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Abstract

Fire is one of the most important disturbances of the earth-system, shaping the biodiversity of ecosystems and

particularly forests. Anthropogenic drivers such as climatic change and other human activities could produce

potentially abrupt changes in fire regimes, triggering more profound transformations like the transition from

forests to savannah or grasslands ecosystems. Large biodiversity loss could be produced if these transitions

occur. Climatic change could cause conditions that enhance fire ignition and spread, which may potentially

produce more extensive, intense, and frequent fires. In this work, by considering climate projections for the

21st century, we evaluate the possible changes in the Amazon region’s fire regime. We parametrize a fire

model using remote sensing data on fire extension and temperature. In the context of our model, there are

two possible regime changes: the critical regime that implies high variability in fire extension and mega-

fires, and an absorbing phase transition which would produce the extinction of the forest and transition to

a different vegetation state. The fitted model and the projections suggest that the Amazon region is not

close to any of these regime changes, but other factors not included in the model could result crucial in

determining such critical transitions.

Introduction

Very few regions in the terrestrial biosphere are unaffected by fire. Fires caused directly or indirectly by

human activities [1] have different characteristics from natural fires, including in spatial pattern, severity,

burn frequency, seasonality, producing contrasting ecological consequences [2]. Recent years have seen an

increase in fire intensity and extension in different regions [1,3], partially attributable to the fact we are

experiencing a biosphere that is 1°C above historical records [4].

Is hypothesized that this intensification could reduce the spatial and temporal variation in fire regimes, called

pyrodiversity [5], that in turn will generate substantial reductions in biodiversity and ecosystem processes as

carbon storage [6,7]. Probably the most affected regions will be the ones in which fire has been historically

rare or absent. In regions such as tropical forests [8], extreme fires could trigger extensive biodiversity loss

as well as major ecosystems changes as transitions from forest to savannah or shrublands [9,10].

Fires in the Amazon region were historically rare, due to the ability of old-growth forest to maintain enough

moisture to prevent fire spread, even after prolonged drought periods [11]. Human activities such as defor-

estation and land-use change over the past 40 years have produced the conditions for fire to become much

more frequent and widespread across the basin [12]. Droughts are predicted to increase due to climatic

change, and these events have the potential to interact with human activities such as secondary vegetation
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slash-and-burn and cyclical fire-based pasture cleaning [13]. Even if deforestation rates have been substan-

tially reduced until 2018 [14], the previous activities provide sufficient ignition sources for fire to expand into

adjacent forests [13]. This process could increase the importance of fires unrelated to deforestation [15].

Different models of fire for the Amazon have been developed to predict regime changes under climate change

scenarios. These models can be process-based [16] or statistical [17], and generally consider land-use change

and other human activities, as well as local weather conditions, but they usually neglect the spatial dynamics

of fire spread. Statistical fire models take into account mainly environmental factors [18], while others

simulate more detailed processes [19], and a few treat spatial dynamical phenomena (but see [20]). Such

spatial dynamics are important because they can provide insights into how local interactions give rise to

emergent fire patterns [21], and potentially change the stability characteristics of the entire dynamical system

[22].

Simple models of fire have been used as an example of self-organized criticality (SOC), where systems can

self-organize into a state characterized by a power-laws in different observables. For example, the forest fire

model of Drossel & Schwabl [23] (DSM) was proposed to show SOC in relation to the size distribution of

disturbance events [24]. Power-laws imply scale invariance, meaning that there is no characteristic scale in

the model. Later it was shown that DSM does not exhibit true scale invariance [25] and that the system

needs to be somewhat tuned to observe criticality [26]. These facts diminished its theoretical attractiveness,

but the model could be still of high practically relevance.

Some modifications of the Drossell & Schwabl (DSM) model have been used to predict fire responses to

climate change [27], and other DSM variants can reproduce features observed in empirical studies [28] as the

power-law distribution of the fire sizes, the size and shape of unburned areas and the relationship between

annual burned area and diversity of ecological stages [29]. An analysis of different models showed that the key

process for reproducing all these patterns were changing the scale of grid cells to represent several hectares,

and the ‘memory effect’: flammability increases with the time since last fire at a given site [29,30]. But the

exponent of the fire size distribution observed in different ecoregions still cannot be reproduced by these

models.

