These recommendations are based on past and ongoing data rescue projects 103 

by the Living Data Project, an initiative of the Canadian Institute of Ecology and Evolution 104 

https://www.esa.org/publications/data-policy/
https://www.openaire.eu/open-access-and-open-data-policies-in-the-european-union
https://www.openaire.eu/open-access-and-open-data-policies-in-the-european-union
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(CIEE), which aims to identify and secure vulnerable datasets and bring new life to them through 105 

collaborative analysis and synthesis (Box 2). We hope these guidelines will (a) focus attention on 106 

the current threats to the usability and integrity of previously-collected data, (b) stimulate 107 

broader consideration of the utility of previously-collected datasets for current research efforts, 108 

(c) encourage people with knowledge of unarchived data to preserve them, (d) provide a 109 

reference for those looking to apply data rescue techniques either ad hoc or as part of a broader 110 

initiative, and (e) help foster a strong culture of data stewardship such that data rescue becomes 111 

unnecessary in the future. 112 

Guidelines for data rescue 113 

Imperilled data can be found nearly everywhere (e.g., Box S1), such as non-profit organisations, 114 

conservation councils, academic institutions, and government agencies (think: historical data 115 

only available on paper records or digitised data stored only on floppy disks). Although data to 116 

be rescued are plentiful, discoverability is challenged by the very fact that they have not yet been 117 

rescued. Data rescue projects target data that are not properly archived, making them unfindable 118 

or inaccessible [23]. In ecology, for example, these issues lead to a low number of available 119 

datasets [21,24] and limit our capacity for knowledge synthesis. Ultimately, professional 120 

networks are valuable resources for finding languishing data hidden in field notebooks, file 121 

cabinets, old computers, and forgotten project files. As not all the data we need is research data 122 

[25], metadata, grey literature, and other auxiliary data may also be of importance. Additionally, 123 

movements for open data and transparency can help bring hidden data to light. Therefore, data 124 

rescue is embedded in a context of community building from the beginning to the data sharing 125 

step, in a feedback loop of outcomes: good sharing practices lead to more findable datasets.  126 

 Once data has been located, implementing a successful data rescue mission requires a 127 

strategic approach (Fig. 1 and Fig. 2). Some steps in data rescue are closely aligned with 128 

recommended practices in research data management. Several resources have already outlined 129 

“best” practises for data collection [21], management [22], and archiving [4,23,26,27], yet these 130 

are written with current or future data collection in mind and do not address historically-collected 131 

or unmanaged data. Below, we outline seven steps for data rescue, from identifying high-priority 132 

datasets to archiving and sharing them for (re)use. 133 
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1. Data prioritisation 134 

Given potentially limited time (and money), data often needs to be prioritised for rescue 135 

over others. Prioritising data for rescue requires consideration along at least two axes: the 136 

scientific value of the data and the potential risk that the data will be lost (Fig. 1). In cases where 137 

data are of high value and at high risk, they should be given highest priority. Prioritisation 138 

becomes less obvious when data rank highly along just one of the axes of value and risk. In such 139 

instances, we suggest the focus should be on the value of the data, followed secondarily by risk 140 

(i.e., high value, low risk data should be prioritised over data that may be at high risk of loss but 141 

low value). The concepts of value and risk of loss are naturally subjective, and myriad factors 142 

(e.g., the interests of the rescuer or organisation, the combination of datasets to be compared) 143 

will impact how value and risk are assessed in each situation. As such, it is challenging to offer 144 

objectively clear guidelines for prioritisation. There are, however, general characteristics to 145 

consider when determining the value and risk of loss of a dataset. 146 

High-value environmental datasets have some common features. Scale is a key factor, as 147 

datasets comprising long time series or a broad spatial extent are important for establishing 148 

temporal and spatial dynamics of change (e.g., population declines, range shifts, etc.). The age of 149 

a dataset may be relevant, as older datasets can establish important baselines for a species or 150 

system, and the value of such datasets increases with time. The subject of the data is also critical, 151 

as their societal value may be higher when involving species or ecosystems with conservation, 152 

cultural, or economic importance. Additional considerations include the rarity of the data (e.g., 153 

data from undersampled regions or ecosystems), uniqueness or irreplaceability (e.g., data from 154 

historical events, such as natural disasters), and the potential costs of recollection. Finally, 155 

potential future reuse is worth considering, with the highest value datasets having many, 156 

