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Abstract 23 

1. The widespread use of species traits to infer community assembly mechanisms or to 24 

link species to ecosystem functions has led to an exponential increase in functional 25 

diversity analyses, with >10,000 papers published in 2010–2019, and >1,500 papers 26 

only in 2020. This interest is reflected in the development of a multitude of theoretical 27 

and methodological frameworks for calculating functional diversity, making it 28 

challenging to navigate the myriads of options and to report details to reproduce a trait-29 

based analysis. Therefore, the study of functional diversity would benefit from the 30 

existence of a general guideline for standard reporting and good practices in this 31 

discipline. 32 

2. We devise an eight-step protocol to guide ecologists in conducting and reporting 33 

functional diversity analyses. We do so by streamlining available terminology, 34 

concepts, and methods, with the overarching goal of increasing reproducibility, 35 

transparency and comparability across studies. The protocol is based on the following 36 

key elements: identification of a research question, a sampling scheme and a study 37 

design, assemblage of community and trait data matrices, data exploration and 38 

preprocessing, functional diversity computation, model fitting, evaluation and 39 

interpretation, and data, metadata and code provision.  40 

3. Throughout the protocol, we provide information on how to best select research 41 

questions and study designs, and discuss ways to ensure reproducibility in reporting 42 

results. To facilitate the implementation of this protocol, we further developed an 43 

interactive web-based application (stepFD) in the form of a checklist workflow, 44 

detailing all the steps of the protocol and providing tabular and graphical outputs that 45 

can be merged to produce a final report. 46 
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4. The protocol streamlined here is expected to promote the description of functional 47 

diversity analyses in sufficient detail to ensure full transparency and reproducibility. A 48 

thorough reporting of functional diversity analyses ensures that ecologists can 49 

incorporate others’ findings into meta-analyses, the shared data can be integrated into 50 

larger databases for consensus analyses, and available code can be reused by other 51 

researchers. All these elements are key to push forward this vibrant and fast-growing 52 

field of research. 53 

 54 

Resumen 55 

1. El amplio uso de los caracteres de las especies para inferir mecanismos que 56 

estructuran las comunidades o vincular especies a funciones ecosistémicas, ha 57 

producido un crecimiento exponencial en los análisis de diversidad funcional, con > 58 

10.000 trabajos publicados en 2010–2019, y > 1.500 publicaciones únicamente en 2020. 59 

Este interés se ve reflejado en el desarrollo de una multitud de enfoques teóricos y 60 

metodológicos para calcular la diversidad funcional, lo que hace desafiante navegar la 61 

miríada de opciones y reportar los detalles necesarios para reproducir un análisis basado 62 

en caracteres. Por lo tanto, el estudio de la diversidad funcional se vería beneficiado con 63 

la existencia de lineamientos generales para el reporte estándar y de buenas prácticas en 64 

esta disciplina. 65 

2. Diseñamos un protocolo de 8 pasos para guiar a ecólogos en el proceso de llevar a 66 

cabo y reportar análisis de diversidad funcional. Para esto, sintetizamos terminología 67 

disponible, conceptos y métodos, con el objetivo primordial de aumentar la 68 

reproducibilidad, transparencia y comparabilidad entre estudios. Este protocolo se basa 69 

en los siguientes elementos clave: identificación de la pregunta de investigación, de un 70 
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diseño de muestreo y de estudio, construcción de matrices de comunidades y caracteres, 71 

exploración y preprocesamiento de datos, cálculo de la diversidad funcional, ajuste, 72 

evaluación e interpretación de modelos, y suministro de datos, metadatos y código. 73 

3. A través de este protocolo, brindamos información sobre cómo elegir las preguntas de 74 

investigación y el diseño de estudio, y discutimos formas para garantizar la 75 

reproducibilidad en el reporte de los resultados. Para facilitar su implementación, 76 

desarrollamos una aplicación web interactiva (stepFD) en forma de flujo de trabajo, 77 

detallando todos los pasos del protocolo y proporcionando tablas y gráficos, que pueden 78 

ser combinados para producir un reporte final. 79 

4. Se espera que este protocolo promueva la descripción de análisis de diversidad 80 

funcional con el suficiente detalle para asegurar una completa transparencia y 81 

reproducibilidad. Un reporte riguroso de los análisis de diversidad funcional garantiza 82 

que los ecólogos puedan incorporar los hallazgos de otros en meta-análisis, que los 83 

datos compartidos puedan integrarse en grandes bases de datos para análisis de 84 

consenso, y que el código disponible pueda ser reutilizado por otros investigadores. 85 

Todos estos elementos resultan clave para impulsar este campo de investigación 86 

vibrante y de rápido crecimiento. 87 

 88 
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Introduction 94 

Failure to reproduce many results in the published literature is causing discussions 95 

among scientists about poor research practices (Baker, 2016; Fanelli, 2018). A lack of 96 

reproducibility (Glossary) hinders our ability to falsify results and to reduce the misuse 97 

of statistics. Poor reporting of experimental protocols and pipelines (Munafò et al., 98 

2017), limited data and code sharing (Tenopir et al., 2011; Culina et al., 2020), and 99 

other issues (e.g., cherry picking statistically significant results, p-hacking, 100 

hypothesizing after the results are known; Fraser et al., 2018) all lead to a lack of 101 

reproducibility. Transparent practices are gaining attention across many domains of 102 

science as a solution to these issues. 103 

 104 

Similar concerns over transparent practices in ecology (Fidler et al., 2017; Fraser et al. 105 

2018; Eckert et al., 2020; Culina et al. 2020) have prompted the development of 106 

protocols to enhance and achieve best standards in data acquisition, analysis, and result 107 

reporting. For example, pipelines and protocols are available for collecting trait data 108 

(Cornelissen et al., 2003; Moretti et al., 2017; Klimešová et al. 2019), conducting 109 

regression-type analyses (Zuur & Ieno, 2016), modelling species distributions (Araújo 110 

et al., 2019; Feng et al., 2019; Zurell et al., 2020), and performing phenotypic selection 111 

analyses in evolutionary ecology (Palacio et al., 2019).  112 

 113 

Conversely, discussions about reproducibility are still incipient in trait-based ecology 114 

(Glossary). Trait-based studies have increased exponentially in the last 20 years (Figure 115 

1), advancing our understanding of the impact of global change on biodiversity 116 