These simple models could have critical behaviour characterized by power-law distribution in fire sizes and

other observables. Such dynamics can be explained in terms of percolation theory [31] where there is a

transition between two states: one where propagation of fires occurs, and another where it is very limited.

The narrow region where the transition occurs is the critical point, characterized by an order parameter (fire

size) that depends on some external control parameter (e.g. ignition probability) [32].
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An example of this transition could be the case the recent Australia 2019-2020 mega-fires [33]. Historically,

indigenous fire stewardship in Australian landscapes maintained flammable forest in a disconnected state by

producing frequent small scale fires [34]. This regime was disrupted by fire suppression related to European

colonization land-use change [35] and climate [36], pushing the system towards a critical regime [37]. These

kinds of extreme events are very difficult to predict by Earth system models that do not fully incorporate

the dynamic of fuel accumulation and vegetation dynamics [38].

The objective of this work is to predict the fire regimes of the Amazon region based on climate change

scenarios using a simple spatial stochastic fire model. We first analyse the fire dynamics of the last 20

years in the region with MODIS burnt area product and derive an ignition probability. Then we predict

the ignition probability up to the year 2060 based on different greenhouse gas Representative Concentration

Pathways. Finally, using the model forced with the ignition probability, we predict and analyse the possible

changes in the fire regimes for the Amazon.

methods

Our region of study is the Amazon Basin (Figure S1). This includes Brasil, which represent 60% of the

area, as well as eight other countries (Bolivia, Colombia, Ecuador, Guyana, Peru, Suriname, Venezuela, and

French Guiana). One of the reasons to choose this region is that is thought to be a crucial tipping element

of the Earth-system [39,40].

Fire data and parameters

We estimated the monthly burned areas from 2001 to the end of 2020 using the NASA Moderate-Resolution

Imaging Spectroradiometer (MODIS) burnt area Collection 6 product MCD64A1 [41], which has a 500 m

pixel resolution. To download the data we used Google Earth Engine restricted to the region of interest.

Each image represents the burned pixels as 1 and the non-burned as 0. We then calculated the burned

clusters using 4 nearest neighbours (Von Neumann neighbourhood) and the Hoshen–Kopelman algorithm

[42]. Each cluster contains contiguous pixels burned within a month and this represents a fire event 𝑆,

allowing us to calculate the number and sizes of fire clusters by month. We estimated the probability of

ignition 𝑓 as 𝑓𝑚 = |𝑆𝑚|
𝑇 , where | | denotes the number of clusters, 𝑆𝑚 the clusters that start in that month

𝑚 (if a fire started in the previous month we avoid counting it twice), and 𝑇 is total number of pixels in the

region, to allow comparisons with the fire model.

We also estimated the distribution of fire sizes using an annual period to have enough fire clusters to

discriminate between different distributions. We aggregated the monthly images using a simple superposition;
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the annual image has a 1 if it has one or more fires during the year, and 0 if it has none. After that, we

again ran the Hoshen–Kopelman algorithm and obtained the annual fire clusters and fitted the following

distributions to the fire sizes: power-law, power-law with exponential cut-off, log-normal, and exponential.

We used maximum likelihood to decide which distribution fit the data best using the Akaike Information

Criteria (𝐴𝐼𝐶) [43]. Additionally, we computed a likelihood ratio test, Voung’s test [44], for non-nested

models. We only considered it a true power-law when the value of the 𝐴𝐼𝐶 was at a minimum and the

comparison with the exponential distribution using the Vuong’s test was significant with p<0.05; if p>=0.05

we assumed that the two distributions cannot be differentiated.

Modelling the probability of ignition

We calculated the monthly ignition probability 𝑓 and related it to monthly precipitation (𝑝𝑝𝑡), maximum

temperature (𝑚𝑎𝑥𝑇 𝑒𝑚𝑝) and a seasonal term. We obtained environmental data from the TerraClimate

dataset [45], doing an average over the region. We transformed 𝑓 to logarithms, because it had a highly

skewed distribution, and evaluated an increasingly complex series of generalized additive models (GAMs),

assuming a Gaussian distribution family. We used thin plate regression splines as smoothing terms, and for

interactions between environmental variables we used tensor products, with the method restricted maximum

likelihood (REML) to fit to the data [46]. All these procedures were available in the R package mgcv [47]

and all source code is available at the repository https://github.com/lsaravia/AmazonFireTippingPoints.

