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Abstract

Models have long been used for understanding changing diversification patterns over time. The

rediscovery that models with very different rates through time can fit a phylogeny equally well

has led to great concern about the use of these models. We share and add to these concerns: even

with time heterogeneous models without these issues, the distribution of the data means that

estimates will be very uncertain. However, we argue that congruence issues such as this also

occur in models as basic as Brownian motion and coin flipping. Taxon-heterogeneous models

such as many SSE models appear not to have this particular issue.
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Introduction

For decades, molecular phylogenies have served as vital sources of historical information

for deciphering the birth and the death dynamics of lineages. Thousands of studies of molecular

phylogenies have been dedicated to investigating diversification. In theory, estimating constant

birth and death rates separately is possible because each has distinguishable effects on the tree

shape and branch length distributions (Nee et al. 1994). There are a number of extensions that

expand this simple model for characterizing diversification as a function of time or diversity

(e.g., Nee et al. 1992; Rabosky 2006, 2009; Bokma 2008; Rabosky and Lovette 2008; Morlon et

al. 2011; Etienne et al. 2012), which are used to reconstruct lines showing speciation and

extinction rates scrolling into the past, like the pen of a seismometer tracking vibrations through

time. A sudden sweep up of the extinction rate arm could mean a mass extinction. A slow,

downward trajectory of the speciation rate arm as time approaches the present could mean

available niches have become filled up, limiting the possibilities of adding new species. And, as

with constant rate birth-death models, we have been working under the assumption that even tiny

changes in speciation and/or extinction through time should leave distinct signatures on the tree

shape and branching structure in a molecular phylogeny.

In a recent paper by Louca and Pennell (2020), the entire enterprise of estimating

diversification rates, at least from molecular phylogenies alone, has been called into question. As

it turns out, for any given phylogeny there are an infinite array of congruent models each having

unique functions of speciation and/or extinction rates smoothly varying through time. This is

based on the property of both constant rate birth-death and time-varying models in which every

lineage at any given time point experiences the same rates, and so sampling times for either a



speciation or extinction event are drawn from the same distribution (also known as a coalescent

point process or CPP; see Lambert and Stadler, 2013). Under such conditions, the likelihood of a

tree under a given birth-death model can be inferred simply in terms of the lineage-through-time

(LTT) curve, which is a retrospective counting of the number of lineages that led to a set of

species observed today, and there are always multiple qualitatively different models that can

produce the same curves with the same probability. For example, one model may infer the

observed diversity of Cetaceans (i.e., whales, dolphins, and relatives) is a product of dramatic

changes in the rate of speciation and extinction rates over time, whereas another, equally likely

model, may infer modern whale diversity is the product of no extinction and ever so slight

changes to the speciation rate. In other words, two diametrically opposed models, particularly

with regards to the role of extinction, provide equally valid explanations for the mode and tempo

of Cetacean diversification. In some cases, such as our example above, these models will have

the same number of parameters, rendering them truly indistinguishable.

It should come as no surprise, then, that one popular interpretation of these findings is

that any attempt to learn anything about diversification rates from molecular phylogenies is a

completely futile enterprise. A different response, which we also have seen, is the continued and

uncritical use of these suspect methods sanitized with a “but see Louca and Pennell (2020)”

citation. It is also worth noting that the findings of Louca and Pennell (2020) are substantially

similar, though much more detailed, to the ones presented by Kubo and Iwasa (1995) a quarter

century ago. These authors also described an infinite array of birth and death models fitting the

data equally well, which has been effectively ignored by most later workers.



The issues raised by Louca and Pennell (2020) and Kubo and Iwasa (1995) do represent

substantial methodological problems for comparative biology. However, this does not signal the

end of studying diversification rates on molecular phylogenies, as some have claimed, as these

problems do not extend to all models of diversification. Instead, they are limited to situations

where the goal is to interpret diversification rates through time using what we refer to as,

“time-varying, lineage homogeneous” models — again, models in which all lineages experience

the same variable rates at any given point in time. These would be analogous to a non-heritable

trait-dependent process (Lambert and Stadler, 2013), where changes in a trait occur exactly the

same in all species independently (e.g., global CO2, sea-level changes, global temperature

patterns). We argue that what we refer to as “lineage-specific heterogeneous” models, in which

rates vary among lineages across time points, perhaps due to the inheritance of a trait (e.g.,

state-speciation and extinction, or SSE models; Maddison et al. 2007), should be immune to the

issues of identifiability raised above. This comes with the substantial caveat that this is true if,

and probably only if, the heritable rate changes are modeled as containing a single speciation and

extinction rate that do not vary through time. Essentially, we will show that these models do

“work” if we limit the model space to those with single rates at any time point.