immediate potential use scenarios. 157 

The risks of data loss are similarly multifold. Data can be physically lost, especially if 158 

there is only one copy (paper or digital). Data can be functionally lost when the datasets are 159 

unreadable due to defunct file formats (e.g., Lotus 1-2-3TM) or obsolete storage media (e.g., 160 

floppy disks). Data can also be functionally lost when vital knowledge about collection or 161 

meaning is lost (e.g., because the collector/creator of the data is deceased, retired, or otherwise 162 

no longer active in their field). Ultimately, balancing the data’s value and risk of loss is essential 163 

for effective prioritisation of data rescue efforts. 164 
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2. Team creation 165 

Data rescue takes a team, with different roles needed at different points in the rescue 166 

process. We first consider those currently in possession of the data, who we collectively refer to 167 

as data custodians. These include:  168 

(1) data creators, who are typically involved in generating the ideas that lead to the data’s 169 

collection and retain the intellectual property rights and responsibilities for the data;  170 

(2) data collectors, who generate or collect the original data and, therefore, provide valuable 171 

input for documenting the data; and  172 

(3) data stewards, who are responsible for managing and maintaining the data (i.e., organising 173 

and keeping data archived, including instances where researchers have been bequeathed data 174 

or organisations act as guardians of data collected by past employees).  175 

These roles are often played by the same person, though not always. For example, a graduate 176 

student may play all three roles as data creator, collector, and (temporary) steward, while the 177 

advisor may retain the data long-term as the principal investigator, thereby acting as data creator 178 

and (long-term) steward. Having at least one person who is a data creator, collector, or steward 179 

as part of the data rescue team is imperative for a successful data rescue mission.  180 

A data management expert is another key role. Usually, a data manager plans the data 181 

lifecycle, but in a data rescue project this role is focused on organising and documenting the 182 

digitised datasets. This person will have the skills to connect datasets, clean and manage data, 183 

and compile previously unwritten information. Additionally, if any data are not in digital 184 

formats, a data entry technician will be an integral part of the team, ensuring all necessary data 185 

have been digitised in the appropriate format and validated against the original records. 186 

3. Metadata creation 187 

Metadata are information about the data, typically contained in a file separate from the 188 

dataset [31]. Metadata describe the data collection process (e.g., types of data collected, 189 

methodology, and contributors), variables in the dataset (e.g., column headings for tabular data; 190 

“data dictionary”), abbreviations, units of measurement, and other relevant information 191 

necessary to understanding how the data were generated and how to (re)use them (e.g., why 192 
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some measurements are lacking; [27]). We recommend early creation of the metadata, as this 193 

often informs the remaining process and structure of the compiled dataset. 194 

For datasets with more than one associated file, the metadata should also include a 195 

description of which data are contained in each file and how files are related. For datasets which 196 

include ongoing data collection, detailed metadata files are important to ensure that subsequently 197 

inputted data conform to existing standards and structure [32]. The metadata should be revised 198 

throughout the subsequent steps to incorporate details about the data rescue process (e.g., data 199 

manipulation, validation, or changes to database structure; Fig. 2). 200 

Metadata file formats vary, often based on the type of data or chosen repository. In 201 

ecology, metadata are often provided in a “README” style text file that is, at a minimum, 202 

“human-readable” (i.e., a person can interpret the information contained in the file). Ideally, 203 

metadata should also be “machine-actionable”, allowing computers to process and integrate 204 

datasets in an automated fashion (Interoperability) [23], enabling interaction with large volumes 205 

of data—a task that is not possible for humans to do. 206 

A common format for creating metadata that are human- and machine-readable is a text 207 

file written in Extensible Markup Language (XML; for basic principles and examples, see 208 

https://www.xmlfiles.com/xml). A variation on XML called the Ecological Metadata Language 209 

(EML) is a set of suggested “tags” (variables) to create machine-actionable metadata in ecology 210 

[33,34](see https://eml.ecoinformatics.org/). 211 

A recent alternative to XML is the use of schemas. For example, schema.org 212 

(https://schema.org) provides a collection of shared vocabularies to mark-up data in a standard 213 

fashion, allowing them to be understood by major search engines. The schema.org vocabulary is 214 

used in combination with a data-interchange language, such as JSON-LD, to structure and add 215 

information to data. Guidelines and examples of scientific use of schema.org are available from 216 

the Federation of Earth Science Information (https://wiki.esipfed.org/Main_Page) and 217 

