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Abstract 25 

Field studies are essential to reliably quantify ecological responses to global change because 26 

they are exposed to realistic climate manipulations. Yet such studies are limited in replicates, 27 

resulting in less power and, therefore, unreliable effect estimates. Further, while manipulative 28 

field experiments are assumed to be more powerful than non-manipulative observations, it has 29 

rarely been scrutinised using extensive data. Here, using 3,847 field experiments that were 30 

designed to estimate the effect of environmental stressors on ecosystems, we systematically 31 

quantified their statistical power and magnitude (Type M) and sign (Type S) errors. Our 32 

investigations focused upon the reliability of field experiments to assess the effect of stressors 33 

on both ecosystem’s response magnitude and variability. When controlling for publication bias, 34 

single experiments were underpowered to detect response magnitude (median power: 18% – 35 

38% depending on mean difference metrics). Single experiments also had much lower power 36 

to detect response variability (6% – 12% depending on variance difference metrics) than 37 

response magnitude. Such underpowered studies could exaggerate estimates of response 38 

magnitude by 2 – 3 times (Type M errors) and variability by 4 – 10 times. Type S errors were 39 

comparatively rare. These observations indicate that low power, coupled with publication bias, 40 

inflates the estimates of anthropogenic impacts. Importantly, we found that meta-analyses 41 

largely mitigated the issues of low power and exaggerated effect size estimates. Rather 42 

surprisingly, manipulative experiments and non-manipulative observations had very similar 43 

results in terms of their power, Type M and S errors. This suggests that the previous assumption 44 

about the superiority of manipulative experiments is overstated. These results call for highly 45 

powered field studies to reliably inform theory building and policymaking, via more 46 

collaboration and team science, and large-scale ecosystem facilities. Future studies also require 47 

transparent reporting and open science practices to approach reproducible and reliable 48 

empirical work and evidence synthesis.   49 
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1 | INTRODUCTION 53 

As human-induced environmental changes accelerate, it is more important than ever that we 54 

can reliably quantify ecological responses to a range of environmental stressors (Hanson & 55 

Walker, 2020; Sage, 2020; Way, 2021). Although laboratory experiments could elucidate the 56 

underlying mechanisms of such ecological responses, they are often too small, too short-lived, 57 

and too artificial to reflect naturally occurring responses accurately (Rineau et al., 2019). 58 

Therefore, field experiments (both manipulations and non-manipulative observations) are 59 

essential to understand how an ecosystem responds to global change (Elmendorf et al., 2015; 60 

Sternberg & Yakir, 2015; Wolkovich et al., 2012). In particular, field experimental 61 

manipulations are paramount because they could quantify the effect of stressor magnitudes that 62 

go well beyond currently observed levels (Hillebrand et al., 2020; Rineau et al., 2019). 63 

Accordingly, thousands of field experiments have been conducted in the field to investigate 64 

ecological responses to a wide range of different anthropologic environmental impacts such as 65 

climate change, biodiversity loss, and agricultural intensification (Hanson & Walker, 2020; 66 

Scheffer, Carpenter, Foley, Folke, & Walker, 2001). Yet, few researchers seem to have asked 67 

whether these thousands of global change experiments could provide statistically reliable 68 

results to advance our understanding of ecosystems of the future (Korell, Auge, Chase, Harpole, 69 

& Knight, 2020). While field experiments offer the possibility to work with realistic 70 

abundances and naturally-occurring environmental conditions (and their variation), their 71 

replications often are limited by logistical constraints (Fraser, Barnett, Parker, & Fidler, 2020; 72 

Nakagawa & Parker, 2015). Therefore, it is essential to know whether these field experiments 73 

are adequately powered and reliable.  74 

 75 

   Earlier work suggests that ecological studies seem to be underpowered in some subfields 76 

(Fidler et al., 2017; Jennions & Møller, 2003; T. H. Parker et al., 2016). That is, a study usually 77 



has a sample size too small to detect a ‘true’ effect size as statistically significant (for a given 78 

alpha level 0.05). An important yet often underappreciated consequence of underpowered 79 

studies is that empirical studies with small sample sizes often present distorted estimates of 80 

true effects (Button et al., 2013; Nakagawa & Foster, 2004). This is because, given an 81 

underpowered study, the observed effect often fails to achieve statistical significance (i.e., two-82 

tailed p-value < 0.05), unless the effect is overestimated. In other words, when an observed 83 

effect reaches statistical significance in an underpowered or small-sample study, the observed 84 

effect will be always higher than the corresponding ‘true’ effect in magnitude (Lemoine et al., 85 

2016; Young, Ioannidis, & Al-Ubaydli, 2008; also see a simulated example in Figure S1). Then, 86 

due to preferential publications of statistically significant effects (i.e., publication bias), such 87 

overestimated effects would dominate the literature. The inflation of magnitude concerning a 88 

‘true’ effect is known as exaggeration ratio or Type M (magnitude) error. A related concept is 89 

the Type S (sign) error that is the probability of obtaining a statistically significant effect in the 90 

opposite direction to the true effect (Gelman & Carlin, 2014).  91 

 92 

   Recently, a few papers have pointed out the importance of quantifying the Type M and S 93 

error rates (Cleasby et al., 2021; Lemoine et al., 2016; T. H. Parker et al., 2018). For example, 94 

Lemoine et al. (2016) showed that reported effect sizes of warming on plant growth were, on 95 

average, three times larger than a ‘true’ effect that was approximated by an overall meta-96 

analytic mean (Type M error rate: 3). In animal tracking studies, Cleasby et al. (2021) 97 

demonstrated that researchers could be overestimating the effect of bio-logging devices on 98 

animal behaviour by 10-fold (Type M error rate) and estimating the direction of the effect 99 

incorrectly 20% of the time (Type S error rate), using effect sizes derived from a previous meta-100 

analysis (Cohen’s d = 0.1; Bodey et al., 2018). Given these, both studies argued that 101 

understanding Type M (and S) error rates, along with statistical power, would lead to better 102 



interpretation of results and improve the experimental design in a field of study (cf. Button et 103 

al., 2013; Ioannidis, Stanley, & Doucouliagos, 2017; T. Stanley, Carter, & Doucouliagos, 104 

2018). 105 

 106 

   However, no previous publications have systematically quantified statistical power, Type M 107 

and S error rates across global change studies (but see Lemoine et al., 2016). Importantly, 108 

although earlier work often used meta-analytic means as a surrogate of the true effect to 109 

quantify the statistical power and error rates (e.g., Cleasby et al., 2021; Lemoine et al., 2016), 110 

large-scale power analyses from other fields have shown that meta-analytic means often suffer 111 

from publication bias (Button et al., 2013; Ioannidis et al., 2017; T. Stanley et al., 2018). This 112 

can lead to an overestimation of statistical power unless the bias is corrected (Button et al., 113 

2013; Ioannidis et al., 2017; T. Stanley et al., 2018). Further, environmental stressors are likely 114 

to influence not only ecological responses in magnitude (mean value) but also the variance of 115 

ecological responses (i.e., heteroscedasticity; Figure 1A; for examples of biological 116 

explanations of heteroscedasticity see Cleasby & Nakagawa, 2011; De Villemereuil, Morrissey, 117 

Nakagawa, & Schielzeth, 2018; Seekell, Carpenter, & Pace, 2011). Therefore, it is important 118 

to quantify these three statistical parameters not only for response magnitude but also for 119 

response variability. As far as we know, no such investigations for response variability exist in 120 

the entire scientific literature so far.  121 

 122 

   To this end, we conduct the first large-scale quantification of statistical power, Type M and 123 

S error rates, using manipulative field experiments and non-manipulative observations 124 

covering the dominant stressors in global change biology (cf. Sage, 2020). More specifically, 125 

we quantify these three parameters at two different levels, a single experiment, and meta-126 

analysis (e.g., the statistical power of a field experiment vs. meta-analysis), for ecological 127 



response magnitude and variability (i.e., mean and variance differences between an 128 

environmental stressor and a benign or control environment). In addition, we estimate true 129 

effects with and without correcting for publication bias because, as mentioned, failing to 130 

correct for publication bias can lead to the overestimation of statistical power, and also of type 131 

M and S errors. We hypothesize that global change studies are generally underpowered with 132 

high exaggeration ratios, although Type S error rates are relatively low. We also predict that 133 

manipulative field experiments will have greater statistical power and lower type M and S 134 

errors than non-manipulative field observations because manipulative experiments would often 135 

involve stressor levels beyond currently observed levels so that ecological responses (i.e., 136 

effect size) should be higher both in magnitude and variation (Hillebrand et al., 2020; Kreyling 137 