We also address some of the other procedures proposed, explicitly or implicitly, by Louca

and Pennell (2020): continuing with pulled diversification rate reconstruction, focusing on a

point estimate only, no longer penalizing for model complexity, and how information is

distributed on trees.

Overall, we make four points:



1. Model congruence can occur in areas as different as coin flipping and Brownian

motion: it does not mean these models must be given up, only that certain

questions are infeasible.

2. Time-varying, lineage homogeneous models that use just the information from a

lineage through time curve to estimate changing speciation, extinction,

diversification, turnover, or extinction fraction should be avoided due to

congruence issues.

3. Pulled speciation and pulled diversification rate analyses (Louca and Pennell

2020) are identifiable, but they fail to incorporate the substantial uncertainty in

reconstructions that come as a result of typically exponentially decreasing number

of data points (lineages) as one approaches the root of a tree (this also plagues the

methods in point 2)

4. Some SSE methods, and likely other methods that investigate heterogeneity

across taxa, use information beyond that in a lineages through time curve and

their utility remains intact in the face of Louca and Pennell (2020) and Kubo and

Iwasa (1995).

Model congruence is common

It may come as a surprise that this issue of two models fitting data equally well is not new

to comparative methods. Take, for instance, the inference of evolutionary trends, which, broadly

defined, are identifiable patterns of trait evolution in a given direction through time. Using only

extant species, can we detect horses getting bigger and with fewer digits, or increases in the



mean seed size in flowering plants since the Cretaceous (e.g., Tifney 1984; Eriksson et al. 2000),

or, more generally, uncover an evolutionary arms race between predator and prey (e.g., Dawkins

and Krebs 1979; Abrams 1986)? It is trivial to extend a simple Brownian motion model to

include a parameter that allows for the focal trait to evolve along a trend, and this is available in

popular software like the R package geiger (Pennell et al. 2014). The likelihood for these models

given the data is finite, and the simple no trend model is even nested within the trend model, so

comparisons between the two are straightforward. However, as Felsenstein (1988) and Hansen

and Martins (1996) have pointed out, even though trait values move in a given direction under a

Brownian motion with a trend model, this does not affect the expected covariances among

species trait values. That is, the expected trait differences among species is still linearly

dependent on time, meaning closely related species are still expected to be more phenotypically

similar than more distantly related species, which is an identical assumption under a standard

Brownian motion model. As a consequence, the two models have identical likelihoods when

fitted to extant species only, making them indistinguishable based on their probability alone.

One might argue that in cases of clear non-identifiability any careful scientist would

avoid fitting a degenerate model such as Brownian motion with a trend with just coeval

terminals. However, the problem of identifiability between Brownian motion models with and

without a trend is further compounded when considering the potential for dramatic effects on

ancestral state reconstructions. For example, the ancestor of a clade of taxa with body sizes

ranging from 10-12 kg might have a reconstructed state near 11 kg under a no trend model, but

could have a reconstructed state of 50 kg under a model with a trend of an incremental trait

decrease through time. Such ancestral state reconstruction remains widely popular. Nevertheless,



it is still a rather large leap to assert that, because these models are unidentifiable, models using

Brownian motion are generally invalid for use on trees containing only modern taxa. We can still

compare Brownian motion models with more complex models, such as Ornstein-Uhlenbeck

models (e.g., Butler and King 2004; Beaulieu et al. 2012), Brownian models with more than one

rate (e.g., O'Meara et al. 2006; Thomas et al. 2006), or models where the Brownian motion rate

itself changes over time (e.g., Revell, 2021). In other words, while Brownian motion with a trend

model is unidentifiable with modern taxa only, we would not, for instance, say that any model

that attempts to estimate rates of evolution on such trees is uninterpretable. Some models in this

space give the same likelihoods and cannot be distinguished, but many others can, which calls

for care and analysis, not panic.

We also point out that model congruence occurs in other statistically-based disciplines.