Bioschemas (https://bioschemas.org). Tools also exist to help ecologists generate a schema and 218 

translate it to EML [35]. 219 

4. Data transfer and compilation 220 

For effective collaboration, all team members should have access to the data and 221 

metadata files. However, this might only be possible if all files are already in a digital format; 222 

https://www.xmlfiles.com/xml/
https://www.xmlfiles.com/xml/
https://www.xmlfiles.com/xml/
https://eml.ecoinformatics.org/
https://eml.ecoinformatics.org/
https://schema.org/
https://wiki.esipfed.org/Main_Page
https://bioschemas.org/
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any physical copies should first be photographed or scanned or entrusted to the team member 223 

responsible for data entry and validation. While the details of data compilation will need to be 224 

tailored to each dataset, the workflow should be as reproducible as possible. For example, any 225 

edits made to the data should be done in a file separate from the original; a digital file with 226 

untouched original data should always remain. All major decisions should be documented in the 227 

metadata.  228 

In structuring the data, we recommend Wickham’s [36] tidy data principles (also called 229 

“third normal form” relational data design [37]), which consist of 3 core concepts: (1) each 230 

variable has its own column, (2) each observation has its own row, and (3) each type of 231 

observational unit is in its own data table (e.g., individual-level measurements from a population, 232 

such as mass, in one table and population-level metrics, such as abundance, in another). If there 233 

are multiple data tables, they should be connected to each other by one or more variables that 234 

uniquely identify individual observations (i.e., primary keys in a relational database; [37]). While 235 

we advocate for tidy data principles, as they are most likely to generate a data structure that will 236 

be useful in subsequent analyses, sometimes alternative data structures will be preferred, such as 237 

site-by-species matrices for community-level data. Additionally, not all environmental data will 238 

be easily represented in tabular form, such as geospatial data or images, though other relevant 239 

standards may apply (see below). Finally, note that many data types are not well-suited to a 240 

relational database model and may benefit from other, equally valid frameworks (e.g., 241 

tree/graph-based data models in JSON). 242 

5. Data cleaning and validation 243 

Data cleaning consists of identifying and fixing issues and can be one of the most time-244 

intensive steps. In addition to correcting typographical or entry errors, data cleaning includes 245 

checking for data completeness (i.e., all records are fully transcribed) and uniformity (i.e., 246 

variables and units are consistent). The International Organisation for Standardisation (ISO) 247 

provides standards for many common variables such as date-times (ISO 8601) and geographic 248 

coordinates (ISO 6709), and many tools exist to help with specific aspects of data cleaning (e.g., 249 

the taxize R package to check taxonomies; [38]). 250 

Data validation involves the comparison of the dataset against a set of assertions. This is 251 

important for ensuring data quality and integrity by confirming that the structure and content of 252 
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the data are appropriate. In data rescue, unlike most recently or currently collected data, data 253 

validation may come with the extra challenge that the original data custodians may be 254 

unreachable or deceased. As such, having as many original members of the data team as possible 255 

is particularly beneficial (Fig. 1, Step 2; see Team creation). Common data validation techniques 256 

include plotting the data to identify incorrect or improbable values, checking that the contents or 257 

dimensions of the data match expectations, cross-checking data from different columns or tables 258 

for mutual compatibility, and evaluating summary statistics or other outputs that characterise the 259 

data. In addition, many tools exist to help with the data validation process, including open-260 

source, “point-and-click” software (e.g., OpenRefine) and programming tools (e.g., the assertr 261 

and validate R packages; [39,40]).  262 

Although the exact data cleaning and validation steps will vary by dataset, many of the 263 

principles described in the Data transfer and compilation section are also relevant. Validation 264 

should be conducted as reproducibly as possible, and any errors should be corrected without 265 

manipulating the original (raw) files. Any changes should be well documented (e.g., as 266 

comments in the script or as notes in the metadata), as should the rationale behind the 267 

corrections.  268 

Data custodians may also consider providing a checksum (e.g., md5) or cryptographic 269 

hash (e.g., SHA-256) foreach data file. Checksums and hashes are unique alpha-numeric 270 

signatures generated by an algorithm using the reference file as input information, such that even 271 

a trivial change in the contents or structure of the file will result in the production of a 272 

completely different output. A future potential user (including the original data creator) can then 273 