& Beier, 2013).  138 

 139 

2 | MATERIALS AND METHODS 140 

2.1 | An overview of the methodology 141 

To address our main aims above, we chose to use a database of global change biology, 142 

containing 30 meta-analyses (3,847 field experiments/observations) over a multitude of 143 

environmental stressors (see Section 2.2 below; Hillebrand et al., 2020). Using this database, 144 

we calculated five standardised effect-size statistics to quantify response magnitude (mean 145 

difference) and variability (variance difference) to environmental stressors in global change 146 

studies. For response magnitude, we used (1) the natural logarithm of response ratio, (lnRR; 147 

Hedges, Gurevitch, & Curtis, 1999), (2) standardised mean difference, SMD (also known as 148 

Hedges’ g or Cohen’s d; Hedges, 1982), and (3) standardized mean difference with 149 

heteroscedastic population variances in the two groups, SMDH (see formulas in Table 1). Note 150 

that SMD assumes homoscedasticity (i.e., equal variances; Hedges, 1982) whereas SMDH 151 

allows for heteroscedasticity (Bonett, 2008, 2009). Also, heteroscedasticity only affects the 152 



sampling variance of lnRR, not the point estimate (Sánchez‐Tójar, Moran, O’Dea, Reinhold, 153 

& Nakagawa, 2020). For quantifying response variability, we used (4) the natural logarithm of 154 

variability ratio, lnVR (Nakagawa et al., 2015), and (5) the natural logarithm of the coefficients 155 

of variation, lnCVR  (Nakagawa et al., 2015) which adjusts for changes in mean values (see 156 

formulas in Table 1).  157 

 158 

   We used a three-step modelling procedure to test our main hypotheses (Figure 1C). In the 159 

first step, we used a meta-analytic approach to obtain the key quantity for power calculations 160 

– an estimate of the ‘true’ effect size of a phenomenon (Nakagawa & Foster, 2004). To 161 

achieve this, we employed the meta-analytic (overall) mean, rather than the ‘observed’ effect 162 

size from a given study, as a proxy of true effect to avoid overestimating statistical power (for 163 

examples using this approach, see Button et al., 2013; Cleasby et al., 2021). Therefore, we 164 

meta-analysed five effect-size statistics (Table 1) separately to obtain meta-analytic means 165 

for each meta-analytic case (Section 2.3). For lnRR, SMD and SMDH, we also estimated 166 

bias-corrected versions of corresponding effect sizes to adjust for publication bias (also 167 

known as the small-study effect; Vevea & Hedges, 1995) (Section 2.4). Contrastingly, we 168 

cannot calculate bias-corrected lnVR and lnCVR because statistical significance, rather than 169 

response variability (heteroscedasticity or variance difference), drives publication bias (see 170 

Senior, Gosby, Lu, Simpson, & Raubenheimer, 2016). Therefore, we assumed that lnVR and 171 

lnCVR were not affected by publication bias in the way lnRR, SMD, and SMDH were. 172 

 173 

   In the second step, we calculated the statistical power to detect the estimates of true effects 174 

and their magnitude (Type M) and sign (Type S) error rates, for each meta-analysis and every 175 

single experiment included in the meta-analysis (Section 2.5.1). In the third step, to obtain 176 

overall estimates of the three parameters across different meta-analyses (which provided us 177 



with comparable summaries of the three parameters), we used a weighted regression to 178 

statistically aggregate over the three parameters obtained at the meta-analysis level, whereas 179 

we used a mixed-effects model to aggregate these parameters at the experiment level. Both 180 

procedures involved aggregating the parameters across meta-analyses (i.e., between-meta-181 

analysis modelling; Section 2.5.2). We also conducted a secondary synthesis of the true effects 182 

(which were estimated from the first step) across meta-analyses (that is, conducting a meta-183 

analysis of overall means obtained from the included 30 meta-analyses; also referred to as a 184 

second-order meta-analysis or meta-meta-analysis; cf. Nakagawa et al., 2019) (Section 2.6). 185 

We conducted all analyses in the R environment v. 4.0.3 (R Development Team, 2020). All 186 

relevant data and code can be found at https://zenodo.org/record/5496789#.YTmbiI4zY2w. 187 

 188 

2.2 | Global change meta-analyses database 189 

Our global change meta-analyses database reflected a range of the responses of ecosystem 190 

processes to the most pervasive anthropogenic global change stressors, including climate 191 

warming, fire eutrophication, and nitrogen fertilization (Hillebrand et al., 2020). The database 192 

was originally used to quantify how evident thresholds, tipping points, or regime shifts were 193 

in ecological responses to anthropogenic global change (at 194 

https://zenodo.org/record/5496789#.YTmbiI4zY2w). The dataset did not contain laboratory 195 

experiments and only included experimental/manipulative field experiments and non-196 

manipulative observations. It followed strict inclusion and exclusion criteria (as depicted in 197 

Hillebrand et al. 2020) and finally contained 36 meta-analyses (providing 4,601 effect sizes 198 

in the form of lnRR).  199 

 200 

   We excluded 6 meta-analyses from the original database because they did not provide 201 

sampling variance (𝑆𝑙𝑛𝑅𝑅
2 ; Table 1), which was required for formal weighted meta-analyses 202 

https://zenodo.org/record/5496789#.YTmbiI4zY2w
https://zenodo.org/record/5496789#.YTmbiI4zY2w


and calculations of statistical power and Type M and S errors. Thus, our final database 203 

contained 30 meta-analyses (Figure 1B), which provided 3,850 estimates of lnRR paired with 204 

a corresponding estimate of sampling variance (𝑆𝑙𝑛𝑅𝑅
2 ). For these 30 meta-analyses in the 205 

form of lnRR (referred to as dataset lnRR*), the number of studies (N) included in meta-206 

analysis ranged from 11 to 186 (mean = 37.3, median = 26.5, SD = 37.1). The number of 207 

effect sizes (k) of lnRR* ranged from 35 to 562 (mean = 128.2, 85.0 = 26.5, SD = 121). In 208 

addition, within dataset lnRR*, 12 out of 30 meta-analysis provided descriptive statistics in 209 

included primary studies: mean (m𝑝 or m𝑐), standard deviation (sd𝑝
2  or sd𝑐

2), and sample size 210 

(𝑛𝑝 or 𝑛𝑐), which enabled us to calculate SMD, SMDH, lnVR and lnCVR and their sampling 211 

errors for these 12 meta-analyses. We also re-calculated lnRR (to distinguish with lnRR*, we 212 

referred it to as dataset lnRR) using these 12 meta-analyses so as to compare the statistical 213 

power, Type M and S errors for lnRR, SMD, SMDH, lnVR and lnCVR (section 2.5). For the 214 

12 meta-analyses (effect size in the form of lnRR, SMD, SMDH, lnVR, and lnCVR), N 215 

ranged from 11 to 186 (mean = 42.8, median = 19, SD = 58.2), k ranged from 44 to 450 216 

(mean = 164.8, median = 119.5, SD = 119.2). The replicates (n; sample size per study) in 217 

each study of the 12 datasets ranged from 4 to 10000 (mean = 38.4, median = 12, SD = 83.0). 218 

 219 

   Of the 30 meta-analyses, 11 meta-analyses used non-manipulative observations and 17 used 220 

manipulative experiments, while 2 used both non-manipulative observations and 221 

manipulative experiments. We followed the original database in defining the categories of 222 

environmental stressors; namely, acidification (Acid, k = 62; Nagelkerken & Connell, 2015), 223 

biodiversity loss (BD loss, k = 942; Cardinale et al., 2006; Griffin, Byrnes, & Cardinale, 224 

2013; Östman et al., 2016), fertilization (Fert, k = 811; Akiyama, Yan, & Yagi, 2010; Elser et 225 

al., 2007; Liang, Qi, Souza, & Luo, 2016; Treseder, 2008), bush fire (Fire, k = 179; Dijkstra 226 

& Adams, 2015; Dooley & Treseder, 2012), plant invasion (Inv, k = 316; Gaertner et al., 227 



2014; Gallardo, Clavero, Sánchez, & Vilà, 2016; Vilà et al., 2011), land use change (LUC, k 228 

= 612; Gibson et al., 2011; Van Lent, Hergoualc’h, & Verchot, 2014), precipitation (Precip, k 229 

= 138; Liu et al., 2016), global warming (Warm, k = 790; Ateweberhan & McClanahan, 230 

2010; Lin, Xia, & Wan, 2010; Lu et al., 2013).  231 

 232 

2.3 | Meta-analyses and estimating the proxies of ‘true’ effects 233 

As the first step of our three-step modelling procedure, we estimated various proxies of ‘true’ 234 

effects for each meta-analysis. The proxies of ‘true’ effects included (1) meta-analytic overall 235 

means (MAOMs), which represented a common ‘true’ effect shared by the multiple 236 

experiments within a given meta-analysis (section 2.3.1), (2) effect-size-specific predictions 237 