Consider the classic coin-flipping example. Suppose we toss a coin 10 times, and 2 of those

tosses come up heads. The most straightforward fitted binomial model indicates that the

probability of observing 2 heads in 10 flips is 0.3 for a biased coin with each flip having a 20%

chance of landing on heads. Now suppose that every time we touch the coin, it gets slightly

dented, or a bit of metal is worn away, and it becomes less and less likely to land on one side

than the other. We can devise several models that have different slopes to alter the probability of

heads after a set of coin flips (Figure 1). For instance, the probability of heads can linearly

increase with each flip, such that by the end the probability of heads is 10% higher than when we

started flipping, and a model where the probability of heads decreases with each flip so that by

the end it is 5% lower than when it started (Figure 1). Interestingly, the probability of observing

2 heads in 10 flips of the coin in each of these models is the same as the simple binomial model,



though the linear change models infer different initial probability of heads before any flips are

made as well as what the probability of the next flip being heads is. If we pre-set the 5% lower or

20% higher parameters ahead of time rather than fitting them, these have the same number of

free parameters as the homogeneous binomial model.



Figure 1: Probability of heads per flip on different models of coin flipping. Each of these

models can fit the same dataset of two heads, eight tails with equal likelihood but make very

different predictions about the next flip.



Avoid inference of congruent diversification models

While millions of students struggling with their statistics homework might cheer the

destruction of the concept of estimating the probability of heads from a set of coin flips, it is

important to emphasize that even though these models are functionally congruent, each provides

different predictions after a new set of coin flips are made (e.g., what is the likeliest outcome of

the eleventh flip?). That is, even though they are indistinguishable from a probabilistic point of

view, we can still distinguish them when new data becomes available. Of course, with

comparative methods we cannot simply “flip” evolution more times to distinguish among a set of

congruent models. The emphasis, then, as Morlon et al. (2020) recently pointed out, becomes

what we are trying to learn about the world, given what we know about how it works. It is

generally true that with coins, we have a good idea that the probability of heads does not change

meaningfully over flips, so we may be willing to assume a standard binomial model and then

question the fairness of a coin, perhaps as a way of extrapolating to other coins (i.e., if this Euro

coin has a probability of heads of 0.502, is that true for other Euro coins?). In other words, the

parameter can be of interest because the model is not really in question.

With many diversification models, the central question is about which model fits best,

which is at odds with a general lack of knowledge about any system to clearly know which kind

of model is appropriate ahead of time. Even with diversification models that explicitly link rates

to abiotic variables such as temperature or sea level changes (e.g., Condamine et al. 2013; 2019)

the goal seems more focused on which model fits best. In our view, we are not yet at the stage

where we can confidently rule out a congruent model where extinction rates are driven by the



position of a hypothetical dwarf star outside our solar system, which triggers periods of increased

comet activity on Earth (e.g. Raup and Sepkowski 1984), over a more “sensible” model of, say,

temperature clearly affecting speciation but not extinction rates. In such cases, asking questions

about which of several indistinguishable models fit does not seem to us a good use of our time.

It is also important to emphasize that our argument here is not that the issues Louca and

Pennell (2020) point out are trivial. In fact, there are many papers, and even entire research

programs, dedicated to the development of time-varying, lineage homogeneous models of

diversification, and trying to draw conclusions based on which models fit best. But, as with coin

flipping or Brownian motion, knowing what conclusions can be made given the models and data

and limiting our work to those areas can be important. Moreover, if even coin flipping has

congruent models, there is no guarantee that even models that currently seem to avoid the

congruence issue, such as pulled diversification rates recommended by Louca and Pennell

(2020), do not have other congruent models with different parameters, such as models that

change rates by taxa rather than solely by time.

Avoid ancestral rate reconstruction

Ancestral state reconstruction of characters remains one of the most popular and widely

used approaches in phylogenetic comparative methods, despite the occasional discussion to

dampen enthusiasm in them (e.g., Cunningham et al. 1998; Omland 1999; Oakley and

Cunningham, 2000). Ancestral state reconstruction is useful for formulating testable hypotheses,

such as the synthesis and performance evaluation of putative ancestral proteins (e.g., Thornton et

al. 2003; Pillai et al. 2020), biogeographic history and movements of clades through time (e.g.,



Ree and Smith, 2008; Landis et al. 2020), and the order and timing of character state changes

(e.g., Schluter et al. 1997; Ackerly et al. 2006). Reconstructing diversification rates through time

has a similar appeal, in that they too can point to testable hypotheses about the intrinsic and

extrinsic factors that drive species diversity among groups. Armed with only a phylogeny of

modern taxa, we can reconstruct the seismograph tracing of how speciation rate, extinction rate,

net diversification rate, or the new pulled diversification or pulled speciation rates, have changed

through time. With the reconstruction of discrete or continuous characters, state information at

the extant tips is generally less and less informative about states at nodes as one traverses deeper

in the tree towards the root. For diversification rate models, the data are not arrayed along the

tips of a tree, but rather, come from the distribution of branching events across the phylogeny.