We selected the best model using 𝐴𝐼𝐶 [47]. To evaluate the predictive power of the models, we broke the

data set into a training set (with Date < 2018, representing 85% of the data) and testing set (with Date >=

2018) and then calculated the mean absolute percentage error (MAPE) for the three best models selected

with 𝐴𝐼𝐶 (Table S2). The formula of the MAPE is as follows:

MAPE = 100
𝑁𝑡𝑜𝑡

∑𝑁𝑡𝑜𝑡
𝑖=1

|𝑛𝑜𝑏𝑠
𝑖 −𝑛𝑝𝑟𝑒𝑑

𝑖 |
𝑛𝑜𝑏𝑠

𝑖

We used the previously-described GAM model to obtain predictions of the ignition probability up to 2060.

Driving data were obtained from the NASA Earth Exchange Global Daily Downscaled Climate Projections

[48], which were estimated with General Circulation Models (GCM) runs conducted under the Coupled Model

Intercomparison Project Phase 5 [49]. We averaged over the 21 CMIP5 models and over the study region

to obtain the monthly values of the needed variables: precipitation and maximum temperature. Then we

estimated the probability of ignition up to 2060 using the fitted GAM across two of the four Representative

Concentration Pathways (RCPs), RCP4.5 and RCP8.5 [50]. Such RCPs are greenhouse gas concentration

trajectories adopted by the IPCC and used for climate modeling and research [51].
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Fire Model

Conceptually the model represents two processes: forest burning and forest recovery. We assume that the

forest layer represents the flammable forest (rather than forest cover), and that when a site is burned it does

not mean that all the vegetation is dead, but that all the fuel is consumed.

The model uses a 2-dimensional lattice to represent the spatial region. Each site in the lattice can be in one

of three different states: an empty or burned site, a flammable forest (called forest for short), or a burning

forest. The lattice is updated in parallel, according to the following steps:

1. We pick at random a burning site, and it becomes an empty site in the following step (the model’s

timestep is one day)

2. We pick at random a forest site and it becomes a burning forest if one or more of its eight nearest

neighbour sites are burning

3. We pick at random another forest site and it sends (with probability 𝑝) a propagule to an empty site

at a distance drawn from a power-law dispersal kernel with exponent 𝑑𝑒.

4. A random site can catch fire spontaneously with probability 𝑓(t), i.e., this probability changes by

month, reflecting the fire season.

We assumed absorbing boundary conditions and that the initial state is a random configuration of forest

with density 0.6 (60% of the lattice with forest). This configuration assures that the forest percolates: most

forest sites are connected, and initially the fire spreads over the whole lattice. Rule 3 means that an empty

site can recover more quickly when it is near a forest site, but also that some sites can recover even when

far from established forest sites–in fact, depending on the kernel exponent, it could be any site in the lattice

[52]. The choice of a power-law dispersal is justified because forests dispersion generally exhibits fat-tailed

kernels [53,54].

This model is very similar to the Drossel-Schwabl forest fire model [23]: it exhibits critical behaviour when

𝜃 = 𝑝/𝑓 tends to ∞, and thus must satisfy the condition that 𝑓 << 𝑝, as is generally observed in natural

systems. The model involves the separation between three time scales: the fast burning of forest clusters,

the slow recover of forest, and the even slower rate of fire ignitions. Then in the critical regime there is a slow

accumulation of forest that forms connected clusters, and eventually as the ignition probability is very low

these clusters connect the whole lattice— here is the link with percolation theory [31]— and a single ignition

event can produce big fires. After this, the density of the forest becomes very low and the accumulation

cycle begins again. This regime is characterized by wide fluctuations in the size of fires and the density of
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trees, with both following approximately power-law size distributions. If the ignition probability 𝑓 is too

high fires are frequent, forest sites become disconnected and small fires, with a characteristic size, dominate

the system.