recalculate the hash upon accessing the archived data (see steps 6 and 7), compare it to the value 274 

stored in the metadata, and ensure data integrity prior to reuse. 275 

6. Data archiving 276 

Archiving data in non-proprietary formats is imperative for longevity and future 277 

accessibility. Non-proprietary formats are those which do not have a copyright or trademark and, 278 

therefore, are part of the public domain. Using non-proprietary formats ensures that anyone can 279 

access the data without needing specific software or in the event that the program becomes 280 

defunct. For example, tabular data should be stored in comma-separated values (.csv) format or 281 

text files (.txt) rather than proprietary formats such as Microsoft Excel® files (.xlsx). More 282 
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recently, other open-source formats such as Apache parquet files (.parquet) have been developed, 283 

enabling highly efficient and compressed storage of “big” data. Unlike CSVs, parquet files also 284 

have the advantage of storing the schema (i.e., column/variable types; see Metadata creation) 285 

directly in the file metadata, reducing the chance that variables are incorrectly stored or used. 286 

There is a growing movement to archive data on public data repositories rather than, or in 287 

addition to, private or institutional systems (e.g., lab hard drives). Many governments and 288 

funding agencies have recently implemented new data management protocols that encourage or 289 

mandate the archiving, though not necessarily sharing, of all data generated using their resources 290 

(see below; e.g., Canada’s Tri-agency Research Data Management Policy). Each year following 291 

publication, data that have not been publicly archived are 17% less likely to be recoverable [5] 292 

(see also [41]). As such, we consider public archiving to be an essential part of data rescue, since 293 

private archiving does not mitigate the possibility that data will need to be “re-rescued” in the 294 

future. Cleaned data and metadata should be placed in a repository, maintaining them in a secure 295 

and retrievable format. Importantly, the push for public archiving does not contradict the need 296 

for privacy or sensitivity associated with some datasets; it is possible to publicly archive data 297 

while maintaining restrictions on when and how the data are accessed. We suggest, however, that 298 

most environmental data should be openly accessible upon archiving, with some clear exceptions 299 

(e.g., data pertaining to threatened species or Indigenous data sovereignty; see below). 300 

There are many data repositories from which to choose (see r3data.org for a 301 

comprehensive list), with some being generalised (e.g., Dryad, Dataverse, Figshare, Zenodo) and 302 

others more specified (e.g., DataONE for environmental data, GenBank for genetic sequences). 303 

Data repositories tend to use a distributed, decentralised approach to storing data and have 304 

contingency plans to ensure the longevity of archived datasets. Choice of repository will be 305 

influenced by whether the data will remain private or be made openly accessible upon upload, or 306 

soon thereafter [10]. Some repositories allow for the long-term storage regardless of whether 307 

data are made openly available (e.g., Dataverse), while others mandate open access (e.g., Dryad). 308 

Many archives also offer an option to place an embargo on the publication of data. Most data 309 

repositories establish a Digital Object Identifier (DOI), a unique identifier which remains 310 

constant for the lifetime of the object, even if the object or metadata change. For open data, we 311 

suggest explicitly stating the terms of use, such as whether authors should be contacted if the 312 

https://www.science.gc.ca/eic/site/063.nsf/eng/h_97610.html
https://www.re3data.org/
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data are to be included in a publication, or adding a copyright statement, such as those from 313 

Creative Commons (e.g., CC0, CC-BY, etc.). 314 

7. Data sharing 315 

The final step in the data rescue workflow is ensuring the data meet open science 316 

standards. Open science principles include transparency, participation, and accessibility. These 317 

values can be addressed in different ways, sometimes making the process overwhelming for 318 

researchers who are not trained in data management. The FAIR and CARE principles, the first of 319 

which focuses on how data can be made useful and the second on how we can promote justice 320 

through responsibly sharing open data, summarise ways these values can be met through a 321 

combination of actions. 322 

The FAIR principles aim to improve Findability, Accessibility, Interoperability and 323 

Reusability of datasets [23]. Providing human- and machine-readable metadata improves both 324 

the findability and accessibility of a dataset. Combined with proper archiving and identification, 325 

strong metadata helps increase the discoverability of datasets. As mentioned in the Data 326 

archiving section, adding a DOI makes the data trackable and citable. A comprehensive metadata 327 

file enables interoperability, or the ability of the data to be combined with other datasets in 328 

different ways and in different systems. Additionally, accessibility and reusability can be 329 

achieved through licences, which explicitly describe the usage and attribution rights of the data. 330 