Ignoring uncertainty in branch lengths or topology, this makes a 10 Myr long edge equally

informative regardless of whether it ended 3 million years ago or 300 million years ago.

As Maddison and FitzJohn (2015) noted, our field does not yet think in terms of the

curvature of biodiversity-time, and so our expectations about the distribution of these branching

events are often wrong. The number of edges on trees, under most models, increases

approximately exponentially with time, although extinction complicates this, as would models

with carrying capacity (e.g., Rabosky and Lovette 2008), age-dependent extinction (Alexander et

al 2016), and other variations of the birth-death model. Nevertheless, lineage through time plots

are commonly shown on a log scale for the number of lineages due to this nearly exponential

growth. Visualizing the raw number of lineages would make the dynamics in the early parts of

the plot virtually invisible due to the massive growth of the line near the present. Importantly, the



midpoint of the data is the point at which half the number of lineages have accumulated, which is

not the halfway point along the time axis.

Consider a tree split into equal-sized chunks according to some time interval, as Louca

and Pennell (2020) and others have. The number of edges within a given bin naturally decreases

as one moves towards the root. Now, take the extreme example from Louca and Pennell (2020)

where they analyzed a tree with a million taxa (Figure 2). Even though the tree is far larger than

any published study of diversification, they only estimate rates along 10 time intervals and for

many of these bins there is only a trivial amount of data. For example, at the start of the 100 Myr

to 90 Myr interval, there are just seven lineages, and by the end of that interval, there are only

ten. The lineage through time plot, which is the data that goes into these methods, thus jumps just

three times over that ten million years. This is clearly not a lot of data points for estimating

speciation or extinction rates, or even a single pulled diversification rate. Each of the next several

intervals has a single jump. That is, it goes from 10 to 11 lineages from 90 to 80 Myr, and from

just 11 to 12 from 80 Myr to 90 Myr. It is no wonder that these methods perform poorly; a single

event on a 12 taxon tree does not contain much information about rates, whether pulled or not.

Put another way, these methods are starving for data across large portions of the tree.



Figure 2: Million taxon tree from Louca and Pennell (2020). The purple lines separate

the regimes used to estimate rates. The thin vertical lines in a rainbow separate regimes with 100

events within them representing equal-sized slices of data. Half the regimes are on each side of

the green band, showing how much of the data are near the tips. The brackets show how many

events occur in each regime.

A natural corollary, then, is that seismographic reconstructions of rates will contain

increasing levels of uncertainty as one moves deeper in time. Nee et al. (1994) showed clearly

that even rates from a constant birth-death model can carry substantial uncertainty. Yet most

analyses doing the sort of work Louca and Pennell (2020) criticize, and even their examples,

return a single point estimate for each parameter at a given time period. In a few cases, point



estimates are summarized together across a set of trees, which is better, but still likely reflects

substantially less uncertainty than what is truly present in any single estimate.





Figure 3: Comparison of net diversification, speciation, and extinction rate of conifers

using as a predictor the best model from Condamine et al. (2020) in blue where only extinction

rate varies with angiosperm diversity, a slightly worse model from that paper (green) where

speciation rate varies with angiosperm diversity, a model (yellow) that fits the data best (at least

in terms of likelihood — the number of free parameters of the spline is hard to compare), and

using scaled IMDB ratings of the television program the Simpsons (red) as a predictor for

speciation rate (which did a better job predicting conifer diversification than angiosperm

diversity did). Not shown are numerous other attempts for other predictors using other splines,

linear change models, and ratings of many other television programs: some of these also

outperformed angiosperms, but many did not.

Besides unexamined uncertainty in point estimates, there is substantial uncertainty in

which model fits best, even if one ignores the congruence issue. For example, Condamine et al.