One of the features not present in the original forest fire model is that forests can have long-distance dispersal,

modifying the distribution of forest clusters, the distribution of fire sizes, and dynamics of the model. When

forest dispersal is limited mainly to nearest neighbours, forest recovery produces clusters that tend to coalesce

and form uniform clusters with few or no isolated forest sites. When the forest burns these isolated forest

sites are the points from where the forest recovers (assuming no external colonization); when these are not

present there is an increased probability that the forest becomes extinct. When dispersal is long-distance

there is an important number of isolated forest sites, thus decreasing the probability of forest extinction.

All these processes are particularly important when 𝜃 is low and fires are smaller but more frequent. In

dynamical terms there is a critical extinction value 𝜃𝑒𝑥𝑡, when 𝜃 < 𝜃𝑒𝑥𝑡 the forest become extinct, but the

critical value depends on the dispersal distance governed by 𝑑𝑒.

The second feature not present in the original forest fire model is seasonality. In natural systems, there is a

period of the year when environmental conditions produce an increase in the fire ignition probability, and

during the rest of the year there is a much lower probability of fires. This forces a periodic accumulation of

forest and a short period of intense fires which is called the fire season. Thus, the model has a short period

of low 𝜃𝑚𝑖𝑛 and a longer period of high 𝜃𝑚𝑎𝑥. If both the minimum and maximum 𝜃 are in the critical

region, the model behaviour, in the long run, will be like the critical regime with maximal fire sizes in the

fire season. When 𝜃𝑚𝑎𝑥 is in the critical zone but near the limit, so 𝜃𝑚𝑖𝑛 could be outside the critical zone,

the model’s dynamics regime could have more extreme fires (i.e. be more similar to the critical regime) than

an equivalent non-seasonal model. If both 𝜃 are outside the critical region the dynamics could be close to

the critical extinction zone, but in this case, seasonal differences in fire sizes will be less pronounced.

Increasing the length of the fire season as predicted in climate change scenarios [55] will produce the model

to spend more time at a lower 𝜃 decreasing the connectivity of the forest and the size of fires. Moreover,

depending on the position of 𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛 on the parameter space increasing the possibility of critical extinc-

tion.

We made a set of exploratory simulations, with a range of parameters compatible with what we found for

the Amazon region, to characterize the previously described regimes (Table S3). We used a lattice size of

450x450 sites, ran the simulations for 60 years with an initial forest density of 0.3 (we found that different

initial conditions gave similar results), and used the final 40 years to estimate the total annual fire size, the
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maximum cluster fire size, the distribution of fire sizes, and the total number of fires. To determine the

cluster fire sizes and distributions we used the same methods described previously for the MODIS fire data.

We ran a factorial combination of dispersal exponent 𝑑𝑒 and 𝜃 and 10 repetitions of each parameter set.

First, we ran the experiment with 𝜃 fixed, keeping the ignition probability 𝑓 constant, and then repeated

the experiment with seasonality: we simulated a fire season of 3 months each year multiplying 𝑓 by 10. A

dispersal exponent 𝑑𝑒 >> 1 (e.g. 𝑑𝑒 = 102) is equivalent to a dispersal to the nearest neighbours, while

𝑑𝑒 = 2.0155 corresponds to a mean dispersal distance of 66 sites (Table S3), i.e. long range dispersal.

Fire Model Fitting

As we already estimated the 𝑓 parameter from the 20 years of MODIS data, we only needed to estimate

the dispersal exponent 𝑑𝑒 and the probability 𝑝 of forest growth. This parameter 𝑝 is expressed as 𝑟 = 1/𝑝,

representing the average number of days for forest to recover. For this estimation we duplicated the extension

of the estimated 𝑓 as if it started in 1980; we allowed 20 years for transient effects to dissipate in the model,

and then used the last 20 years to compare with monthly fire data. This choice was justified because most

human activities in the Amazon started in this decade during the conversion of large areas of forest to

converted to agriculture [56].

To explore the parameter space we used Latin-hypercube sampling [57] with parameter ranges (4, 2.0101)
for 𝑑𝑒 and $(90 - 7300) days for 𝑟. We used 500 samples and 10 repeated simulations of the model for each

sample, totalling 5000 simulations, as the model has a long transient period. We performed simulations with

different starting forest density of 0.3 and 0.6 and selected the 10 best parameter sets using the ones with

the minimum MAPE. We calculated the correlation of the monthly observed data with model predictions.