(ESSPs), which represented experiment-dependent effects (i.e., multiple true effects within a 238 

given meta-analysis; section 2.3.2), and (3) the publication-bias-corrected versions of MAOMs 239 

and ESSPs (section 2.4) 240 

 241 

2.3.1 | Meta-analytic overall means (MAOMs)  242 

To estimate ‘true’ effects for each meta-analysis, we employed a multilevel model to estimate 243 

meta-analytic overall means (referred to as MAOMs, hereafter; Nakagawa & Santos, 2012), in 244 

which the non-independence in the datasets (i.e., multiple effect sizes per study) were 245 

accounted for by incorporating effect-size and study identities as random factors (Noble, 246 

Lagisz, O'dea, & Nakagawa, 2017). We used the rma.mv function in the metafor package 247 

(Viechtbauer, 2010) to run the following multilevel meta-analytic model for lnRR*, lnRR, 248 

SMD, SMDH, lnVR, or lnCVR, respectively (Nakagawa & Santos, 2012):  249 

𝐸𝑆𝑗𝑖 = 𝛽0 + 𝑠𝑗 + 𝑤𝑗𝑖 + 𝑒𝑗𝑖 , (9) 250 

where 𝑠𝑗 ∼ 𝒩(0, 𝜏2), 𝑤𝑗𝑖 ∼ 𝒩(0, 𝜎2), 𝑒𝑗𝑖 ∼ 𝒩(0, 𝑣𝑖) with 𝒩 being a normal distribution 251 

with two parameters, mean and variance. Here 𝐸𝑆𝑗𝑖  is the observed effect size estimates (i.e. 252 



lnRR, SMD, SMDH, lnVR, or lnCVR), 𝛽0 is the intercept (i.e. meta-analytic overall mean, 253 

MAOM), and 𝑠𝑗 is the between-study effect for the study j, 𝑤𝑗𝑖 is the within-study effect for 254 

the effect size i in the study j, 𝑒𝑗𝑖 is the sampling error for the effect size i in the study j, 𝜏2, 255 

𝜎2 and 𝑣𝑖  are associated variance components.  256 

 257 

2.3.2 | Effect-size-specific predictions (ESSPs) 258 

Given the high heterogeneities in ecological datasets (I2 > 90%; Senior, Grueber, et al., 2016), 259 

there rarely exists a common effect size between different studies within a meta-analysis. For 260 

example, nutrient enrichment has a large effect on plant biomass, whereas lack of light stimuli 261 

will largely reduce this effect. Therefore, we used an alternative proxy of true effect to 262 

accommodate such an experiment-dependent effect (i.e., multiple true effects within a given 263 

meta-analysis): effect-size-specific prediction (ESSP; see Equation 10). ESSPs can be 264 

estimated by using the best linear unbiased predictions (BLUPs) in the observation level, which 265 

are defined as (conditional) point estimates given a set of random effects in a mixed effect 266 

model (Hadfield, Wilson, Garant, Sheldon, & Kruuk, 2010). We defined ESSPs as follows:  267 

𝐸𝑆𝑗𝑖(𝐸𝑆𝑆𝑃) =  𝛽0
̅̅ ̅ + 𝑠�̅� + 𝑤𝑗𝑖̅̅ ̅̅ , (10) 268 

where the notations are the same as Equation 9 (note that 𝛽0, 𝑠�̅�, and 𝑤𝑗𝑖̅̅ ̅̅  are the estimated 269 

parameters from Equation 9). Equation 10 shows that ESSPs is the sum of the overall mean 270 

(MAOM), the between-study effect 𝑠𝑗, the within-study (effect-size-specific) effect 𝑤𝑗𝑖. 271 

ESSPs were obtained using the rma.mv function in metafor (Viechtbauer, 2010). 272 

 273 

2.4 | Obtaining bias-corrected meta-analytic estimates 274 

For response magnitude (i.e., lnRR, SDM and SMDH), publication bias can translate into 275 

overestimated meta-analytic means, MAOMs (Vevea & Hedges, 1995). To alleviate such a 276 

bias, we employed an extended version of Egger’s regression approach (multilevel meta-277 



regression, cf. Nakagawa, Lagisz, Jennions, et al., 2021) which resulted in a bias-corrected 278 

version of MAOMs. In brief, this approach incorporates uncertainty term as a moderator in a 279 

multilevel meta-regression model: the inverse of ‘effective sample size’ 1/�̃�𝑖 =280 

(𝑛𝑝 + 𝑛𝑐) 𝑛𝑝𝑛𝑐⁄  or its square root √1/�̃�𝑖 (strictly speaking, ‘effective sample size’ = 4�̃�𝑖). 281 

 282 

𝐸𝑆𝑗𝑖 = 𝛽0 + 𝛽1√1/�̃�𝑖 + 𝑠𝑗 + 𝑤𝑗𝑖 + 𝑒𝑗𝑖 , (11) 283 

 284 

𝐸𝑆𝑗𝑖 = 𝛽0 + 𝛽1(1/�̃�𝑖) + 𝑠𝑗 + 𝑤𝑗𝑖 + 𝑒𝑗𝑖, (12) 285 

𝛽0 is the (conditional) bias-corrected meta-analytic overall mean (cMAOM, hereafter) when 286 

assuming no uncertainty exists: √1/�̃�𝑖  =  0 in Equation 11 or 1/�̃�𝑖  =  0 in Equation 12. If 287 

𝛽1 in Equation 11 is statistically non-significant (p-value > 0.05), 𝛽0 in Equation 11 (the 288 

slope of 1/�̃�𝑖) is the best estimate of cMAOM. If 𝛽1 in Equation 11 (the slope of √1/�̃�𝑖) is 289 

statistically significant (p-value < 0.05), 𝛽0 in Equation 12 is the best estimate of cMAOM 290 

(Tom D Stanley & Doucouliagos, 2014; Tom D. Stanley, Doucouliagos, & Ioannidis, 2017).  291 

 292 

   We note that the slope (𝛽1) of Equation 11 could be in the opposite direction from what was 293 

expected from publication bias (Figure S2); in such a case, we considered the dataset did not 294 

suffer from the publication bias and we used MAOMs as their cMAOMs. 18 meta-analyses 295 

within lnRR* dataset did not report replicates (n; sample size per study) for calculation of 296 

‘effective sample size’; we used sampling error (𝑠𝑒𝑖, the square-root of the sampling 297 

variance) and sampling variance (𝑣𝑖) to replace 1/�̃�𝑖  in Equation 11 and √1/�̃�𝑖 in Equation 298 

12, respectively. When calculating statistical power, Type M and S error rates, we used 299 

unconditional standard error (SE) rather than a conditional standard error (viz, using standard 300 

error for 𝛽0 in Equation 9 to replace that of Equation 11 or 12). The models in Equations 11 301 



and 12 were implemented by the rma.mv function in metafor. Further, with cMAOMs, we 302 

used Equation 10 to obtain ‘bias-corrected effect-size-specific predictions (cESSPs). In our 303 

datasets, lnRR*, lnRR, SMD, and SMDH had 20 of 30, 6 of 12, 5 of 12, and 5 of 12 meta-304 

analyses, respectively, which did not show the statistical evidence of the small-study effect 305 

(Figure S3). 306 

 307 

2.5 | Estimating statistical power, Type M and S error rates 308 

2.5.1 | (Within-)meta-analysis level modelling  309 

We calculated statistical power, Type M and S errors at two levels: the meta-analysis level 310 

(i.e., three parameters for each of the meta-analysis identified), and single experiment level 311 

(i.e., three parameters for experiments or effect sizes within a given meta-analysis; Figure 312 

1C). We expected that statistical power at the meta-analysis level would be much higher than 313 

that at the single experiment level, although it would still be possible that a meta-analysis 314 

might not have enough statistical power to detect the estimated overall effect (i.e., non-315 

significant overall effect; Cohn & Becker, 2003). In addition to the proxies of ‘true’ effects 316 

(i.e., MAOMs, ESSPs, cMAOMs, cESSPs), we required standard error (SE) for each effect 317 

size estimate to calculate statistical power, Type M and S errors. For the meta-analysis level, 318 

we used SEs from the meta-analytic models (i.e., Equations 9, 11, or 12). For the single 319 

experiment level, we used the square root of the sampling variance for each effect size (see 320 