(Newbold et al., 2020), ecological resilience (He et al., 2011; Pausas et al., 2016), and 117 
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determinants of assembly rules (Mouillot et al., 2021). As a result, functional diversity 118 

has emerged as one of the core constructs in trait-based ecology at the community level 119 

(Petchey & Gaston, 2002), prompting the development of an array of methods and 120 

metrics (see Mammola et al., 2021 for an overview). This myriad of options has led to 121 

confusion when selecting appropriate methods for answering specific ecological 122 

questions (Carmona et al., 2016; Mammola et al. 2021), and made it difficult to keep 123 

track of, and navigate, an ever-growing flood of new concepts and approaches. The field 124 

of functional diversity would thus greatly benefit from having general guidelines for 125 

standard reporting of all steps of a trait-based study. 126 

 127 

Here, we developed an eight-step protocol to maximise reproducibility in functional 128 

diversity analyses (Figure 2). We suggest that trait-based studies should start with the 129 

conceptualization of an ecological question, generally ingrained in a theoretical 130 

hypothesis-driven framework (Step 1). A clear ecological rationale then informs an 131 

appropriate experimental design (Step 2). Next, occurrence (Step 3) and trait (Step 4) 132 

data for individuals or species—the raw material of any trait analysis—are collected. 133 

Data exploration (Step 5) precedes the core of the analysis to estimate functional 134 

diversity (Step 6), and the validation, interpretation, and reporting of results (Step 7). 135 

The last step considers all the procedures to maximise the clarity and reproducibility of 136 

the proposed pipeline (Step 8). 137 

 138 

Preface: three general principles for the sharp functional ecologist 139 

Three main principles should be considered in all the steps of the protocol.  140 
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i) The question(s) and hypothesis(es) dictate analytical and conceptual choices. One 141 

should always fine-tune the selection of the study design, traits, and methods to most 142 

effectively answer the proposed research questions. Knowing the strengths and 143 

limitations of the different frameworks and methods prior to analysis is essential, as 144 

each might provide different answers to the same questions and data (e.g., trade-offs 145 

between predictive power and extrapolation). Importantly, the limitations of the 146 

approach selected should be acknowledged (Mammola et al. 2021).  147 

 148 

ii) The peculiarities of the organisms/ecosystems under study should be considered 149 

when determining the questions, choice of traits, and methodology. Understanding how 150 

a system functions is crucial to making sound methodological choices—though 151 

admittedly this is not always possible, and may in itself represent one of the research 152 

targets. This requires collecting all the available information on the study system, and 153 

often collaborating closely with experts on the taxa assessed to reveal different 154 

information gaps before testing hypotheses under a functional diversity framework.  155 

 156 

iii) All conceptual, analytical, and computational choices made to answer the research 157 

question(s) should be clearly justified and concisely documented. For example, rather 158 

than stating “... we used the trait probability density approach (Carmona et al., 2016) to 159 

analyse the data” we suggest to briefly justify the reason—“... we selected the trait 160 

probability density approach (Carmona et al., 2016) because we were interested in a 161 

probabilistic representation of the trait space and because this approach allowed us to 162 

take into account intraspecific variation in traits”.  163 

 164 
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Step 1. Identify an appropriate research question 165 

Since any scientific study begins with a question or hypothesis, establishing a salient 166 

and feasible one prior to collecting data is critical. Because resources are often limited, 167 

one should also ensure that the question addressed has theoretical and/or applied 168 

relevance, while being methodologically (e.g., computationally) and logistically (e.g., 169 

time- and money-wise) feasible. The academic community currently rewards ‘novel’ 170 

contributions (Mammola, 2020). However, authors might also be interested in an 171 

exploratory analysis (Yanai & Lercher, 2020), in addressing questions not novel per se 172 

but that still provide a valuable applied perspective (e.g., for conservation or 173 

management), or evaluating previous inferences with confirmatory studies (Nilsen et al., 174 

2020). Once a salient question is established, it is important to determine whether a 175 

trait-based approach is relevant to answering it. For example, if the research question 176 

involves understanding the drivers of temporal change in community composition of a 177 

given system, researchers must evaluate whether employing a trait-based approach 178 

might provide more in-depth (or complementary) insights into that question than 179 

taxonomic or phylogenetic approaches. 180 

 181 

There are two main tenets in answering scientific questions: the hypothetico-deductive 182 

(formulating hypotheses first, and then testing these hypotheses by collecting data) and 183 

inductive (collecting empirical observations first, and then generating hypotheses based 184 

on those observations) paradigms (Mentis, 1988). In the context of hypothetico-185 

deductive approaches, ‘strong inference’ (i.e., devising a set of competing hypotheses, 186 

obtaining data and designing experiments to test these hypotheses) emerged to address 187 

the complexity of natural systems by exclusion of alternative hypotheses (Platt, 1964). 188 

Many have argued that a hypothetico-deductive scheme has led to more advancements 189 
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in scientific understanding (Platt, 1964; Betts et al., 2021), but the inductive scheme 190 

also plays an important role in creating foundational knowledge (Mentis, 1988). In trait-191 

based ecology, the choice between hypothetico-deductive and inductive frameworks is 192 

often guided by the taxa under study and the scale of analysis. For instance, plants and 193 

microorganisms are relatively easy to experimentally manipulate in terms of their 194 

abundance and trait values at small spatio-temporal scales, and thus allow easier 195 

implementation of the hypothetico-deductive scheme. By contrast, trait-based analyses 196 

in animals across large spatial and temporal scales analyses often fall under an inductive 197 

scheme because correlation techniques, instead of experimental manipulation, are most 198 

often employed. Finally, testing a hypothesis is not always necessary or desirable. For 199 

example, one might be interested in describing or predicting an ecological response with 200 

the highest accuracy for practical reasons (e.g., conservation planning), in which case 201 

predictive power overcomes the ability to interpret ecologically a model (Currie, 2019; 202 

Betts et al., 2021).  203 

 204 

Step 2. Identify an appropriate experimental design 205 

The choice of the study design—observational, experimental, or simulation—should be 206 

dictated by the research question(s) (Step 1). Observational studies facilitate insights 207 

into ecological patterns, but their ability to disentangle the mechanisms underlying a 208 

pattern is limited because many factors often interact to produce the observed patterns 209 