The CARE principles focus on datasets that used traditional knowledge or benefited 331 

somehow from Indigenous lands, promoting transparency and participation of open data [42; see 332 

also, the OCAP principles: https://fnigc.ca/ocap-training/]. They aim to address consideration of 333 

the Collective benefit for Indigenous Peoples, Authority to control (recognizing Indigenous data 334 

sovereignty), Responsibility to be respectful with Indigenous Peoples involved in the dataset 335 

collection, and Ethics (by assuring participation of Indigenous Peoples in the assessment of 336 

benefits, harms and usability of the data; [42]). These principles begin to address the larger, 337 

complicated history of colonialism in ecology, evolution, and related disciplines. While these 338 

guidelines were written with current and future data collection in mind, they are equally 339 

applicable to and important for previously collected data.   340 

Carroll et al. (2021) provide valuable guidance on reconciling CARE and FAIR 341 

principles with Indigenous data-sovereignty at the forefront. Providing specific recommendations 342 

https://fnigc.ca/ocap-training/
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for  addressing CARE principles in data rescue is challenging and beyond the scope of this 343 

paper; each project brings unique circumstances that are best navigated by the data custodians 344 

and Indigenous partners. In an ideal scenario, the data creator has established collaborations with 345 

relevant Indigenous communities, leading the data rescue effort to become another meaningful 346 

collaboration, collectively adjusting the data rescue workflow to address both FAIR and CARE 347 

principles—which, as Carroll et al., (2021) note, need not be in conflict. A full realisation of 348 

CARE principles would see Indigenous partners oversee data archiving and stewardship, with 349 

direct control over access to the repository [43]. Existing tools such as embargo periods (i.e., the 350 

delayed release of data) or controlled access (i.e., data hosted on a repository and available by 351 

request) may be useful in addressing concerns around sovereignty over sensitive data [13]. In 352 

cases where the data custodian has limited experience engaging with Indigenous communities, 353 

the potential to achieve CARE principles will depend upon the feasibility of developing trust and 354 

respectful relationships with the relevant Indigenous communities; given the devastating legacies 355 

of colonialism, this can take considerable time. Nevertheless, it would rarely be a misstep to 356 

request a meeting with local communities to communicate the goals of the data rescue project, 357 

highlighting the aim of achieving CARE principles in partnership with the community.  358 

Conclusion 359 

Ultimately, we hope to reach a point where data rescue is no longer needed. This requires 360 

researchers, funding agencies, and publishers to align their views around ethical and professional 361 

obligations to publicly archive data as well as a culture change that sees best practices in data 362 

managing, archiving, and sharing data become the default in publicly-funded research. To 363 

achieve this goal, data sharing and accessibility need to be prioritised as critical components of 364 

the scientific enterprise. First, there must be continued, long-term investment in data 365 

management [44]. Such investment includes not only infrastructure but also training and support 366 

for students and personnel [4,17]. Additionally, publishers, employers, and funding agencies 367 

must require accountability from researchers to preserve data in accessible formats and, if 368 

appropriate, make the data openly available[44]. Until these institutional-level paradigm shifts 369 

occur, smaller-scale and innovative data rescue is integral to environmental data curation.  370 
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Currently, training in data management and shifting regulations regarding data 371 

availability have focused on present and future data. With such a strong eye to the future, 372 

however, data of the past is being left behind. Data rescue presents an opportunity to mitigate 373 

this loss of historical data while also providing additional, less tangible benefits. In the CIEE 374 

Living Data Project, our mission of breathing life into languishing data is concomitant with 375 

training the next generations of scientists in data management best practises and forging 376 

connections amongst researchers across a wide variety of career stages and trajectories, thus 377 

ensuring the longevity of scientific knowledge and preparing students for a data-rich future. 378 
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Figure 1. Prioritising data for rescue: balancing the value of the 399 

data and its risk of loss. 400 

 401 

 

 

Figure 1. Prioritising data for rescue: balancing the value of the data and its risk of loss. With 402 

many datasets in need of preservation and limited resources, the first step in the data rescue 403 

process requires developing a list of priorities for consideration and identifying relevant datasets 404 