Table 1) as SEs.  321 

2.5.2 | Between-meta-analysis modelling 322 

Importantly, we also obtained an overall (average) statistical power, Type M and S errors for 323 

each effect size statistic across different meta-analyses (i.e., between-meta-analyses 324 

estimates; Figure 1C). Such overall estimates provided us with comparable summaries of 325 

statistical power, Type M and S errors. For the meta-analysis level, we used a weighted 326 



regression, implemented with the base R function, lm, with the number of effect sizes (k) for 327 

each meta-analysis as weight. The weighted regression models allowed us to average over the 328 

estimates of meta-analysis level power and Type M and S errors (using MAOMs and 329 

cMAOMs). For the single experiment level, we used mixed-effects models employing the 330 

lmer function in the R package, lme4 (Bates, Mächler, Bolker, & Walker, 2014), with study 331 

identities as a random factor. These mixed-effects models allowed us to average over the 332 

single-experiment level estimates (using MAOMs, cMAOMs, ESSPs, and cESSPs). Further, 333 

to these mixed-effects models, we added study approach (manipulative experiment versus 334 

non-manipulative observation) as a fixed factor, and stressor categories as a random factor to 335 

compare the average statistical power, Type M and S errors between manipulative 336 

experiments and non-manipulative observations.  337 

 338 

   Before constructing the above models using lm and lmer, we ln-transformed the response 339 

variables (estimates of statistical power, Type M and S error rates) to better meet the ‘normal 340 

residuals’ assumption (Figure S4 – S6). For easy interpretation, we back-transformed (i.e. 341 

exponentiated) the intercept of lm and lmer models so that we obtained the median value on 342 

the original scale (Nakagawa, Johnson, & Schielzeth, 2017). We also obtained the mean 343 

value on the original scale (using Equation 5.8; Nakagawa et al., 2017). Further, for the Type 344 

S error rate, we added 0.025 to all the cases because the estimates of Type S error included 345 

many zeros and extremely small values, which made ln-transformation impossible or 346 

ineffective. Note that when we back-transformed estimates from these models, we adjusted 347 

these estimates on the original scale by subtracting a value of 0.025. Further, when back-348 

transformed estimates (statistical power and Type S error) went below or above the boundary 349 

values (i.e., 0 or 1, respectively), we constrained the estimates to the boundaries.  350 

 351 



2.6 | Response magnitude and variability across environmental stressors 352 

To estimate the overall response magnitude and variability across meta-analyses (i.e., 353 

between-meta-analysis synthesis), we conducted a secondary synthesis of the estimates of 354 

response magnitude and variability from each meta-analysis. Of note, one meta-analysis 355 

represented one specific stressor (e.g., a meta-analysis of acidification, a meta-analysis of 356 

global warming; see section 2.2). We also assessed whether there were significant differences 357 

in such overall effects between manipulative experiments and non-manipulative observations. 358 

To achieve this, first, we obtained the absolute values of (c)MAOMs and their sampling 359 

variances (i.e., the variance estimated from a folded normal distribution; see Morrissey, 360 

2016) for each meta-analysis (that is, across stressors). Second, we statistically aggregated 361 

these absolute estimates (|MAOM| and |cMAOM|) via a random-effect model using rma 362 

function in the R package metafor (Viechtbauer, 2010). Third, we conducted meta-regression 363 

with the study approach as a moderator to quantify effects for manipulative experiments and 364 

non-manipulative observations (we excluded two meta-analyses that contained both 365 

experimental and observational data; see Section 2.2). 366 

 367 

3 | RESULTS 368 

3.1 | The effects of stressors on ecosystem response magnitude and variability  369 

Overall, environmental stressors had a statistically significant impact on response magnitude 370 

(more than a 33.7% increase; Figure 2A). For the result of each stressor, see Figure S7 – S9 371 

(each meta-analysis was focussed upon a specific stressor, but a given stressor may be covered 372 

by multiple different meta-analyses, e.g., Warm 1, Warm 2, Warm 3 were three meta-analyses 373 

all concerned with global warming). Bias-corrected estimates of response magnitude declined 374 

by 17% to 31% (Figure 2B). Similarly, stressors had a statistically significant effect on 375 

response variability (more than a 20% increase; Figure 2C; shown by a stressor in Figure 10). 376 



Further, manipulative experiments had a statistically significant larger response magnitude 377 

than that non-manipulative observations for some effect size types (i.e., uncorrected SMD, 378 

uncorrected SMDH, corrected SMDH; Table S1). In contrast, the differences in response 379 

variability between manipulative experiments and non-manipulative observations were not 380 

statistically significant. 381 

 382 

3.2 | Statistical power in global change studies 383 

3.2.1 | Statistical power in detecting response magnitude 384 

Across all stressors, single experiments had much lower power to detect bias-corrected 385 

response magnitude compared to the nominal 80% power (Table 3): 23.3% for lnRR* (Figure 386 

3A), 38.5% for lnRR (Figure 3A), 19.1% for SMD (Figure 3B), 18.2% for SMDH (Figure 3D). 387 

When considering that each experiment has its own true effect (cESSP), the power values were 388 

similar to the values estimated from a common true effect (cMAOM; Table 3 and Figure 3). 389 

The corresponding power values for uncorrected response magnitude were 19% to 66% higher 390 

than that of the bias-corrected version (Table 3 and Figure 3). The median proportion of single 391 

experiments that had adequate power to detect bias-corrected lnRR*, lnRR, SMD and SMDH 392 

were only 16.3, 33.2, 6.6, and 6.9%, respectively (Figure 3). As expected, the median power 393 

for meta-analysis to detect bias-corrected response magnitude was greater than that of single 394 

experiments although it fell short of the nominal 80% level: 42.4% – 63.5% (depending on 395 

effect-size types; Table 3 and Figure 3). As at the single experiment level, uncorrected meta-396 

analyses overestimated power by ~2% to 33% compared to the bias-corrected version (Table 397 

3 and Figure 3).  398 

 399 

3.2.2 | Statistical power in detecting response variability 400 



Overall, at the single experiment level, lnVR and lnCVR showed comparatively low statistical 401 

power to detect heteroscedasticity than the nominal 80% level: 11.5% for lnVR and 6.4% for 402 

lnCVR (Table 3 and Figure 3C and 3E). The median proportion of experimental lnVR and 403 

lnCVR that had adequate power to detect response variability was only 3.7 and 0%, 404 

respectively (Figure 3). Meta-analysis increased the overall power to identify response 405 

variability roughly by 4 to 6-fold: power was now 43.9% for lnVR and 52.6% for lnCVR (Table 406 

3 and Figure 3). The proportion of single experiments that had adequate power increased to 407 

33.3% and 16.7% when using meta-analysis to detect lnVR and lnCVR, respectively (Figure 408 

4).  409 

 410 

3.3 | Type M and S error rates in global change studies 411 

3.3.1 | Type M and S error rates in detecting response magnitude 412 

Single experiments tended to overestimate the effect of the environmental stressors 413 

consistently (Type M error rates; Table 4 and Figure 4). Depending on which effect metric was 414 

used, single experiments were on average 2 – 3-fold larger than the true effect size estimated 415 

as MAOMs. Single experiments rarely had the wrong estimation of the sign of the true effect 416 

size (Type S error rate; Table 5 and Figure 5). As expected, meta-analyses largely reduced the 417 

magnitude of Type M (1 – 2; see Table 4 and Figure 4). When bias correction was not employed, 418 

the overestimation of the true effect was even larger (Type M error rates by 2 – 6 and S error 419 

rates by 10% – 30%).  420 

 421 

3.3.2 | Type M and S error rates in variance differences 422 

At the single experiment level, lnVR and lnCVR on average showed large Type M error rates 423 

(~4 and 10, respectively; Table 4 and Figure 4), but low Type S error rates (5% – 19.9%; Table 424 



5 and Figure 5). By contrast, meta-analyses only overestimated lnVR and lnCVR by 1.6-fold 425 

and 1.5-fold, respectively. 426 

 427 

3.4 | Contrasting manipulative experiments and non-manipulative observations 428 

Both single manipulative experiments and non-manipulative observations were underpowered 429 

to detect the effects of environmental stressors on ecosystem response magnitude and 430 

variability (16% – 39% depending on effect metrics; Figure 6A – 6F). With one exception, the 431 

differences in power between manipulative experiments and non-manipulative observations 432 

were not statistically significant (Figure 6D). When bias correction of ESSPs were employed, 433 

manipulative experiments had statistically greater power than non-manipulative observations 434 

(32% vs. 20%). Similarly, differences between manipulative experiments and non-435 

manipulative observations were not significant in terms of their Type M (with one exception: 436 

bias-corrected lnRR*; Figure 6G – 6L). Manipulative experiments had statistically larger Type 437 

M error than non-manipulative observations if bias correction of ESSPs were used (2-fold vs. 438 

6-fold). A similar pattern was found for Type S errors in manipulative experiments and non-439 

manipulative observations (Figure 6M – 6R). 440 

 441 

4 | DISCUSSION 442 

We have conducted the first study to systematically assess the power, type M and type S error 443 

rates for global change studies. Concurring with our hypotheses, global change studies are 444 

generally underpowered, resulting in high Type M error rates (overestimating the magnitude 445 

of the response) whereas Type S error rates (wrong estimation of sign) are relatively low. 446 