(de Bello et al., 2012; Spasojevic & Suding, 2012). Even though methods to model this 210 

complexity are available (e.g., structural equation models), observational studies can 211 

rarely distinguish correlation from causation. In contrast, experimental studies allow 212 

controlling for major confounding factors inherent to natural settings. In the context of 213 
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trait-based ecology, for example, an experiment allows isolating the role of biotic 214 

interactions (e.g., competition) in determining functional diversity at smaller scales, 215 

whereas observational data could reveal macroecological patterns of trait diversity 216 

across larger spatio-temporal scales. In parallel, simulations can be used to link patterns 217 

revealed from observational studies with putative processes to evaluate conditions in 218 

which a given process might result in an observed pattern. Simulations can also pinpoint 219 

numerical properties and statistical artifacts, which is especially important in trait-based 220 

ecology where subjective choices, e.g., on the number, types and measures of traits, are 221 

routinely made (McPherson et al., 2018; Step 4).  222 

 223 

In addition to these decisions a researcher should make when designing the study, there 224 

are also limitations based on the type of available data (Steps 3 and 4). Available 225 

databases vary in relation to their spatial coverage and extent, with spatio-temporal 226 

resolution typically decreasing with spatial extent (Hulbert & Jetz, 2007). Occurrence 227 

and trait data sources (opportunistic, historical or collected/experiment) are a primary 228 

consideration when designing a study, and community science datasets (Callaghan et 229 

al., 2021) and museum/herbarium collections are becoming increasingly important in 230 

trait-based ecology (e.g., Perez et al., 2020).  231 

 232 

The identification of an appropriate sampling design is a crucial next step after the study 233 

design has been chosen. This should be primarily driven by the research question (Step 234 

1), and secondarily by the scale of the focal ecological phenomenon (McGill, 2010) and 235 

the level of organization at which functional diversity will be assessed (e.g., individuals 236 

within a population, populations forming an assemblage; Violle et al., 2014). 237 
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 238 

Step 3. Assemble a community data matrix 239 

Once the data collection has been conducted following the selected experimental design 240 

(Step 2), acquired data need to be tabulated in a meaningful way to explore functional 241 

diversity.  242 

 243 

Observations are organised in a community data matrix C holding occurrence data. In 244 

the most general case, this is a matrix of S rows × N columns, where rows (i = 1, 2, …, 245 

S) represent sampling units (e.g., sites, plots, transects) and columns (j = 1, 2, …, N) 246 

represent taxonomic entities of interest (typically species, but also individuals or higher 247 

taxonomic ranks) found within each sampling unit. This basic matrix can be expanded 248 

to a set of temporal replicates or a set of individuals when accounting for intraspecific 249 

variation. In describing the matrix C, one should specify taxonomic resolution, sample 250 

sizes (i.e., number of sampling units, temporal replicates), number of recorded taxa, and 251 

sampling effort. 252 

 253 

Occurrence data may take multiple forms with different ecological meanings, which 254 

should be clarified. Incidence (presence/absence) and abundance (number of 255 

individuals) data have historically been most commonly used in community ecology, 256 

though presence-only data or model-based estimates of species incidence/abundance 257 

have also been used. Other types of data, such as biomass and percent cover in sessile 258 

organisms, are often treated as abundance proxies or transformed into incidence data 259 

(e.g., Riva et al., 2020).  260 



12 
 

 261 

All these types of data can come from different sources. Besides laboratory/field 262 

experiments and traditional observations, rapid progression in monitoring technologies 263 

(e.g., remote sensing, acoustic sensors, camera traps, environmental DNA, 264 

metabarcoding) has enabled ecologists to automate extraction of massive amounts of 265 

biodiversity data from different environmental media (e.g., water, soil, or air), and 266 

identify taxa associated with the environment with high accuracy (Tosa et al., 2021). 267 

Whilst promising, the use of these data sources is still at an incipient state in trait-based 268 

ecology (e.g., Gasc et al., 2013; Schneider et al., 2017; Aglieri et al., 2020; Sigsgaard et 269 

al., 2020). Given method-specific technical limitations (e.g., amplification of a large 270 

proportion of nontarget sequences and degradation time of DNA), we suggest always 271 

reporting whether sampling effort has been adequate to capture taxonomic diversity—272 

e.g., through rarefaction techniques (Roswell et al., 2021).  273 

 274 

Step 4. Assemble a trait data matrix 275 

The second key element of any functional diversity analysis is the use of species traits 276 

linking species roles in ecosystem functioning. Traits include a variety of 277 

morphological, behavioural, physiological, anatomical, biochemical, or phenological 278 

attributes that have the potential to impact the individual’s fitness (Violle et al., 2007; 279 

Sobral, 2021). These traits provide the raw material to build the trait data matrix T, a 280 

matrix of N rows × p columns where rows (i = 1, 2, …, N) represent the taxonomic 281 

entities of interest (univocally corresponding to the N columns in the C matrix), and 282 

columns (j = 1, 2, …, p) represent traits. The matrix T can easily accommodate multiple 283 

measurements per trait (e.g., when intraspecific variation in traits is of interest, N would 284 
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then equal the total number of trait measurements). We recommend specifying the 285 

functional traits used in the analysis, their nature (continuous, categorical, ordinal or 286 

ratio; Pavoine et al., 2009), and sample size per trait. 287 

 288 

Most functional diversity studies rely on species’ mean trait values—i.e., averaged 289 

across traits measurements collected from multiple individuals per species (‘mean field 290 

approach’ sensu Violle et al., 2012). This relies on the assumption that among-species 291 

trait variation largely exceeds intraspecific trait variation. However, growing evidence 292 

challenges this view (Albert et al., 2011; Palacio et al., 2019; Gentile et al., 2021; Wong 293 

& Carmona, 2021). For instance, intraspecific trait variation may increase along an 294 

environmental gradient due to phenotypic plasticity and/or local adaptation (Günter et 295 

al., 2019). As a result, two communities with the same species composition may have 296 

different trait distributions and thus different functional diversity. Our protocol therefore 297 

calls for a clear statement whether trait data are described by measurements collected 298 

from several individuals and averaged at the species level, or if intraspecific variation 299 

has been taken into account and at which organization level (e.g., site, populations, 300 

species, tree, leaves).  301 

 302 

Selecting how many traits to include is also not trivial. For instance, there might be 303 

trade-offs between using a low number of traits and having high functional redundancy 304 

and limited variability to properly estimate functional diversity, or using a high number 305 

of traits and having low functional redundancy leading to many unique combinations of 306 

trait values (in the most extreme case, functional diversity may equal species richness; 307 

Petchey & Gaston, 2002). A common practice is to reduce the number of multiple 308 
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correlated traits to a set of a few ecologically meaningful dimensions (Maire et al. 309 