(Fig. 2). We consider data prioritisation to be a balance between the assessed value of a dataset 405 

in question and the potential risk of its loss in the absence of intervention (see Data prioritisation 406 

under Guidelines). 407 

 

[Alt text: Figure 1 shows a two-dimensional colour gradient to help conceptualise one approach 408 

to data prioritisation. "Risk of loss" is on the horizontal axis, with the left-hand side labelled 409 

'secure' and right-hand side 'vulnerable'. "Value of the data" is on the vertical axis, with the 410 

bottom labelled 'low probability of reuse; replaceable' and the top labelled 'high scientific, 411 

cultural, or economic value; irreplaceable'. The plot area ranges from red in the top right ("1. 412 

high value + high risk"), to reddish orange in the top left ("2. high value + low risk"), to orangey-413 

yellow in the bottom right ("3. low value + high risk"), to yellowish white in the bottom left (“4. 414 

low value + low risk”).]   415 
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Figure 2. Steps in the data rescue assembly line. 416 

 417 

Figure 2. Steps in the data rescue assembly line. First, data must be prioritised for rescue (Step 418 

1). After team creation (Step 2) and metadata creation (Step 3), the data must be transferred and 419 

compiled into a logical format (Step 4). After data cleaning and validation (Step 5) is complete, 420 

the finalised data and metadata should be archived on a long-term data repository (Step 6). The 421 

ultimate goal is to have the rescued data openly available for reuse (Step 7).422 
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Box 1. Spilt oil, spent money, and lost data 423 

In 1989, the oil tanker Exxon Valdez struck the Bligh Reef in Prince William Sound, less 424 

than 2.5 km from the Alaskan shore. As a result, approximately 37,000 tonnes of crude oil 425 

spilled into the sound, leading to catastrophic short- and long-term ecological consequences. The 426 

Exxon Valdez Oil Spill Trustee Council (EVOSTC) was established in 1991 to oversee the 427 

spending of funds from a civil settlement in 1991 between Exxon, the United States federal 428 

government and the state government of Alaska. A large portion of funds were directed towards 429 

determining and monitoring the impacts of the oil spill on oceanographic, environmental, and 430 

ecological conditions. Prior to 2003, there was no requirement for data preservation or 431 

availability; afterwards, all projects were awarded under explicit conditions from EVOSTC that 432 

data be preserved and made publicly available [45]. In their annual report from 2010, the 433 

EVOSTC notes that some $151.2 million USD were spent on “research, monitoring, and general 434 

restoration” during 1992-2010 fiscal years [46].  435 

From 2012-2014, a group of researchers from the National Center for Ecological 436 

Analysis & Synthesis (NCEAS) worked to recover the historical datasets funded by EVOSTC, 437 

focusing specifically on data collected between 1989-2010 [45]. Of the 419 projects funded by 438 

EVOSTC during this time, only 27% of the datasets were able to be recovered; after a total of 5 439 

years hunting down datasets, this grew to 30% [45].  440 

Using these numbers, we can roughly estimate the money spent on research for which the 441 

data are unrecoverable (70% of datasets): ~$105 million USD was spent collecting data that 442 

are no longer recoverable and, therefore, effectively non-existent to science. While we do not 443 

know the distribution of years from which data were recovered or how money was allocated by 444 

year, this is likely a conservative estimate given that the original cost does not include the first 3 445 

years following the spill, when extensive ecological assessments would have been completed.  446 
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Box 2. Data Rescue Examples from the Living Data Project. 447 

Seeing the Forest Data for the Trees 448 

Upon the retirement or death of a professor, students or colleagues sometimes must take 449 

the reins and piece together documents and data from decades-old research projects.  450 

Step 1: Data prioritisation 451 

Dr. George H. La Roi was a professor of forest ecology at the University of Alberta (UofA) for 452 

35 years. Upon his passing, La Roi’s children bequeathed his legacy of highly valuable data to 453 

his former colleague who had earlier taken over sampling some of his long-term plots. With no 454 

living data creator and the data in unorganised boxes containing unsorted datasheets, documents, 455 