We observed that the peaks in the model are delayed by 2-3 months; the same happens in more realistic

process based models [19], and as we were not interested in predicting the exact seasonal fire patterns, we

re-fitted the parameters with MAPE, but using the monthly maximum of the year. The second step of our

fitting procedure was to take the 10 best fitted parameter sets and calculate the power-law fire distribution,

for doing this we ran 100 simulations for each of the parameters sets and then calculated the fire cluster

distributions using the same methods explained previously.

Finally, we ran the model with the best fitted parameters, the ignition probability estimated from the MODIS

data, and the ignition probability estimated with the GAM model for the period 2000-2020, to check if the

data fit with the range of predictions.
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Model Predictions

We use the best fitted parameter set and the predictions of the parameter 𝑓 under RCP4.5 and RCP8.5

to make simulations up to 2060. We started simulations in the year 1980 as in the fitting procedure, but

instead of using 𝑓 derived directly from data we used the 𝑓 obtained from the GAM model, allowing us to

compare actual and predicted fires using the same method to obtain 𝑓 . For these simulations we sampled

each 𝑓 for each month, assuming the 𝑙𝑜𝑔(𝑓) follows a normal distribution with the average and standard

deviation given by the values obtained in the GAM model.

Results

The monthly fires follow a strong seasonal pattern with a maximum between September and October (Figure

S2). We characterize the annual fire regime using the total fire size (total burned area) and the maximum

fire cluster (the biggest fire event 𝑆𝑚𝑎𝑥). We note that the years with highest 𝑆𝑚𝑎𝑥 are also years with high

total fire size (Figure 1). The years 2007 and 2010 had the two highest 𝑆𝑚𝑎𝑥 and they also have a power-law

distribution (Table S1, Figures S3-S5). Power-law distributions have two parameters: 𝑆 = 𝑥𝑚𝑖𝑛, which is

the minimum value for which the power-law holds, and its exponent 𝛼. Only 6 of 20 years exhibit fire size

following a power law distribution (Table S1), and some of such distributions have a range [𝑥𝑚𝑖𝑛 −𝑆𝑚𝑎𝑥] with

the highest values capable to with the years without power-laws , but there are also years with power-law

and small range. These two extremes represent a pattern that we also observe in the fire model.

We fitted GAM models for the ignition probability 𝑓 with single variables, and combinations of two interacting

variables, the best model with lower 𝐴𝐼𝐶 and lower MAPE was the interaction 𝑚𝑎𝑥𝑇 𝑒𝑚𝑝 ∗ 𝑚𝑜𝑛𝑡ℎ (Table

S2). For the GAM fitted to the complete dataset we observe that the model do not capture the most extreme

years of 𝑓 (Figure S7), but the model fitted for the first years (< 2018) predicted the rest of the data well

(Figure S8).

With the best-fitted GAM and the 𝑚𝑎𝑥𝑇 𝑒𝑚𝑝 from the NASA Earth Exchange Global Daily Downscaled

Climate Projections, we predicted the monthly 𝑓 starting from 2020 for two greenhouse gas emissions sce-

narios: RCP4.5 and RCP8.5, in this case most data fall inside the standard error of the model (Figures S9

& S10)

Fire model exploration

We ran the model for a range of the 𝜃 parameter (equal to 𝑝/𝑓), anticipating that larger values would

produce critical behaviour, consisting of large variability of fires between years and extremely large cluster
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Figure 1: Annual total fire size vs maximum fire size for the Amazon as a percent of the region area.
Estimated with MODIS burned area product. These observed data exhibit cycles of loading and discharge,
years with high fire extension and big fire events—the upper right region of the figure—which are followed
by years of low fire extension and no extreme events in the lower left region. A typical trajectory could be
the years 2009, 2010 and 2011 where this cycle can be clearly observed.
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fire sizes that follow a power-law distribution. As expected, we obtained a larger proportion of power-law

distributions for the biggest size of 𝜃 (Table S5), and particularly high variability and extremely big fires

(Figure 2). For simulations with seasonality, we observed the expected decrease on the number of years

where fire cluster size follow power law distribution, also less variability and fewer extreme fires, because

in these cases 𝜃 decreases for the fire season. Seasonality also had the unexpected effect of increasing the

frequency of power-law distribution for 𝜃 = 25 with a bigger exponent than the ones for large 𝜃 (Table S5);

this pattern was also observed in the MODIS data.