2016), e.g. using ordination methods (Step 5). Mouillot et al. (2021) showed that 310 

between 3 and 6 functional axes should be enough to accurately describe the matrix T 311 

without significant information loss. Yet, there is considerable variation among 312 

taxonomic groups (Díaz et al., 2016; Pigot et al., 2020) and this inference was based on 313 

a single method for estimating functional diversity—convex hull (Mouillot et al., 2021). 314 

Ultimately, the optimal number of axes will be system-, taxon-, method-, and metric-315 

dependent, and often rests upon available computing power. 316 

 317 

The ecological rationale for which traits are selected in an analysis is equally important 318 

and should be carefully detailed, along with their hypothesized functions (Luck et al., 319 

2012). For instance, Lavorel and Garnier (2002) classified species traits into response 320 

and effect traits (Glossary). Response traits indicate the response of organisms to 321 

environmental factors, whereas effect traits determine the effect organisms have on 322 

ecosystem functioning, though these categories are not mutually exclusive. Another 323 

heuristic to classify traits is the ‘soft’ and ‘hard’ traits dichotomy (e.g., Hodgson et al., 324 

1999; Cornelissen et al., 2003; Nock et al., 2016) (Glossary). ‘Hard’ traits are accurate 325 

indicators of species functions within ecosystems and are often physiological or 326 

ecological traits (e.g., growth rate, phenology). In contrast, ‘soft’ traits are proxies for 327 

such functions and tend to be morphological or anatomical (e.g., body size, plant 328 

height). ‘Hard’ traits are generally either difficult or expensive to measure in practice 329 

(Hodgson et al., 1999) and are thus often substituted by ‘soft’ traits whose collection is 330 

less expensive.  331 

 332 
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Trait data can be also measured directly from individuals (e.g., in the field/laboratory or 333 

from museum specimens), or extracted from different sources (e.g., peer-reviewed 334 

literature, field guides, online databases; Supporting Information), or a combination of 335 

the above. Trait resolution (Glossary) should be carefully considered, particularly when 336 

different data sources are combined, as differences in resolution may tangle ecological 337 

patterns and bias inference (Cordlandwehr et al., 2013; Palacio et al. 2019; Kohli & 338 

Jarzyna, 2021). 339 

 340 

Importantly, we recommend detailing the traits used, their nature (e.g., indicating their 341 

possible states or range values, the ontogenetic stages of the sampled individuals, 342 

whether these are response/effect or soft/hard traits), and their hypothesized ecological 343 

function(s). The methods should also contain all relevant information on trait data 344 

sources. If trait data are retrieved from online databases, then information on version 345 

and access date should be provided.  346 

 347 

Step 5. Explore and prepare the data 348 

Data exploration is perhaps one of the most informative, yet often overlooked, steps of 349 

analysing an ecological dataset (Zuur et al., 2010). When inspecting the community data 350 

matrix (Step 3), one has to carefully check for the existence and potential causes of 351 

zero-inflation in occurrence data (these can be true zeros or an artifact due to, e.g., 352 

imperfect detection, species misidentification, or poor sampling design; Roth et al., 353 

2018; Blasco-Moreno et al., 2019), dependency structures (e.g., pseudoreplication due 354 

to spatio-temporal autocorrelation), and potential problems due to uneven spatio-355 

temporal sampling effort (e.g., Walker et al., 2008; Ricotta et al., 2012). Trait data (Step 356 
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4) are often a mixture of numerical, ordered, fuzzy, and/or categorical variables that 357 

should be examined for correlation. Trait data can also be characterized by unbalanced 358 

levels in categorical traits, outliers in continuous traits, and missing data, all of which 359 

might introduce biases into the functional diversity estimation (Step 6), and thus should 360 

be closely investigated.  361 

 362 

Exploratory analyses for functional diversity datasets are no different from those 363 

routinely performed in other ecological research areas (e.g., Zuur et al., 2010). As a 364 

general pipeline, we recommend to: 365 

1. Plot the community data matrix (e.g., heatmaps) to check whether there is a high 366 

frequency of zeroes (Box 1). 367 

2. Check species sampling coverage (e.g., rarefaction). 368 

3. Plot the distribution of continuous traits (e.g., with histograms, density plots, 369 

Cleveland dot plots, correlograms, and boxplots) to check for outliers. Plot 370 

categorical traits (e.g., with barplots) to check the balance of levels in fuzzy and 371 

categorical variables. 372 

4. Evaluate multicollinearity among continuous traits (e.g., with scatterplots, pairwise 373 

correlations) and associations between continuous and categorical traits (e.g., with 374 

boxplots). 375 

5. Identify missing trait data (e.g., with barplots or heatmaps); if any, decide how to 376 

handle them (Box 2). 377 

 378 

These simple steps provide a better understanding into the nature of, and the issues 379 

inherent to the data, and thus allow making informed decisions on how to best approach 380 
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the analysis. Depending on the outcome of initial data exploration, researchers might 381 

need to decide: (1) whether statistical corrections, e.g., rarefaction of the data or account 382 

for species’ imperfect detection, are needed to remove biases in the data (Box 1); (2) 383 

how to handle missing data (Box 2); (3) how to deal with collinearity (e.g., remove 384 

collinear traits, reduce dimensionality with ordination methods, identify set of 385 

correlated traits to define functional groups); (4) how to handle outliers, which might 386 

either be of interest to the research question (e.g., Violle et al., 2017; Carmona et al., 387 

2017) or might need to be removed to avoid inflating the outcome of functional 388 

diversity estimation; and (5) whether to weight the traits and/or transform them with 389 

dissimilarity measures or methods to reduce dimensionality to comply with the 390 

assumptions of the implemented technique (Step 6). 391 

 392 

The Methods section can include a statement such as ‘Data exploration was conducted 393 

following the recommendations provided in Palacio et al. (2022)’ together with a brief 394 

explanation of the problems and decisions made.  395 

  396 

Step 6. Estimate functional diversity 397 

Once the sampling design has been set up and implemented (Step 2), and data 398 

assembled (Step 3–4) and cleaned (Step 5), it is time to estimate functional diversity to 399 

evaluate whether meaningful patterns exist that can be linked to the primary question of 400 

interest (Step 1).  401 

  402 

If summarizing or comparing univariate trait characteristics is the principal goal of the 403 

study, then raw trait data can often be used without any data transformation. The most 404 
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common example of a univariate functional diversity metric that uses raw trait data is 405 

the community-weighted mean (Garnier et al., 2004; Lavorel et al., 2008), which 406 

summarizes the mean trait value of all individuals or species in the population or 407 

assemblage (for continuous traits) or the proportion of species that hold a given 408 

categorical value of that trait (for discrete traits).  409 

 410 

If the focus of the study is on multivariate functional diversity, then this is achieved by 411 

first constructing a trait space(s) of the study system(s) from the T matrix and then 412 

summarising it/them into meaningful descriptive metric(s) after accounting for the 413 

information in the C matrix (Mammola et al., 2021). The first step in constructing a trait 414 

space is creating a trait dissimilarity matrix for all pairs of individuals or species. 415 