(2020) compared various models correlating various rates with angiosperm diversity using just a

phylogenetic tree; their best model showed an exponential dependence of conifer extinction rate

with the number of angiosperms. However, models nearly as good (∆AICc < 2; see their Table

S5) include an effect on speciation or both speciation and extinction (only 41% of the model

weight is on variable extinction only models; 39% is on variable speciation only, and 21% on

both varying). One can construct other patterns of diversification rates with very different

conclusions that are better predictors. For example, in Figure 3, the yellow diversification curves

predict the conifer data even better but tell a very different story of constant speciation with

decreases of extinction in the Cretaceous and Neogene rather than the recovered pattern of a



gradual rise of extinction in the Cretaceous onward. Even using ratings of a television show (the

Simpsons, the red line) scaled for the appropriate time period predicts conifer diversification

better than the postulated angiosperm mechanism. Similarly, Morlon et al. (2011) looking at a

paraphyletic set of 16 cetaceans found a constant speciation but variable extinction model fit

best, but there were two other models with a ∆AICc of less than 1 (including one where

extinction does not vary) — this makes it hard to draw any firm conclusions from modern data

alone. Careful biologists, as shown in the studies above, will limit themselves to only feasible

mechanisms, but as we know from other diversification models (Rabosky and Goldberg 2015,

Beaulieu and O’Meara, 2016), if presented with a very simple model and more complex

alternatives only, methods using our messy, complex empirical data will leap to use the more

complex predictors. That is, if the only way to incorporate the very real heterogeneity of a

process is to ascribe it to some varying predictor, methods will choose that. Whether it is 16

modern taxa or a million, it is unclear what we learn from such exercises. Our energies might be

better directed elsewhere.

The state of SSE models and other approaches

Louca and Pennell (2020) speculate that state-speciation and extinction models (SSE)

may have similar identifiability issues. This is not an unreasonable concern. Beaulieu and

O’Meara (2016) demonstrated that if a trait has no effect on speciation and/or extinction rates,

the likelihood of any SSE model becomes the product of the likelihoods of the Nee et al. (1994)

tree likelihood and the character model likelihood (or the sum of the log-likelihoods in log

space), so the models are clearly related. One could certainly alter the SSE model to include



realistic factors like mass extinctions and secular changes in rates through time, and any one of

these features will undoubtedly lead to a set of models with identical likelihoods. However, in

other ways, strict SSE models can be immune, because they do not split the tree into time bins.

Instead, they approximately treat a tree as a series of discrete chunks — that is, a chunk in one

part of the tree is in state 0, and so is impacted by the instantaneous speciation rate, , andλ
0

extinction rate, , while another chunk in another part of the tree is in state 1 and so is impactedµ
0

by speciation rate, , and extinction rate, (in reality, they average over these paintings basedλ
1

µ
1

on their probabilities). Within each of these chunks the speciation and extinction rates are

invariant, and as Nee et al. (1994) showed, constrained in this way there is a single maximum

likelihood estimate of each rate. If one limits the model space to where rates are dependent on

states (observed or hidden or some combination of both), then SSE models should be

identifiable, though not immune to all the practical difficulties of estimating rates in the presence

of extinction, finite data, errors in branch lengths and topology, and more.

We can at least empirically demonstrate that SSE models are immune to the issues of

model congruence based on information in the lineage through time plot: SSE models use more

information than this. In Figure 4, there are three trees with identical lineage through time

curves, but different arrangements of topology. Under a constant rate Yule or birth-death model

the likelihoods of these three trees are identical, as one would expect given the findings of Louca

and Pennell (2020). However, if we allow for multiple rates to be inferred across the tree by

fitting a hidden states only model (which we call MiSSE; see Vasconcelos et al. 2021) the three

trees have different likelihood. This is because the MiSSE model uses information not accessible

to LTT methods, namely, the tree topology. Other methods that fit rate heterogeneity across taxa,



such as MSBD (Barido-Sottani et al. 2018) and ClaDS (Maliet et al. 2019), may also not be

bound by the issues that make different LTT models congruent. Even an approach as simple as

sister group comparisons (e.g., Slowinski and Guyer 1993) can detect differences in net

diversification rate across pairs of clades in a way that depends on topology alone: identical

lineage through time plots would have no effect on this. Taken together, this does not mean that

clade-specific models of diversification could not have their own issues (even coin flipping

models can have congruence, as shown above), just that the identifiability issue identified by

Kubo and Iwasa (1995) and Louca and Pennell (2020) does not apply to them.