In the simulations with 𝜃 25 and 250 and with shorter dispersal distances, the forest density tends to decrease

and eventually it reaches zero, marking the absorbing phase transition reported for this type of model [37],

meaning that in these cases the parameter 𝜃 was below the critical point 𝜃𝑒𝑥𝑡 (Figure S11). Increasing the

dispersal distance produces higher forest density, while seasonality has the opposite effect. In the case of

high dispersal and low 𝜃 we are again below 𝜃𝑒𝑥𝑡. Note that forest density is the so-called active component

of the model and represents the flammable forest.

Fire Model Fitting

We used two methods to fit the model to data, one using the monthly fire extent and another using the

monthly maximum of the year, as the model produced delayed fire peaks. The first method resulted in very

low values for the monthly maxima, which is also reflected in very low correlation values (Table S6, Figures

S14 & S15). The second fitting method resulted in monthly fire time series more similar to data (Figure

S14), with lower MAPE and higher correlation. For this reason, we used the parameters fitted with this last

method for predictions. With the ten best parameter sets we calculated the power-law fire distribution and

selected one parameter set with a median exponent closer to the data (Table S7). All these best parameters

result in an average 𝜃 between 110 and 90 which is an intermediate range, considering the parameter range

we used for the model exploration.

The model predictions using best fitted parameters, the ignition probability 𝑓 calculated from the data, and

𝑓 estimated using the GAM model, gave results consistent with the observed data range. The predicted

median 𝑆𝑚𝑎𝑥 is slightly higher and the power-law exponent 𝛼 of the fire size distribution is lower (Figure 3);

these results are inter-related because when 𝛼s are lower we expect larger fire events. The predicted total

fire size has a very good match with the data, while the predicted number of fires is slightly higher (Figure

3).
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Figure 2: Total annual fire size vs. max fire cluster for the Fire model. A & B Are simulations with fixed 𝜃,
A with dispersal exponent 𝑑𝑒 = 102, mean dispersal distance of 1 (equivalent to nearest neighbours ) and B
with 𝑑𝑒 = 2.0155, mean dispersal distance of 66 sites. C & D Are simulations with a fire season of 90 days
where 𝜃 is divided by 10 (the probability of ignition 𝑓 is multiplied by 10), and the same 𝑑𝑒 as previously.
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Figure 3: Predictions of the fire model compared with data for the years 2001-2020. We used best-fit
parameters, the ignition probability from MODIS, and the ignition probability from the estimated GAM
models (Simul GAM), to run the model. All the outputs are relative to the total area; black points are the
medians.
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Fire model predictions

We observed that the 𝜃 for the best fitted parameter was in the lowest range if we consider the set of ten

best fitted parameters (Table S7), so we decided to add simulations with other parameters from the set, but

with the highest values of 𝜃. Then we perform the simulations with the first row (𝜃 ∼ 90) and the sixth

row (𝜃 ∼ 110) of the parameters table S7. The simulations by decade gave results that are similar between

the two RCPs. The simulations with 𝜃 ∼ 110 resulted in higher values of total fire and maximum fire, a

difference that was more accentuated after the 2040s. The range of the predictions was, in all cases, lower

than the range of the observed data.

Figure 4: Total annual size of fires vs maximum fire size % relative to the area of the region. The data
column was estimated using MODIS burned area product. The predictions by decade were estimated with
a fitted model using a monthly ignition probability calculated with data from General Circulation Models
under two greenhouse gas emissions scenarios known as Representative Concentration Pathways (RCPs),
RCP4.5 and RCP8.5. From the best fitted fire models we show two with the minimum and maximum 𝜃
parameter.
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Discussion

Based on spatial forest-fire dynamics, the model fitted to actual data and the predictions up to 2060 suggests

that the Amazon fire dynamics are outside a critical regime and far from an absorbing phase transition. A

critical regime would imply far more extreme fires and an absorbing phase transition could signal an imminent

forest-savanna transition, without extreme fires but with more frequent fires. The actual and predicted fire

regime seems to lie between these extremes, and all the predictions showed a decrease in maximum fire size

and extension.