Caution must be exercised when choosing a dissimilarity metric as well as weights for 416 

each of the traits. For highly dimensional trait data, with a combination of continuous, 417 

fuzzy coded, categorical, and binary traits, the Gower’s distance (Pavoine et al., 2009; 418 

de Bello et al., 2021a) is a sound option because it can handle different types of traits 419 

and balances the contribution of traits and trait groups to overall dissimilarity (de Bello 420 

et al., 2021b). A common practice in trait-based ecology is to assign the same weight to 421 

each trait (e.g., Jarzyna et al., 2021), but researchers might choose to weigh their traits 422 

differently depending on research goals. 423 

  424 

Several methods exist to construct a trait space from the trait dissimilarity matrix, 425 

including functional dendrograms (Petchey & Gaston, 2002), convex hulls (Cornwell et 426 

al., 2006), and probabilistic hypervolumes (Blonder et al., 2014, Carmona et al., 2016, 427 

2019; Mammola & Cardoso, 2020). Functional dendrograms, often created following a 428 

clustering procedure that ensures preserving original distances in the dissimilarity 429 



19 
 

matrix (e.g., UPGMA, Mérigot et al., 2010), represent discrete and categorical trait data 430 

fairly accurately, but perform poorly for continuous traits. Convex hulls and 431 

hypervolumes represent differences based on continuous traits more accurately and 432 

additionally allow accounting for multicollinearity among traits (via an intermediate 433 

step of Principal Coordinate Analysis; see Step 5), but are computationally more 434 

demanding. 435 

  436 

Once the trait space is constructed, one can calculate functional diversity metrics 437 

suitable to tackle the research questions at different levels of organisation—individual 438 

observations used to construct the trait space, trait space level (alpha FD), pairwise 439 

comparisons of trait spaces (beta FD), or the whole system (gamma FD). A 440 

comprehensive characterisation of a trait space typically includes quantifying three 441 

components of functional diversity: richness, divergence and regularity (Mammola et 442 

al., 2021). Functional richness measures the total breadth of functional diversity in a 443 

system. For functional dendrograms, functional richness is quantified as a sum of the 444 

dendrogram branch lengths (Petchey & Gaston, 2006), sometimes weighted by 445 

abundance or detection-corrected probability of species occurrence (Jarzyna & Jetz, 446 

2016). For convex hulls, functional richness is defined as the size of the minimum 447 

polygon that encloses all species (Mason et al., 2005), and for probabilistic 448 

hypervolumes it is a measure of the volume of the hyperspace (Mammola & Cardoso, 449 

2020). Functional divergence represents how incidence or abundance of species is 450 

spread along a functional trait axis, within the range occupied by a given assemblage 451 

(Villéger et al., 2008); it is often quantified as the average distance among observations 452 

or the mean distance of species to the centroid of their shared trait space (Villéger et al., 453 

2008; Laliberté & Legendre, 2010; Mammola et al., 2021). Lastly, functional regularity 454 
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can be computed as the regularity of branch lengths in dendrograms (Villéger et al., 455 

2008) or, for hypervolumes, as the overlap between the observed hyperspace and a 456 

hypothetical hyperspace where traits and abundances are evenly distributed (Carmona et 457 

al., 2016; Mammola & Cardoso, 2020). No approach is currently available for 458 

estimating dispersion and regularity of convex hulls (Mammola et al., 2021).  459 

 460 

Note that most approaches to study functional diversity can also integrate intraspecific 461 

variation in community-level calculations, including functional dendrograms 462 

(Cianciaruso et al., 2009, Cardoso et al., 2015), weighted sums of trait probability 463 

distributions across organizational levels (Carmona et al., 2016, 2019), or the union of 464 

species-level functional hypervolumes (Mammola & Cardoso, 2020; Graco-Roza et al., 465 

2021) (see Step 6). 466 

 467 

When obtaining the multiple components of functional diversity, we advise that 468 

researchers are consistent in the construction of the trait space, namely using a single 469 

trait space representation for all estimations (e.g., either a functional dendrogram or a 470 

multivariate space).  471 

 472 

Finally, some descriptors of functional diversity (e.g., functional richness) are closely 473 

associated with species richness and their interpretation relies on statistically controlling 474 

for this association. This is typically done via null models calculating standardized 475 

effect sizes (SES) for functional diversity metrics, wherein species richness-controlled 476 

values of functional diversity are obtained by randomizing species incidence or 477 

abundance values while keeping species richness constant (Mason et al., 2013; see 478 

Götzenberger et al. (2016) for an in-depth discussion on null models). 479 
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 480 

Step 7. Validate and interpret the results 481 

Depending on the primary research question (Step 1), functional diversity metrics (both 482 

absolute and those corrected for species richness) might be further used in statistical 483 

analysis to link functional diversity with different ecological predictors. A vast number 484 

of models are available in the literature, yet most statistical approaches relate functional 485 

diversity metrics through space or time with different environmental variables [e.g., 486 

generalized additive or linear (mixed) models, structural equation models, machine 487 

learning algorithms, null models]. Regardless of the approach, key elements to report 488 

include effect sizes, uncertainty estimates (e.g., standard errors, credible intervals) and 489 

model support (e.g., Information Criteria, variance explained, discriminatory power). 490 

Providing an absolute measure of model goodness-of-fit is crucial to assess how well it 491 

explains or predicts the ecological response(s) (Mac Nally et al., 2018). How to report 492 

statistical models is beyond the scope of this paper, and we refer the reader to Zuur and 493 