Across different ecosystems and stressors, single experiments were underpowered to detect 447 

bias-corrected response magnitude (~18 – 38 % depending on effect-size types; Table 3 and 448 

Figure 3). Similarly, single experiments also had a much lower power to detect response 449 



variability (heteroscedasticity) than response magnitude (~6 – 12%; Table 3 and Figure 3). 450 

Such underpowered field experiments could exaggerate an effect by 2 – 3 times for response 451 

magnitude (with bias-correction) and by 4 – 10 times for response variability (Table 4 and 452 

Figure 4). Also, single experiments rarely incorrectly estimated the direction of the true 453 

anthropogenic impact (Table 5 and Figure 5). Notably, our results were consistent regardless 454 

of assuming one ‘true’ effect per meta-analysis (e.g., cMAOM) or experiment-specific ‘true’ 455 

effects within a meta-analysis (cESSP). In contrast to our expectation, apart from one 456 

exception, manipulative field experiments and non-manipulative observations were not 457 

statistically different in terms of their statistical power or Type M / S errors. Taken together, 458 

we conclude that the low statistical power, coupled with publication bias, may have led to 459 

distorted estimates of anthropogenic impacts in the literature. Below, we first extend our 460 

discussion on the comparisons between manipulative experiments and non-manipulative 461 

observations. Then, we consider three statistical (but biologically relevant) points that 462 

emerged from our results and how they can improve future empirical studies (manipulative 463 

experiments and non-manipulative observations) and meta-analyses in global change biology 464 

in general.  465 

 466 

4.1 | Manipulative experiments and non-manipulative observations both lack power  467 

Rather surprisingly, the statistical power of manipulative experiments and non-manipulative 468 

observations was similar (e.g., uncorrected SMD and bias-corrected SMD in Table S1). The 469 

differences between manipulative experiments and non-manipulative observations have been 470 

often assumed because experimental work usually has greater effect magnitude (Palmer, 471 

2000). Yet, as far as we are aware, no work has identified whether such differences 472 

empirically occur. The lack of power differences between manipulative experiments and non-473 

manipulative observations may be due to the trade-off between the magnitude of effect sizes 474 



and the number of replicates (i.e., sample size). That is, higher experimental effect sizes are 475 

offset by smaller sample sizes in manipulative experiments than non-manipulative 476 

observations. Indeed, we found that manipulative experiments had larger effects than non-477 

manipulative observations. For example, manipulative experiments had statistically larger 478 

estimates of SMD than non-manipulative observations (see Table S1). Contrastingly, non-479 

manipulative observations had 2.5-fold larger replicates (sample sizes), on average, than 480 

manipulative experiments (25 versus 10; Figure S11 – S12). Although we may tend to think 481 

manipulative experiments have greater power and are therefore more reliable, this 482 

assumption is not tenable, at least in the field of global change studies. 483 

 484 

4.2 | Meta-analysis is not only a powerful tool but maybe the only tool? 485 

As expected, meta-analyses have increased the power to detect response magnitude (both 486 

before and after correcting for publication bias) by at least 30% compared to single 487 

experiments. For example, the overall power for meta-analyses were 51.2% and 62.1% for 488 

lnRR and SMD, respectively, compared to 38.5% and 19.1% for single experiments (Table 489 

3). Indeed, the nominal 80% power is difficult to achieve in many disciplines in a single 490 

experiment level, such as Neuroscience (median power = 21%; Button et al., 2013), Clinical 491 

medicine (median power = 20%; Lamberink et al., 2018), Psychology (median power = 36%; 492 

T. Stanley et al., 2018) and Economics (median power = 18%; Ioannidis et al., 2017). Such 493 

low statistical power averages for single experiments highlight the importance of meta-494 

analysing response magnitude (Gurevitch, Koricheva, Nakagawa, & Stewart, 2018). We note 495 

that, although single experiments are often underpowered and more prone to type M error, 496 

they are essential to global change biology research. Such experiments contribute to evidence 497 

accumulation, providing raw materials for systematic reviews and meta-analyses. Perhaps, 498 

more importantly, local field experiments are an effective way to reveal the casual 499 



mechanisms of ecological responses at a particular ecosystem, and idiosyncrasies among 500 

ecosystems from different localities (Rineau et al., 2019; Roy et al., 2021). 501 

 502 

   Similarly, meta-analysis of variance (i.e., synthesizing lnVR and lnCVR from individual 503 

studies; Nakagawa et al., 2015) is a powerful approach to detect response variability (i.e., 504 

heteroscedasticity). Indeed, we found meta-analysis of variance increased the statistical 505 

power by 4 – 6-fold (meta-analytic lnVR vs. individual lnVR: 43.9% vs. 11.5%, meta-506 

analytic lnCVR vs. individual lnCVR: 52.6% vs. 6.4%; Table 3). Further, meta-analysis of 507 

variance could mitigate Type M and S error rates compared to single experiments. Ecologists 508 

have been aware of difficulties in detecting response variability reliably (Andersen, 509 

Carstensen, Hernandez-Garcia, & Duarte, 2009; Carpenter & Brock, 2006; Seekell et al., 510 

2011), and have already discussed the need for a large sample size (Engle, 1982; Seekell et 511 

al., 2011). Yet, the number of replicates (n; sample size per study) in global change studies 512 

was usually too small to detect response variability reliably (medium n = 12 in our dataset). 513 

Practically speaking, to get an adequate sample size for estimating effects on response 514 

variability, we need to organise more global research collaboration network, such as Nutrient 515 

Network (NutNet; Harpole et al., 2016; Lekberg et al., 2021), US Long-Term Ecological 516 

Research network (LTER; Crossley et al., 2020), and Zostera Experimental Network (ZEN; 517 

Wu et al., 2017). Alternatively, we would require heavily instrumented and controlled 518 

environmental facilities (e.g., UHasselt Ecotron, see Rineau et al., 2019, Clobert et al., 2018; 519 

Roy et al., 2021). Fortunately, meta-analysis of variance provides us an alternative approach 520 

for increasing the chance of detecting changing response variability hidden in global change 521 

studies.  522 

 523 

4.3 | Publication bias may have exacerbated the inflation of anthropologic effects  524 



We have shown that meta-analyses result in a sizeable increase in power over single 525 

experiments, although some meta-analyses were generally underpowered relative to a 526 

nominal value of 80% power (Table 3 and Figure 3). Furthermore, only half of the meta-analyses 527 

(15 of 30) had tested for the existence of publication bias in their datasets. Furthermore, only half of 528 

the meta-analyses (15 of 30) had tested for the existence of publication bias in their datasets. The 529 

methods used to assess publication bias were: funnel plots (n = 8), rank correlation tests (n = 4), fail-530 

safe N (n = 4), Egger's regression (n = 1), and normal quantile plots (n = 1). Among these, only two 531 

meta-analyses have corrected for the potential influence of publication bias (i.e., using the trim-and-532 

fill method; see Gallardo et al., 2016; Liu et al., 2016). This means that meta-analyses in 533 

global change biology are likely to be overestimating overall effects.  In this study, we have 534 

used a recently proposed multilevel meta-regression approach (Nakagawa, Lagisz, Jennions, 535 

et al., 2021) to adjust for publication bias in meta-analyses. After adjustment of publication 536 

bias, the magnitude of overall effect sizes has declined by 17% – 32% (see Figure 2). The 537 

corresponding values for single experiment power decreased by 9% – 66%. Type M error 538 

rates increased by 20%, which indicates that publication bias might have exacerbated the 539 

overestimation of anthropogenic impacts in global change studies.  540 

 541 

Our results indicate that effect sizes in global change studies are severely exaggerated and 542 

call into question their 'reproducibility'. Peer-review journals are more likely to publish 543 

statistically significant results, perhaps using statistical significance as a gate-keeping tool to 544 

maintain their 'prestige' (e.g., inflated impact factors). Under the publish-or-perish research 545 

culture, ecologists may intentionally 'pick' significant results or 'hack' p-values (e.g., 546 

HARKing) to pursue a more publishable result (Amrhein, Korner-Nievergelt, & Roth, 2017; 547 

Fraser, Parker, Nakagawa, Barnett, & Fidler, 2018). However, the gate-keeping policy might 548 

not work well (e.g., failing to increase the citation of papers; Wardle, 2012) and  more 549 

importantly does not equal good science research. 550 



 551 

    Evidence from other disciplines has also shown that meta-analyses without correcting 552 

publication bias subsequently led to a biased assessment of power (see Button et al., 2013; 553 

Ioannidis et al., 2017; T. Stanley et al., 2018). However, even our bias-corrected effect sizes 554 

may still be biased (overestimating) to some degree. This is because our meta-regression 555 

approach could not control for heterogeneities between studies, which may have prevented 556 

more accurate adjustments for publication bias (i.e., potentially important moderators not 557 

available to incorporate in meta-regression; Nakagawa & Santos, 2012; Noble et al., 2017). 558 