Figure 4: (A) Depicts the identical lineage through time (LTT) plots for three trees that

differ in terms of tree balance. The procedure takes a simulated tree, then makes swaps across

branches to either increase balance or decrease it, but maintain the same lineage through time

curve. (B) Depicts the log-likelihood score among the three trees under a two-rate MiSSE model.

These trees produce identical log-likelihoods under taxon-homogeneous, time-heterogeneous

models that use LTT data. However, this is not the case here because allowing rates to vary



among clades, as our MiSSE models do, avoids the trap of having an infinite array of congruent

models. Helmstetter et al. (2021) reach similarly positive conclusions about the possibility of

learning about diversification from SSE models.

What are we really learning anyway?

Null hypothesis testing is intended to show whether an effect is significantly different

from chance alone. At some point, though, comparing against chance becomes an uninteresting

and dull exercise as the end point of a study. After several decades of studying diversification on

molecular phylogenies and continually finding variation in rates across taxa and across time,

favoring a complex model over a “dull” null hypothesis of simple constant birth-death is no

longer surprising. No reasonable scientist will argue that diversification processes have remained

perfectly constant through time, with no changes in extinction rates, no factors changing

speciation rates, and more. We know the data comes from a heterogeneous, complex process and

so any even somewhat reasonable more complex model will fit better than a simple model. As

we have noted elsewhere (see Beaulieu and O’Meara 2016; Caetano et al. 2018), rejecting the

“null” does not imply that the slightly more complex alternative is the true model. Like a hot gas

moved from a simple bottle to a more complex bottle with greater volume, our complex data will

happily expand to take the shape of the biggest container offered to it. Model rejection, model

weighting, posterior probability of models are all ways of saying, “my cloud of data is more

comfortable in this larger bottle than in this smaller bottle. Since the extra bulge on the larger

bottle is called factor X, this clearly shows that factor X is important.” However, a different bottle

with the same volume but with a bulge for factor Y might fit as well. Good science will involve



comparing different reasonable models to the data, not just comparing our slightly more complex

model of interest with slightly simpler models. Much of our work on hidden rate models (e.g.

Beaulieu et al. 2013; Beaulieu and O’Meara 2016; Caetano et al. 2018; Boyko and Beaulieu

2021) is motivated by this desire to give our preferred models an actual chance to lose against

other models in the hope that we learn from this.

In our view, an important aspect of the work of Louca and Pennell (2020) was showing

that even this limited, careful approach might not work for time-heterogeneous diversification

rates: there are multiple diversification bottle shapes that fit the cloud of branching times from a

tree equally well. Furthermore, approaches that seek to track the wiggles of the diversification

seismograph through time tell us very little, if anything, about the past. However, we would add

that instead of tracing the wiggles of a single pulled diversification rate pen on a diversification

seismograph, or even take the extreme step of stopping analyses of diversification using modern

phylogenies altogether, we should use the valid methods we do have to answer biological

questions, in the same way we can use Brownian motion even though different parameterizations

can give identical likelihoods. Focus on analyses that lead to discoveries or confirmations of

biological processes that are possible given available data.

On the whole, it is important to recognize that our methods are better suited for using the

past to learn about the present survivors, not using the present survivors to learn about the past.

Phylogenies of extant taxa convey an enormous amount of information about species and their

direct ancestors, but they also necessarily miss much of the history of a particular clade. As a

consequence, there will never be a clever analysis of a phylogeny of extant archosaurs

(crocodilians and birds) that will result in an inference of the dynamics of the rise and fall of



sauropod dinosaurs, even though they are firmly nested in that clade and must have had a huge

effect on the lineages that survived while all were interacting. Yet this is exactly what we are

asking of our diversification seismograph analyses of modern taxa — that is, we think we are

understanding something about diversification dynamics of archosaurs in the Cretaceous from a

study of their weird, few surviving lineages. However, phylogenies of extant taxa can give us

information about what led to present diversity, what traits are associated with modern diversity

patterns, and, perhaps, even when certain modern lineages took off. We can understand

something about diversification patterns of extant birds, for example, including what traits are

associated with faster diversification or turnover rates.