Ieno (2016) for presenting results in regression-types analyses. 494 

 495 

After model fitting, researchers may desire to determine the generality in their results 496 

through validation. Validation determines how a model performs across contexts, either 497 

through the application to a novel (or partly novel) dataset, or through the comparison 498 

of the model’s performance with one based on simulations of settings where the process 499 

of interest is eliminated, i.e., null models. Validation can help determine the limitations 500 

of an analysis in terms of its ability to explain phenomena or to extrapolate to new 501 

scenarios. 502 

 503 
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Validation of results in functional diversity analyses should follow standard statistical 504 

procedures, which depend on the type of question and model. It is often required to use 505 

independent training, validation and testing datasets when the goal is predicting beyond 506 

the range of values in the data (e.g. future predictions). Resampling methods such as 507 

jackknife or cross-validation are often needed when data are limited or present 508 

autocorrelation structure (Roberts et al., 2017), particularly for extrapolation. 509 

 510 

After results have been validated, they must be interpreted in order to understand the 511 

implications of the analysis. The same trait might represent different processes for 512 

different taxa or in different contexts. As an example, larger body size might imply a 513 

limitation of resource availability for animals, but may allow plants to outcompete 514 

others in the search for light. Similarly, the same function might be represented by 515 

different traits in different taxa. For example, dispersal ability is represented by the ratio 516 

between wing and body size and shape for many insects (Lancaster & Downes, 2017), 517 

the ability and propensity to balloon for spiders (Bonte et al., 2003), the seed size and 518 

dispersal modes for aquatic plants (de Jager et al., 2019), and the tendency to be 519 

entrained in long-distance transport vectors in invasive species (Hastings et al., 2005). 520 

 521 

Plots are often the most effective way to present information in science (Krause & 522 

O’Connell, 2012) and, whenever possible, we recommend visually presenting the 523 

results to aid interpretability. There are many guidelines that can help thinking 524 

creatively about impactful and clear figures (e.g., Rougier et al., 2014; Crameri et al., 525 

2020). Graphical visualisation of results also helps in validating the results, e.g., to 526 

detect errors and interpret patterns.  527 
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 528 

Step 8. Ensure reproducibility 529 

Proper data curation, management, and archival standards should be followed to 530 

maximise the transparency and theoretical reproducibility of a study. The FAIR guiding 531 

principles for scientific data management suggest that data should be Findable, 532 

Accessible, Interoperable, and Reusable (Wilkinson et al., 2016). Below, we outline 533 

mechanisms that could help the field of trait-based ecology conform to these guiding 534 

principles. 535 

 536 

Findable data, metadata, and code, should be properly documented and referred to by a 537 

unique identifier. One straightforward way of accomplishing this is through the 538 

deposition of data and code used in analyses into an archival/repository service which 539 

provides digital object identifiers (DOIs). Static repositories such as Zenodo, Dryad, 540 

and FigShare are useful for preserving the state of the code used in analysis at the time 541 

of publication. GitHub does not automatically provide a DOI itself for repositories, but 542 

does facilitate linkages to Zenodo to archive specific versions of code used in research. 543 

Research is accessible through the sharing of these data, metadata, and code, typically 544 

achieved by linking these to the paper via a Data Availability Statement. While there are 545 

inevitable limitations in the types of data that can be shared freely, the use of sample 546 

data that is sufficient to reproduce the analysis, or the use of anonymized data when 547 

there are confidentiality concerns is encouraged within existing data license agreements 548 

(e.g., Tulloch et al., 2018). Moreover, whenever possible, open-source protocols should 549 

be used ensuring the research is accessible in the future. Creating a research data 550 

management plan (Supporting Information) before beginning a functional diversity 551 
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analysis can ensure that contributors have an understanding of the storage requirements 552 

and data privacy considerations for the project well in advance of publication. 553 

 554 

For data files, fields that contain information should be summarized by metadata that 555 

describe the type of data and their origin. These metadata should be provided with the 556 

original, archived data file. This is particularly important for functional diversity, where 557 

it is common practice to obtain trait information from many sources. The original 558 

sources of data should be properly referenced and identified allowing for 559 

interoperability and reusability in the future, and database versions wherein download 560 

dates should be clearly specified. Code utilized in the analysis should be well 561 

documented, including in-line comments (Culina et al., 2020). Additionally, code 562 

authors should consider the versions of various software and packages used in analysis 563 

and how changes to those versions may impact reproducibility over time. We also 564 

recommend citing the software, library, or R packages used, and their version. Correct 565 

citations can be obtained via the R command citation() or other tools that facilitate 566 

retrieving and formatting references to packages, such as grateful 567 

(https://github.com/Pakillo/grateful). Note that we refer here to R (R Core Team 2020) 568 

as it is the most common analytical environment in ecology (Lai et al., 2019), but the 569 

same logic applies to any other software or programming language used for the 570 

analyses. 571 

 572 

Many researchers find themselves thinking about reproducibility after a project is 573 

completed—even here, we have included reproducibility as the final step!—but we 574 

stress that FAIR practices should be implemented from a project’s inception. The Open 575 
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Science Framework provides an online platform to link data and code storage systems 576 

(including Dropbox, OneDrive, GitHub, and their own cloud storage). This architecture 577 

allows the merging of hosting platforms more suited for code with more visually-578 

oriented project wiki pages for protocols, methodology, and analysis. The use of these 579 

stable cloud storage platforms by research groups also ensures long-term availability of 580 

all project components within a lab in spite of researcher turnover. 581 

  582 

Web application  583 

To aid researchers and students in the task of performing trait-based analyses, we 584 

developed a Shiny web app that goes through the proposed protocol. The stepFD app 585 

allows users to check the requirements needed at each step to fully reproduce their 586 

study, as well as to explore their data through statistical summaries and interactive plots 587 

(e.g., heatmaps and rarefaction curves for community data, correlations and multivariate 588 

trait spaces for trait data, functional diversity metrics computation, cross-validation 589 

tools). Given the plethora of available metrics to compute functional diversity, we 590 

arbitrarily relied on probabilistic hypervolumes as a unified framework to estimate the 591 

richness, divergence and regularity facets of functional diversity (Mammola & Cardoso, 592 

2020). The decisions made at each step may be submitted to the app to create a final 593 

report. We stress that the app is intended to aid students and researchers in performing a 594 

transparent and reproducible functional diversity analysis, and operates mainly as an 595 

exploratory and data visualisation tool. For those interested in more rigorous statistical 596 

analyses and computation of other functional diversity metrics, we refer the reader to R 597 

packages in Table 1. The Shiny app, including datasets generated for demonstrations, is 598 

available at https://facuxpalacio.shinyapps.io/stepFD/, and the source code is available 599 

from GitHub (https://github.com/facuxpalacio/stepFD). 600 
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 601 