Therefore, it is necessary not only to test publication bias and further adjust the influence of 559 

publication bias in every meta-analysis, but also, to transparently report all predictors and 560 

model information in a publication so that any researchers can implement such adjustments 561 

later.  562 

 563 

4.4 | The choice of effect sizes for global change studies 564 

Our study provides the first empirical evidence that lnRR is, on average, a more powerful and 565 

less biased effect size than SMD and SMDH. Experimental lnRR was twice powerful as 566 

SMD and SMDH (lnRR vs. SMD vs SMDH: 38.5% vs. 19.1% vs. 18.2%; see Table 3 and 567 

Figure 3) and less vulnerable to overestimation; lnRR has been exaggerated by 2-fold, 568 

whereas SMD and SMDH have been exaggerated by 3-fold (Table 4 and Figure 4). However, 569 

lnRR has a major disadvantage; that is it is only appropriate for ratio scale data (i.e., 570 

measurements being bounded at zero; cf. Houle, Pélabon, Wagner, & Hansen, 2011; 571 

Nakagawa et al., 2015). Nonetheless, lnRR has many other merits over SMD (Nakagawa et 572 

al., 2015), which includes: (1) being more robust with small sample sizes (as SMD is 573 

biasedly estimated with small N; cf. Hamman, Pappalardo, Bence, Peacor, & Osenberg, 574 

2018), (2) incorporating heteroscedasticity (note that SMDH does assume heteroscedasticity; 575 



cf. Bonett, 2008, 2009; Sánchez‐Tójar et al., 2020), and (3) being less affected by scale-576 

dependence (Spake et al., 2021). Incidentally, unlike choosing the mean difference metrics 577 

based on the power, the choice between lnCVR and lnVR depends on biological questions, 578 

which is described elsewhere (Nakagawa et al., 2015; Senior, Viechtbauer, & Nakagawa, 579 

2020).  580 

 581 

5 | CONCLUSIONS AND FUTURE PERSPECTIVES  582 

We have demonstrated that low statistical power and exaggerated effect-size estimates are 583 

widespread across the field studies in global change biology, especially when correcting for 584 

the influence of publication bias. Manipulative field experiments are not superior to non-585 

manipulative observations in terms of their statistical power and Type M and S errors. 586 

Therefore, single experiments whether manipulations or non-manipulations may fail, on 587 

average, to provide reliable insights into the anthropogenic impacts of global change by 588 

themselves. Likewise, although response variability (heteroscedasticity or variance 589 

differences) has important biological and statistical implications in the field, our results have 590 

shown single experiments are too underpowered to reliably detect response variability. 591 

Therefore, to address questions associated with variance, researchers should use meta-592 

analysis of variation to increase power to reliably detect response variability (we have found 593 

8/12 meta-analyses showing significant response variability – lnCVR, which never have been 594 

revealed before; see Figure S10). Such use of meta-analysis of variation can generate new 595 

biological hypotheses and inform methodological decisions (i.e., choice of standardized mean 596 

effect-size; Nakagawa et al., 2015; Senior et al., 2020). Future global change studies warrant 597 

highly powered field studies to reliably inform theory building and policymaking. Such 598 

studies are likely to call for more collaboration and team science (Camerer et al., 2016; 599 

Collaboration, 2015; O’Dea et al., 2021), and the use of large-scale ecosystem research 600 



infrastructures (Roy et al., 2021). Moreover, researchers should strive for open and transparent 601 

science practices (Gallagher et al., 2020), such as controlling for magnitude and sign errors when 602 

planning field experiments (i.e., extension of power analysis; Lemoine et al., 2016), archiving and 603 

sharing data, following the FAIR guideline (i.e., findable, accessible, interoperable, and reusable data; 604 

Wilkinson et al., 2016; see also, Crystal-Ornelas et al., 2021), increasing transparent reporting (T. H. 605 

Parker et al., 2016), embracing preregistrations and registered reports (T. Parker, Fraser, & 606 

Nakagawa, 2019), and implementing more replication projects (Fraser et al., 2020). Adopting these 607 

practices will not only aid further meta-analytical syntheses but also make ecological findings more 608 

reproducible and reliable in general (Nakagawa & Parker, 2015; O’Dea et al., 2021).”  609 
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TABLES 885 

TABLE 1 The formulas for effect-size statistics used to quantify the effect of environmental 886 

stressors on ecosystems response magnitude (mean difference: lnRR, SMD and SMDH) and 887 

response variability (variance difference or heteroscedasticity: lnVR, lnCVR). In this paper’s 888 

context, lnRR, SMD and SMDH represent differences in mean values (magnitude) between a 889 

group under a global change stressor and another group under a benign environment, whereas 890 

lnVR and lnCVR represent differences in variance around mean between the two groups, 891 

without and with adjusting the effect of mean change, respectively 892 

Effect size Statistics Annotation 

Natural logarithm 

of response ratio, 

lnRR (ratio of 

means) 

lnRR=ln (
m𝑝

m𝑐
) , (1) 

m𝑝  and m𝑐 denote the average values 

of measurements from a group with an 

environmental stressor (p) and a 

control (c) group.  

Sampling variance 

of lnRR 
𝑆𝑙𝑛𝑅𝑅

2 =
sd𝑝

2

𝑛𝑝m𝑝
2

+
sd𝑐

2

𝑛𝑐m𝑐
2

, (2) 

sd𝑝
2 and sd𝑐

2  denote corresponding 

variances of m𝑝  and m𝑐  (standard 

deviations of the sample), and 𝑛𝑝 and 

𝑛𝑐  denote the sample sizes for 

environmental stressor (p) and a 

control (c) group. Other symbols are as 

with Equation 1. 

Standard mean 

difference, SMD 

(Hedges’ g or 

Cohen’s d) 

SMD =
m𝑝 − m𝑐

√
(𝑛𝑝 − 1)sd𝑝

2 + (𝑛𝑐 − 1)sd𝑐
2

𝑛𝑝 + 𝑛𝑐 − 2

, (3) 

 

Symbols are as with Equations 1 and 2. 

Sampling variance 

of SMD 

𝑆𝑆𝑀𝐷
2 =

𝑛𝑝 + 𝑛𝑐

𝑛𝑝𝑛𝑐
+

SMD2

2(𝑛𝑝 + 𝑛𝑐)
, (4) 

 

Symbols are as with Equations 1 and 2. 



Standardized 

mean difference 

with 

heteroscedasticity, 

SMDH 

SMDH =
m𝑝 − m𝑐

√sd𝑝
2 + sd𝑐

2

2

, (5) 

Symbols are as with Equations 1 and 2. 

Sampling variance 

of SMDH 

𝑆𝑆𝑀𝐷𝐻
2 =

SMDH2 (
sd𝑝

4

𝑛𝑝 − 1
+

sd𝑐
4

𝑛𝑐 − 1
)

2(sd𝑝
2 + sd𝑐

2)
2

+

sd𝑝
2

𝑛𝑝 − 1
+

sd𝑐
2

𝑛𝑐 − 1

sd𝑝
2 + sd𝑐

2

2

, (6) 

 

Symbols are as with Equations 1 and 2. 

Natural logarithm 

of variability ratio, 

lnVR 

 

lnVR = ln (
𝑠𝑑𝑝

𝑠𝑑𝑐
) +

1

2
(

1

𝑛𝑝 − 1
−

1

𝑛𝑐 − 1
), (7) 

 

Positive values of lnVR indicate that 

environmental stressor increases the 

variance of measurements without 

adjusting for the effect of mean change 

(i.e., more variable traits). Symbols are 

as with Equations 1 and 2. 

Sampling variance 

of lnVR 
𝑆𝑙𝑛𝑉𝑅

2 =
1

2
(

1

𝑛𝑝 − 1
−

1

𝑛𝑐 − 1
), (8) Symbols are as with Equation 2. 

Natural logarithm 

of the coefficients 

of variation, 

lnCVR 

lnCVR = ln (
𝐶𝑉𝑝

𝐶𝑉𝑐
) +

1

2
(

1

𝑛𝑝 − 1
−

1

𝑛𝑐 − 1
), (9) 

𝐶𝑉𝑝 and 𝐶𝑉𝑐  are the coefficient of 

variation (i.e., standard deviation 

divided by its mean) for Environmental 

stressor (p) and control (c) groups. 

Other symbols are as with Equation 2.   

 

Positive values of lnCVR indicate that 

environmental stressor increases the 

variance of measurements, while 



adjusting the effect of mean change 

(i.e., more variable traits). Other 

symbols are as with Equation 2.   