Perhaps the best example of procedures that illustrate where we think the field needs to

reconsider are classic sister group comparisons (Mitter et al., 1988). These explicitly are about

comparing modern clades and so are by their nature lineage-heterogeneous and limited to

examining factors leading to modern diversity. They do not claim to allow inference about rate

shifts in the past, since they attempt to control for the effect of time. There can be important

corrections for even these methods (Käfer and Mousset, 2014) but they prevent scientists from

spinning tales from limited information about the past. They should also be far more robust to

the concerns raised by Maddison and FitzJohn (2015) than even hidden rate models. Of course,

they are not without their own limitations: it can be hard to find enough comparisons; they only

allow comparison of the direction of net diversification differences due to some pre-specified

factor, while many of our hypotheses might relate to speciation rate, extinction rate, or, as we

have advocated turnover rate (Beaulieu and O’Meara, 2016; Vasconcelos et al. 2021); they

typically require only discrete characters (though see Harvey et al. 2020 and the bomeara/sisters



package on github); and they require ancestral state reconstruction to find sister pairs differing by

a character state. There are also questions completely inaccessible to these methods; however,

accepting these limitations at the outset may have prevented years of work that relied on methods

that felt scientific but gave ultimately meaningless results given the issues now understood about

time-heterogeneous diversification models.

Conclusions

The reconstruction of diversification rates through time, whether of pulled or classic

rates, is appealing but flawed in the same way that inference of ancestral states is appealing but

also flawed. Multiple indistinguishable models give very different estimates about the past, and

even for large trees, what matters is the branches and branching events at the times of interest,

often when the mighty tree was a mere sapling. Moreover, this only looks at branches with

modern descendants. What information it does provide is about what those lineages may have

been doing, not what the clade as a whole may have been doing. Thus, approaches that seek to

paint pictures about potential past diversification regimes at very incremental time periods are

certainly suspect, with Louca and Pennell (2020) pointing to additional congruence issues that

can affect diversification models.

Some feel that, even in the face of these congruence issues, understanding

macroevolution remains an exciting and promising endeavor (Helmstetter et al. 2021). We are

not nearly as optimistic. We can certainly learn about diversification processes from trees, but we

need to recognize that what we can understand largely relates only to the surviving tips. Current

SSE models and other models that infer rate heterogeneity across taxa, rather than across time,



may provide additional information that lets them fit different parameters and likelihood for trees

with identical lineage through time curves, avoiding the particular issue raised by Kubo and

Iwasa (1995) and Louca and Pennell (2020). However, as with Brownian motion and coin

flipping, congruent models can likely be found for these as well. Sister group analyses may grow

in importance in future studies of diversification.
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Figure Legends

Figure 1: Probability of heads per flip on different models of coin flipping. Each of these models

can fit the same dataset of two heads, eight tails with equal likelihood but make very different

predictions about the next flip.

Figure 2: Million taxon tree from Louca and Pennell (2020). The purple lines separate the

regimes used to estimate rates. The thin vertical lines in a rainbow separate regimes with 100

events within them representing equal-sized slices of data. Half the regimes are on each side of

the green band, showing how much of the data are near the tips. The brackets show how many

events occur in each regime.

Figure 3: Comparison of net diversification, speciation, and extinction rate of conifers using as a

predictor the best model from Condamine et al. (2020) in blue where only extinction rate varies

with angiosperm diversity, a slightly worse model from that paper (green) where speciation rate

varies with angiosperm diversity, a model (yellow) that fits the data best (at least in terms of

likelihood — the number of free parameters of the spline is hard to compare), and using scaled

IMDB ratings of the television program the Simpsons (red) as a predictor for speciation rate

(which did a better job predicting conifer diversification than angiosperm diversity did). Not

shown are numerous other attempts for other predictors using other splines, linear change

models, and ratings of many other television programs: some of these also outperformed

angiosperms, but many did not.



Figure 4: (A) Depicts the identical lineage through time (LTT) plots for three trees that differ in

terms of tree balance. The procedure takes a simulated tree, then makes swaps across branches to

either increase balance or decrease it, but maintain the same lineage through time curve. (B)

Depicts the log-likelihood score among the three trees under a two-rate MiSSE model. These

trees produce identical log-likelihoods under taxon-homogeneous, time-heterogeneous models

that use LTT data. However, this is not the case here because allowing rates to vary among

clades, as our MiSSE models do, avoids the trap of having an infinite array of congruent models.

Helmstetter et al. (2021) reach similarly positive conclusions about the possibility of learning

about diversification from SSE models.