CD-ROMs, and picture slides (Box 2.1), the data was at high risk of loss.  456 

Step 2: Team creation 457 

Two of Dr. La Roi’s colleagues served as data stewards. Two graduate interns worked as data 458 

management experts, along with several undergraduate data entry technicians who sorted, 459 

entered, and digitised the data.  460 

Step 3: Metadata creation 461 

Thankfully, one of the loose files was a report with methodology for many of the data collection 462 

events. Initially, inventory on the data needed to be done. Finalised metadata were written and 463 

consolidated into one document for future reuse; while most of the data had clear documentation, 464 

some data were lost due to undetermined variable definitions and units.  465 

Step 4: Data transfer and compilation 466 

The boxes of data were sent to the graduate students, and digitised data was transferred via a 467 

cloud-based service. The interns recovered data recorded at two different locations, both of 468 

which included similar measurements from plants. Some data were stored as printed scans of 469 

hand-filled datasheets, and thus required digitisation. Other data, which had already been entered 470 

and digitised, were stored in hundreds of text files which required extensive reformatting before 471 

they could be compiled into tidy, usable datasets.  472 

Step 5: Data cleaning and validation 473 
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Standard data cleaning and validation procedures were conducted, such as removing character 474 

values in numeric columns, checking the data for obvious outliers, etc. Extensive work was done 475 

to ensure consistent taxonomy throughout the decades of data collection. 476 

Step 6: Data archiving 477 

The data and metadata of this expansive dataset has been archived and made publicly available 478 

through UofA’s Dataverse repository [47] with a CC-BY licence. 479 

Step 7: Data sharing 480 

All files associated with the data follow FAIR data guidelines, with extensive metadata, files in 481 

non-proprietary file formats, and uploaded to an open data repository with a DOI. 482 

 483 

Box 2.1. Photograph of loose data sheets, maps, reports, and picture slides; these items and 484 

many more filled the boxes of research material left behind by Dr. La Roi. Image credit: A. 485 

Hesketh. 486 

 487 

Out of the Archives and into the (Digital) Light of Day 488 

Theses and dissertations of former graduate students represent a rich source of historical 489 

data. In particular, those prepared prior to the advent of modern computer technologies and 490 

software (e.g., word processors) may contain troves of raw and summary data that remain un-491 

digitized.  492 

Step 1: Data prioritisation 493 

This project was focused on securing the data contained in three, historical graduate theses from 494 

the University of British Columbia (UBC). While the specific questions and research topics 495 
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differed, all three surveyed bird abundances in the same (or nearby) sites in Greater Vancouver, 496 

British Columbia, and combined present an opportunity to establish a baseline against which to 497 

compare current and future trends (Box. 2.S1). These data were prioritised because they were 498 

both at-risk (much of the data existed only in non-digital formats and none of the datasets are in 499 

active use) and deemed of high value (the data provide a valuable frame of reference for studying 500 

changes in urban bird diversity). 501 

Step 2: Team creation 502 

The project was proposed by a graduate student at UBC and was carried out in collaboration with 503 

a data rescue intern. As with the previous case, the original data creators were not directly 504 

involved in the data rescue, although one individual did provide a digital copy of the data 505 

contained within their thesis. 506 

Step 3: Metadata creation 507 

Given the extensive data manipulation required, clear metadata were developed to document the 508 

various steps taken to generate the final datasets and document other details from the theses that 509 

were not captured during the digitization process. 510 

Step 4: Data transfer and compilation 511 

The intern first worked to transcribe and digitise the data from the two earlier theses, which were 512 

only available from the thesis repository as scans of typewritten documents. Among other 513 

challenges, digitisation required the conversion of non-standard data types (Box 2.2) into “tidy” 514 

forms that could be interpreted programmatically. Data from the third thesis [50] were made 515 

available by the original author in a spreadsheet and so only required cleaning, manipulation, and 516 

conversion to a non-proprietary format.  517 

Step 5: Data cleaning and validation 518 

Later work included efforts to rationalise the datasets so they might be used in combination with 519 

each other (e.g., standardising column names and combining similar tables into a single file). 520 

Step 6: Data archiving 521 

The data have been archived on the UBC Scholars Portal Dataverse repository [48-50] and cross-522 

linked to the original theses. 523 

Step 6: Data sharing 524 

The datasets have been archived following FAIR principles, include detailed metadata describing 525 

the data rescue process, use non-proprietary file formats, and have permanent DOIs. 526 
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Box 2.2. Example of non-standard data to be rationalised and digitised, representing the 527 

significance of correlations between habitat features. These symbols were converted to numeric 528 

factors during digitization. Reproduced with modification from Lancaster [49] (see: Appendix 4, 529 

p. 103-104 therein). 530 

 531 

  532 
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