Sampling variance 

of lnCVR 

 

𝑆𝑙𝑛𝐶𝑉𝑅
2 =

sd𝑝
2

𝑛𝑝m𝑝
2

+
sd𝑐

2

𝑛𝑐m𝑐
2

+
1

2
(

1

𝑛𝑝 − 1

+
1

𝑛𝑐 − 1
), (10) 

Symbols are as with Equations 1 and 2. 
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TABLE 2 The definitions of statistical power, Type M, and S error rates. For the definitions 894 

of lnRR, SMD, SMDH, lnVR and lnCVR, see Table 1 895 

Terms Definitions 

Statistical power 

The probability of detecting a statistically significant effect size: response 

magnitude (lnRR, SMD) or response variability (lnVR or lnCVR), given that the 

effect size is non-zero. Given a sample size, the smaller the true effect size 

(response mangnitude or variability), the lower the statistical power. Also, note 

that statistical power is 1 – Type 2 error.  

 

Type S error 

The probability of a statistically significant effect size having an opposite sign to 

the true direction (for lnRR, SMD, lnVR or lnCVR), if the true effect size is non-

zero. Given a sample size,  the smaller the effect size (response mangnitude or 

variability), the higher the Type S error rate.  

 

Type M error 

The multiplicative factor by which the magnitude of an effect size (lnRR, SMD, 

lnVR, or lnCVR) might be exaggerated when the true effect size is non-zero. Given 

a sample size, the smaller the effect size (response mangnitude or variability), the 

higher the Type M error.   
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TABLE 3 The model estimates of statistical power to detect the effect of environmental 897 

stressors on ecosystems response magnitude (lnRR*, lnRR, SMD and SMDH and their 898 

publication bias-corrected versions) and response variability (or heteroscedasticity: lnVR and 899 

lnCVR). The model estimates of power were reported both on single experiment level and 900 

meta-analysis level. We used mixed-effects models and weighted regression models to average 901 

over single experiment level statistical power (using MAOMs, cMAOMs, ESSPs and cESSPs), 902 

and meta-analysis level statistical power (using MAOMs and cMAOMs), respectively. We 903 

noted that (1) the confidence intervals of statistical estimate were asymmetrical due to the back-904 

transformation, (2) statistical power estimates below or above the boundary values (i.e., 0 or 1) 905 

were constrained to the boundaries (i.e., 0# or 1#). MAOM = meta-analytic overall mean, ESSP 906 

= effect-size-specific prediction, cMAOM = bias-corrected meta-analytic overall mean, cESSP 907 

= bias-corrected effect-size-specific prediction, k = the number of effect sizes, N = the number 908 

of primary studies 909 

 

Effect 

size 

True effect 

Model estimates of Statistical power 

k N 

Median CI.lb CI.ub Mean 

Single 

experiment 

        

 lnRR* cMAOM  0.233 0.218 0.248 0.433 3847 1119 

  cESSP 0.279 0.262 0.2887 0.547 3847 1119 

  MAOM 0.277 0.260 0.2885 0.515 3847 1119 

  ESSP 0.286 0.269 0.304 0.560 3847 1119 

         

 lnRR cMAOM  0.385 0.353 0.420 0.716 1940 516 

  cESSP 0.359 0.331 0.390 0.704 1940 516 

  MAOM 0.523 0.486 0.780 0.973 1940 516 

  ESSP 0.401 0.370 0.436 0.786 1940 516 



         

 SMD cMAOM  0.191 0.179 0.205 0.356 1977 516 

  cESSP 0.209 0.194 0.225 0.195 1977 516 

  MAOM 0.318 0.288 0.343 0.591 1977 516 

  ESSP 0.268 0.249 0.288 0.526 1977 516 

         

 SMDH cMAOM  0.182 0.170 0.195 0.339 1977 516 

  cESSP 0.187 0.174 0.201 0.367 1977 516 

  MAOM 0.269 0.250 0.2881 0.501 1977 516 

  ESSP 0.234 0.217 0.252 0.458 1977 516 

         

 lnVR MAOM  0.115 0.109 0.122 0.214 1902 514 

  ESSP 0.186 0.172 0.201 0.365 1902 514 

         

 lnCVR MAOM  0.064 0.062 0.067 0.120 1886 513 

  ESSP 0.105 0.098 0.112 0.205 1886 513 

Meta-

analysis  

        

 lnRR* cMAOM 0.424 0.286 0.628 0.583 3847 1119 

  MAOM 0.567 0.424 0.756 0.780 3847 1119 

         

 lnRR cMAOM 0.512 0.249 1# 0.704 1940 516 

  MAOM 0.665 0.195 1# 0.915 1940 516 

         

 SMD cMAOM 0.621 0.330 1# 0.855 1977 516 

  MAOM 0.645 0.357 1# 0.887 1977 516 

         

 SMDH cMAOM 0.635 0.352 1# 0.873 1977 516 



  MAOM 0.646 0.362 1# 0.889 1977 516 

         

 lnVR MAOM 0.439 0.250 0.77 0.604 1902 514 

         

 lnCVR MAOM 0.526 0.315 0.878 0.723 1886 513 
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TABLE 4 The model estimates of Type M error rate in detecting the effect of environmental 911 

stressors on ecosystems response magnitude (lnRR*, lnRR, SMD and SMDH and their 912 

publication bias-corrected versions) and response variability (or heteroscedasticity: lnVR and 913 

lnCVR). The model estimates of Type M error rate were reported both on single experiment 914 

level and meta-analysis level. See more details in TABLE 3 915 

 

Effect 

size 

True effect 

Model estimates of Type M error rate 

k N 

Median CI.lb CI.ub Mean 

Single 

experiment 

        

 lnRR* cMAOM  3.220 2.960 3.503 6.286 3847 1119 

  cESSP 2.900 2.666 3.154 6.947 3847 1119 

  MAOM 2.604 2.429 2.793 5.084 3847 1119 

  ESSP 2.727 2.539 2.930 6.533 3847 1119 

         

 lnRR cMAOM  2.004 1.835 2.188 3.911 1940 516 

  cESSP 2.100 1.946 2.267 5.031 1940 516 

  MAOM 1.526 1.431 1.628 2.980 1940 516 

  ESSP 1.968 1.819 2.127 4.714 1940 516 

         

 SMD cMAOM  2.875 2.680 3.085 5.613 1977 516 

  cESSP 3.016 2.778 3.274 7.226 1977 516 

  MAOM 2.028 1.902 2.162 3.958 1977 516 

  ESSP 2.450 2.272 2.641 5.869 1977 516 

         

 SMDH cMAOM  2.936 2.748 3.137 5.731 1977 516 

  cESSP 3.151 2.912 3.409 7.548 1977 516 

  MAOM 2.259 2.116 2.413 4.410 1977 516 

  ESSP 2.703 2.498 2.924 6.474 1977 516 



         

 lnVR MAOM  3.949 3.734 4.176 7.709 1902 514 

  ESSP 3.386 3.132 3.660 8.112 1902 514 

         

 lnCVR MAOM  9.925 9.311 10.58 19.375 1886 513 

  ESSP 6.292 5.713 6.929 15.073 1886 513 

Meta-

analysis 

        

 lnRR* cMAOM 1.823 1.252 2.648 2.037 3847 1119 

  MAOM 1.345 1.123 1.610 1.504 3847 1119 

         

 lnRR cMAOM 1.600 0.897 2.839 1.788 1940 516 

  MAOM 1.251 0.879 1.776 1.399 1940 516 

         

 SMD cMAOM 1.379 0.836 2.265 1.542 1977 516 

  MAOM 1.292 0.868 1.917 1.445 1977 516 

         

 SMDH cMAOM 1.305 0.875 1.940 1.459 1977 516 

  MAOM 1.286 0.874 1.887 1.438 1977 516 

         

 lnVR MAOM 1.555 1.081 2.231 1.738 1902 514 

         

 lnCVR MAOM 1.488 0.911 2.421 1.664 1886 513 
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TABLE 5 The model estimates of Type S error rate in detecting the effect of environmental 917 

stressors on ecosystems response magnitude (lnRR*, lnRR, SMD and SMDH and their 918 

publication bias-corrected versions) and response variability (or heteroscedasticity: lnVR and 919 

lnCVR). The model estimates of Type S error rate were reported both on single experiment 920 

level and meta-analysis level. See more details in TABLE 3 921 

 

Effect 

size 

True effect 

Model estimates of Type S error rate 

k N 

Median CI.lb CI.ub Mean 

Single 

experiment 

        

 lnRR* cMAOM  0.032 0.029 0.036 0.079 3847 1119 

  cESSP 0.027 0.024 0.030 0.070 3847 1119 

  MAOM 0.025 0.022 0.028 0.060 3847 1119 

  ESSP 0.027 0.024 0.03 0.069 3847 1119 

         

 lnRR cMAOM  0.014 0.011 0.017 0.035 1940 516 

  cESSP 0.018 0.015 0.020 0.042 1940 516 

  MAOM 0.007 0.005 0.009 0.016 1940 516 

  ESSP 0.015 0.012 0.018 0.038 1940 516 

         