Conclusions: what’s next? 602 

Our protocol offers a set of simple guidelines aimed at maximizing reproducibility, 603 

transparency and consistency of functional diversity analyses (Figure 2). Hoping that 604 

the protocol will provide a foundation for a more reproducible and transparent trait-605 

based ecology and beyond, we would like to leave the reader with a few points of 606 

reflection. 607 

 608 

(1) Be flexible: do not limit yourself. While the protocol structure may appear dogmatic, 609 

our goal is not limiting creativity and lateral thinking. To us, this protocol is a flexible 610 

tool to aid researchers in navigating functional diversity and in remembering key pitfalls 611 

and steps to document transparently a trait-based study. However, some of the steps 612 

presented here may not apply under specific circumstances—e.g., there are cases where 613 

it is not advisable to share sensitive data (Tulloch et al. 2018)—and specific research 614 

questions may require that one violates some of our recommendations (e.g., night 615 

science; Yanai & Lercher 2020). 616 

 617 

(2) Be a giant: offer your shoulders. The correct reporting of methods and statistics, as 618 

well as sharing data and codes, provides the foundation for other scientists to build upon 619 

your work. A thorough description of sample sizes, statistics, and model estimates 620 

ensures that others can incorporate your findings into meta-analyses (Gerstner et al. 621 

2017); the shared data can be integrated into larger databases for consensus analyses 622 

(e.g. Mouillot et al. 2021, Graco-Roza et al. 2021); and available code can be reused by 623 

other researchers. Whether one sees this altruistically, as a collaborative effort to 624 
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advance science as a whole, or opportunistically, as a way to increase one’ own citations 625 

and credibility in the field, the long-term benefits are undisputed. 626 

 627 

(3) Be informed: find your way through the jungle of metrics. As we have shown, 628 

functional ecology is a vibrant and fast-growing field of research (Figure 1). We have 629 

touched upon examples of methods and metrics based on the current literature, but new 630 

tools and approaches are being developed continuously, and one must keep up with the 631 

literature to make the best out of this field (Mammola et al. 2021). Even though new 632 

methods will become available and concepts will emerge in the future, we believe that 633 

the key underlying philosophy and motivations of this protocol will remain valid and 634 

applicable. 635 

 636 

(4) Be permeable: exchange with other disciplines. Functional diversity represents only 637 

one of multiple frameworks within ecology. The constant interaction and integration 638 

with other disciplines forming the broader biodiversity research platform (e.g., 639 

taxonomy, phylogeny) is fundamental to answer questions and test hypotheses relevant 640 

to functional diversity itself.  641 

 642 

All in all, we envision our protocol as a set of good practices and starting points (not as 643 

a ‘research shackle’ for ecologists!), and we are convinced that, as other standard 644 

protocols did, may boost effective communication and enhanced understanding of 645 

upcoming functional diversity research. 646 

 647 
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GLOSSARY, TABLES, BOXES, AND FIGURES 1117 

Glossary 1118 

Day / Night science. Day science refers to a hypothesis-driven mode of scientific 1119 

research, structured by rigorous assessment of hypotheses through experiments, whereas 1120 

night science stands for a creative process of scientific research, involving creation of 1121 

novel hypotheses (Yanai & Lercher, 2020). 1122 

 1123 

Effect / Response trait. Effect traits reflect the role organisms have on ecosystem 1124 

functioning, whereas response traits indicate the response of organisms to 1125 

environmental factors (Lavorel & Garnier, 2002). Note that response and effect traits 1126 

are not necessarily mutually exclusive categories. For instance, body mass in 1127 

frugivorous birds influences the number of seeds ingested and seed dispersal distances 1128 

(i.e., it is an effect trait; Godínez-Álvarez et al., 2020), but disturbance of habitat and 1129 

hunting negatively impacts large-bodied species (i.e., it also acts as a response trait; 1130 

Galetti et al. 2013). In plants, leaf dry matter content (Cornelissen et al., 2003; Garnier 1131 

et al., 2004) tends to respond negatively to water availability and positively to 1132 

temperature (it is a response trait) while greatly affecting ecosystem functioning through 1133 

litter decomposability and soil nutrient cycling (it is an effect trait). 1134 

 1135 

Functional diversity (= trait diversity, FD). A characterization of life diversity in terms 1136 

of the diversity of functions (Malaterre et al., 2019). Operationally, any mathematical 1137 

estimation of the diversity of traits of individuals composing a given group (a 1138 

community, an ecosystem, and so on), from simple measures of trait distributions 1139 

(means, standard deviation, coefficient of variation, kurtosis) to the plurality of 1140 
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functional diversity indices developed in the last two decades (refer to Mammola et al., 1141 

2021 for an overview). 1142 

 1143 

Hard / Soft trait. Hard traits accurately reflect species functions but are often difficult 1144 

and/or expensive to measure, whereas soft traits are proxies for such functions and are 1145 

often easier and/or inexpensive to collect data for (Weiher et al., 1999; Hodgson et al. 1146 

1999). The thermal tolerance of a species as estimated via a physiological experiment is 1147 

an example of ‘hard’ trait, whereas the ‘soft’ version of this trait could be inferring 1148 

thermal tolerance from the temperature conditions found across the species range. 1149 

 1150 

Intraspecific trait variation. Trait variance of a group of individuals of the same species. 1151 

It results from phenotypic plasticity or local adaptation of different genotypes along 1152 

environmental gradients or in response to biotic interactions (e.g., competition or 1153 

mutualism). 1154 

 1155 

Replicability. The process of replicating a certain study using different datasets and/or 1156 

model systems. A lack of replicability occurs when qualitatively different results are 1157 

obtained applying the same analytical approach. 1158 

 1159 

Reproducibility. The process of repeating analyses conducted by others. A lack of 1160 

reproducibility occurs when different results are obtained when re-analysing the data 1161 

reported in a paper.  1162 

 1163 
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Trait. Any phenotypical entity—morphological, anatomical, ecological, physiological, 1164 

behavioural, phenological—measured on individual organisms at any scale, from gene 1165 

to whole organism, and which can be scaled up from individuals to genotype, 1166 

population, species, community, or ecosystem (Violle et al., 2007; Volaire et al. 2020).  1167 

 1168 

Trait resolution. The coarseness of measured traits, ranging from highest-resolution 1169 

continuous measurements to lowest-resolution binary categories (Kohli & Jarzyna, 1170 