Similar models have been used to fit fire data and determine if the system is on a critical regime. For

example, Zinck et al. [30] found that some regions of Canada have experienced a change in the fire regime

from a non-critical to critical. They argued that the original Drossel-Schwabl model (DSM) did not give the

correct values of the power-law exponent of fire distributions, thus they modify the model and represented

fire propagation as a stochastic birth-death process. This means modelling fire as a contact process [58]

that develops over the forest sites; the same concept was further explored concerning the recent Australian

mega-fires [37]. Here we took a different approach, as in the DSM in our model fire spread is deterministic,

and we added what we think are the minimal processes needed for more realism: seasonality and forest

dispersal distance. We agree with Zinck et al. [30] that an extension of the original DSM was needed to

represent fire process observed in ecosystems, but also that not all complexity can or should be added; it

is necessary to keep the model tractable in order to e.g. perform parameter-space exploration. A more

rigorous comparison between these types of fire models would be needed to determine which represent the

most important mechanisms.

Our model is phenomenological. One of the advantages of this kind of models is that it can be applied to

different systems. This is the case of the original DSM model that has been applied to brain activity and

rainfalls [59]. In these two systems there are cycles of loading and discharge and it was observed a broad

region, where the fluctuations peak up and the critical behaviour is established, and not a critical point with

a very sharp transition as the theory of second order phase transitions suggest [31]. The time dependence

of the parameters imposed by fire seasons, where during some months there is an increased probability of

ignition 𝑓 , changes the control parameters of the DMS model, as in fact we do not observe a transition for

a specific value of the parameter 𝜃. Our results suggest that rather than having a specific fine tuning to

observe critical fire spreading, a critical region similar to a Griffiths phase [60] may be present in our model.

However, we lack any rigorous result on this regard.

We observed the expected effect of the drought in 2010 on fires: Amazon experienced the most extensive fires
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of the record, besides deforestation rates were substantially lower than in the previous decade [13]. Other

years of drought did not have the same effect, and the drought associated with the El Niño event in 2015-

2016 produced a considerably lower number of fires than the 2010 drought. This difference can be explained

by the non-linear loading and discharge cycles that characterize the dynamics of fire-forest systems. It has

been observed that deforestation as a cause of fires is becoming secondary, droughts are becoming primary

producers of fires in the Amazon [13]. Our model incorporates the influence of drought using actual and

predicted temperature to model 𝑓 , {BBL: this sentence is long and unclear} besides a longer fire season is

thought to produce an increase in fires [56], fire dynamics could be misleading, in the ranges of temperature

predicted until 2060 over the two greenhouse gas emissions scenarios there no evidence of a substantial

increase in fire extension or maximum fire size. More frequent fires produce in average smaller fire events

with a lower variability, and a low probability of mega-fires.

The forest state in the model represent the flammable forest, as undisturbed tropical forest in the Amazon

is thought to be not flammable and with a very low probability of natural fires [17]. This is changing,

however, due to the increased edges of undisturbed forest with human degraded forest and other land uses

[13]. Fire is still produced by human activities [8] and starts from the transportation network and from

the outside regions [56]. These human-induced fires can invade standing forest and if climate change makes

forests hotter and drier it will become more capable of sustaining more extensive fires [56]. All these changes

are not considered in our model, and they would imply a higher density of our flammable forest state that

could be represented by a lower 𝜃 than the estimated one, and increase the likelihood of an absorbing phase

transition in which the forest has lost its capacity to recover from frequent fires and droughts [56]

Different authors have suggested that a deforestation of 20%-40% of the Amazon will produce a rapid

transition to non-forest ecosystems [61,62]. Currently, approximately 20% of the forest since the 1960s has

been lost, and environmental signals suggest that the system as a whole is oscillating [61]; dynamical analysis

predicts that it is close to a transition [63]. Our model predicts that the fire regime will not have important

variation due to climatic change. On the other hand, this study signals the importance of including dynamical

processes in predictions about fire forest dynamics, and that such predictions of highly non-linear system

can produce unexpected results. One such result could be the sudden collapse of the Amazonian tropical

forest towards a savannah with irreversible implications to biodiversity, global climate, and the economy of

countries region [64].
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