 SMD cMAOM  0.023 0.020 0.027 0.046 1977 516 

  cESSP 0.028 0.024 0.032 0.064 1977 516 

  MAOM 0.013 0.010 0.015 0.025 1977 516 

  ESSP 0.020 0.016 0.023 0.045 1977 516 

         

 SMDH cMAOM  0.026 0.022 0.029 0.049 1977 516 

  cESSP 0.030 0.026 0.034 0.065 1977 516 

  MAOM 0.016 0.013 0.019 0.031 1977 516 

  ESSP 0.023 0.019 0.026 0.051 1977 516 



         

 lnVR MAOM  0.050 0.046 0.056 0.077 1902 514 

  ESSP 0.037 0.033 0.042 0.083 1902 514 

         

 lnCVR MAOM  0.199 0.187 0.213 0.260 1886 513 

  ESSP 0.087 0.078 0.097 0.171 1886 513 

Meta-

analysis 

        

 lnRR* cMAOM 0.014 0.003 0.029 0.017 3847 1119 

  MAOM 0.004 0# 0.009 0.007 3847 1119 

         

 lnRR cMAOM 0.014 0# 0.045 0.017 1940 516 

  MAOM 0.004 0# 0.017 0.007 1940 516 

         

 SMD cMAOM 0.009 0# 0.031 0.012 1977 516 

  MAOM 0.007 0# 0.022 0.010 1977 516 

         

 SMDH cMAOM 0.007 0# 0.022 0.010 1977 516 

  MAOM 0.006 0# 0.021 0.009 1977 516 

         

 lnVR MAOM 0.007 0# 0.021 0.010 1902 514 

         

 lnCVR MAOM 0.005 0# 0.021 0.008 1886 513 

  922 



FIGURE LEGENDS 923 

FIGURE 1 Conceptual diagrams of effect size calculations from existing field studies and 924 

meta-analyses in global change biology, and analytic approaches used to assess the reliability 925 

of manipulative experiments and non-manipulative observations to evaluate the effect of 926 

stressors on both ecosystem’s response magnitude and variability. (A) An overview of the 927 

effect sizes used to quantify the ecosystem’s response magnitude and variability. Mean 928 

differences metrics were utilized to quantify the response magnitude to environmental 929 

stressors (i.e., lnRR, SMD, and SMDH), while variance differences metrics were used to 930 

characterise the response variability to environmental stressors (i.e., lnVR and lnCVR). In the 931 

context of this paper, response variability was an indicator of heteroscedasticity (also known 932 

as heterogeneous variances or unequal variance). The detailed definitions and formulas for 933 

these effect-size metrics are reported in TABLE 1. (B) An overview of the datasets used to 934 

quantify statistical power, Type M and Type S errors. The datasets were derived from the 935 

work of Hillebrand et al. (2020), compiling 36 meta-analyses. Our lnRR* dataset contained 936 

30 meta-analyses whose effect-size metrics were originally expressed as lnRR. Our lnRR 937 

dataset contained recalculated metric of lnRR using descriptive statistics available in 12 out 938 

of 30 meta-analyses in the lnRR* dataset. Datasets SMD, SMDH, lnVR and lnCVR 939 

contained corresponding metrics also calculated using descriptive statistics available in 12 940 

out of 30 meta-analyses in the lnRR* dataset. nMA represents the number meta-analyses per 941 

dataset. (C) The three-step modelling procedure was employed to test our hypotheses. 942 

 943 

FIGURE 2 Orchard (forest-like) plots showing the weighted average of response magnitude 944 

and variability across all environmental stressors. (A) The effects of environmental stressors 945 

on ecosystem response magnitude measured as lnRR*, lnRR, SMD and SMDH. (B) Bias-946 

corrected ecosystem response magnitude. (C) The effects of environmental stressors on 947 



ecosystem response variability measured as lnVR and lnCVR. The unfilled circles represent 948 

the weighted overall average of response magnitude and variability. The filled circles represent 949 

the associated meta-analytic overall mean of each type of environmental stressors (MAOMs or 950 

cMAOMs estimated at each meta-analysis). The size of filled circles signifies the estimates of 951 

single stressors scaled proportionally to their precisions (precision is the inverse of standard 952 

error, SE). Bold whisker line = 95% confidence interval (CI), thin whisker line = 95% 953 

prediction interval (PI), k = number of effect sizes (in the context of this figure, it represents 954 

the number of MAOM or cMAOM estimates). MAOM = meta-analytic overall mean, cMAOM 955 

= bias-corrected meta-analytic overall mean. We used the R package orchaRd (Nakagawa, 956 

Lagisz, O'Dea, et al., 2021) for visualizations. 957 

 958 

FIGURE 3 Single experiments’ median power to detect response magnitude and variability 959 

for each category of environmental stressors (on the y-axis; stressors with different subscripts 960 

denoted that a given stressor may be covered by multiple different meta-analytic cases), 961 

assuming one common ‘true’ effect per stressor (MAOM), experiment-specific ‘true’ effects 962 

within a stressor (ESSP), and their bias-corrected estimates (cMAOM and cESSP) as ‘true’ 963 

effects. The use of meta-analysis increased the statistical power for some environmental 964 

stressors (MAOM.MA and cMAOM.MA). (A) the dataset lnRR* (nMA = 30, k = 3,847). (B) 965 

the dataset SMD (nMA = 12, k = 1,977). (C) the dataset lnVR (nMA = 12, k = 1,902). (D) the 966 

dataset SMDH (nMA = 12, k = 1,977). (E) the dataset lnCVR (nMA = 12, k = 1,886). Warm = 967 

global warming, Fire = bush fire, Inv = plant invasion, Fert = fertilization, LUC = land use 968 

change, BD loss = biodiversity loss, Acid = acidification, Precip = precipitation. MAOM = 969 

meta-analytic overall mean, ESSP = effect-size-specific prediction, cMAOM = bias-corrected 970 

meta-analytic overall mean, cESSP = bias-corrected effect-size-specific prediction, nMA = the 971 

number meta-analyses per dataset, k = the number of effect sizes. 972 



 973 

FIGURE 4 Single experiments’ median Type M error rates (i.e., exaggeration ratio) in 974 

detecting response magnitude to each category of environmental stressors (on the y-axis; 975 

stressors with different subscripts denoted that a given stressor may be covered by multiple 976 

different meta-analytic cases), assuming one common ‘true’ effect per stressor (MAOM), 977 

experiment-specific ‘true’ effects within a stressor (ESSP), and their bias-corrected estimates 978 

(cMAOM and cESSP) as ‘true’ effects. The use of meta-analysis reduced the Type M error 979 

rates in some environmental stressors (MAOM.MA). (A) the dataset lnRR*. (B) the dataset 980 

SMD. (C) the dataset lnVR. (D) the dataset. (E) the dataset lnCVR. The definition of Type M 981 

error rate can be found at TABLE 2. Grey cells indicate that Type M errors are greater than 3. 982 

See more details in the legend of FIGURE 3 983 

 984 

FIGURE 5 Single experiments’ median Type S error rates in detecting response magnitude to 985 

each category of environmental stressors (on the y-axis; stressors with different subscripts 986 

denoted that a given stressor may be covered by multiple different meta-analytic cases), 987 

assuming one common ‘true’ effect per stressor (MAOM), experiment-specific ‘true’ effects 988 

within a stressor (ESSP), and their bias-corrected estimates (cMAOM and cESSP) as ‘true’ 989 

effects. The use of meta-analysis reduced the Type S error rates in some environmental 990 

stressors (MAOM.MA). (A) the dataset lnRR*. (B) the dataset SMD. (C) the dataset lnVR. (D) 991 

the dataset. (E) the dataset lnCVR. The definition of Type S error rate can be found at TABLE 992 

2. See more details in the legend of FIGURE 3 993 

 994 

FIGURE 6 Forest plots showing the model estimates of statistical power, Type M and S errors. 995 

The mixed-effects models were used to compare the statistical power, Type M and S error rates 996 

between manipulative experiments and non-manipulative observations. (A) – (F) Statistical 997 



power of manipulative experiments and non-manipulative observations to detect response 998 

magnitude (lnRR*, lnRR, SMD, and SMDH) and variability (lnVR and lnCVR). (G) – (L) 999 

Type M errors in manipulative experiments and non-manipulative observations. (M) – (R) 1000 

Type S errors in manipulative experiments and non-manipulative observations. * indicates a 1001 

statistically significant difference between manipulative experiments and non-manipulative 1002 

observations. See more details in the legend of FIGURE 3.  1003 
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