2021). Body size measured on a continuous scale is typically a high-resolution trait, 1171 

whereas the categorical version of this trait (e.g., ‘small’, ‘medium’, or ‘large’) is a low-1172 

resolution one. 1173 

  1174 
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Table 1. Examples of R packages and functions (in italics) aiding to implement the 1175 

eight-step protocol for functional diversity analyses. Note that this list is not exhaustive. 1176 

Step Description R packages (or functions) 

1. Identify an appropriate 

research question 

Literature review and 

research interest 

- 

2. Identify an appropriate 

experimental design 

Simulations simul.comms(),  

virtualspecies 

3. Assemble a community 

data matrix 

Occurrence data 

retrieving 

auk, rgbif, spocc 

Data manipulation base, dplyr, tidyr 

4. Assemble a trait data 

matrix 

Trait data retrieving BIEN, TR8, rfishbase 

Data manipulation dplyr, tidyr 

5. Explore and prepare the 

data 

Data visualization base, ggplot2, lattice, plotly, 

visreg 

Collinearity car, usdm, VIF 

Missing data 

visualization and 

imputation 

Amelia, BAT, mice, VIM  

Imperfect detection DiversityOccupancy, 

unmarked 



53 
 

6. Estimate functional 

diversity 

Data transformation BAT, FactoMineR, FD 

Functional diversity 

metrics computation 

adiv, cati, BAT, FD, 

FDiversity, funrar, hillR, 

TPD 

7. Validate and interpret the 

results 

Model fit bmrs, lme4, nlme, 

glmmTMB, MCMCglmm, 

mgcv, lavaan, 

piecewiseSEM, 

randomForest 

Cross-validation, 

bootstrapping and 

jackknifing 

CrossValidate, cvTools, 

bootstrap 

Data visualization  

8. Ensure reproducibility Cite the packages 

above!  

base::citation() 

 1177 

  1178 
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Box 1. Species detectability and functional diversity estimation 1179 

Perfect detection of organisms is rare, often resulting in false species absences or the 1180 

underestimation of population sizes and biodiversity. Such ‘missed detections’ have 1181 

significant impact on estimates of functional diversity, though the magnitude and the 1182 

direction of the impact will depend on several factors. Detectability of functional 1183 

diversity (sensu Jarzyna & Jetz, 2016) results from i) the interaction between the type of 1184 

functional diversity metric, ii) whether and how species detectability is linked to their 1185 

functional distinctiveness or certain trait characteristics (including trait resolution), iii) 1186 

how detectability varies along spatial and environmental gradients, iv) the proportion of 1187 

undetected species at a site, v) the size of the regional species pool, and vi) the spatial 1188 

scale (Jarzyna & Jetz, 2016; Palacio et al., 2020). 1189 

  1190 

Recent advances in statistical modelling allow accounting for species’ imperfect 1191 

detection. Specifically, multispecies occupancy (Iknayan et al., 2014; Denes et al., 1192 

2015) and N-mixture (Gomez et al., 2018) models allow for estimation of the ‘true’ 1193 

probability of each species occurrence or for their detection-corrected abundance, which 1194 

can then be incorporated into functional diversity estimates (Jarzyna & Jetz, 2016; 1195 

Palacio et al., 2020). Multispecies occupancy and N-mixture models can be fitted in 1196 

either a frequentist or a Bayesian framework (Devarajan et al., 2020). Avoiding 1197 

excessive detail, if models are fitted in a Bayesian framework that relies on Markov 1198 

Chain Monte Carlo (MCM) sampling, as opposed to Integrated Nested Laplace 1199 

Approximations (Rue et al., 2009), it is advised to report initial values for parameter 1200 

estimation, prior distributions, the number of Markov chains and iterations per chain, 1201 

burn-in, the thinning parameter, convergence evaluation, and a summary of posterior 1202 

estimates (e.g., occurrence and detection probabilities).  1203 
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Box 2. Missing data and data imputation 1204 

Because encountering species in the field and measuring relevant traits can be difficult, 1205 

trait matrices often contain missing data, which can be randomly distributed or not 1206 

(Nakagawa & Freckleton, 2008). Missing data need to be dealt with in order to compute 1207 

virtually any method for estimating functional diversity. Three main options are 1208 

available: (1) omit the individuals/species for which trait data are missing, (2) impute 1209 

the missing trait data, and (3) convert the trait matrix using a distance measure that 1210 

allows the presence of missing data (e.g., Gower distance; de Bello et al., 2021b). If 1211 

omission is the selected strategy, the consequences of removing observations linked to 1212 

missing trait data should be understood and discussed. Alternatively, one might use 1213 

imputation methods (Penone et al., 2014; Taugourdeau et al., 2014; Johnson et al., 1214 

2021), which are roughly based on two strategies: (1) replacing the missing value with a 1215 

systematically chosen value from the phylogenetically/functionally most similar 1216 

species; or (2) predicting the missing trait value, e.g., based on linear models 1217 

(potentially including a phylogenetic covariance structure; Johnson et al., 2021) or 1218 

Principal Component Analysis (Podani et al., 2021), where traits are estimated as a 1219 

function of other variables. Depending on whether the missing data are random or not, 1220 

different algorithms should be considered for the imputation (Wulff & Jeppesen, 2017). 1221 

Finally, some simply use ‘average imputation’ (e.g., Kralj-Fišer et al., 2020), 1222 

calculating the mean or median of the values for that trait based on all the non-missing 1223 

observations. This has the advantage of keeping the same mean and the same sample 1224 

size but many disadvantages, and thus we discourage this strategy (Taugourdeau et al., 1225 

2014; see also Denny, 2017 for a theoretical discussion). 1226 

  1227 
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Figure legends 1228 

Figure 1. A) Annual number of published papers using the term ‘functional diversity’ 1229 

compared to ‘phylogenetic diversity’ and ‘taxonomic diversity’. B) Number of papers 1230 

using the three terms relativized to the total annual number of published papers, to 1231 

account for the general growth in scientific literature volume in recent years (Landhuis, 1232 

2016). The number of papers was sourced from the Web of Science (Clarivate 1233 

Analytics) on 10 June 2021, using the queries: TS = ‘functional diversity’, TS = 1234 

‘phylogenetic diversity’, and TS = ‘taxonomic diversity’. The total number of papers 1235 

published in each year is based on the Dimensions database, accessed on 12 January 1236 

2021. 1237 

Figure 2. Workflow of the eight-steps protocol proposed in this study. Animal 1238 

silhouettes retrieved from Phylopics—with open license.   1239 
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