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Abstract

Fire is one of the most important disturbances of the earth-system, shaping the biodiversity of ecosystems

and particularly forests. Climatic change and other anthropogenic drivers such as deforestation and land

use change could produce abrupt changes in fire regimes, potentially triggering transition from forests to

savannah or grasslands ecosystems with large accompanying biodiversity losses. The interplay between

climate change and deforestation might intensify fire ignition and spread, potentially giving rise to more

extensive, intense, and frequent fires, but this is highly uncertain. We use a simple forest-fire model to analyze

the possible changes in the Amazon region’s fire regime that depend on climate change-related variables. We

first explored the model behavior and found that there are two possible regime changes: a critical regime

that implies high variability in fire extent and mega-fires, and an absorbing phase transition which would

produce the extinction of the forest and transition to a different vegetation state. We parameterize the

model using remote sensing data on fire extent and temperature, and show that it demonstrates proficiency

in predicting past fires. Upon considering 21st-century climate projections and deforestation scenarios, our

findings suggest that the Amazon region is not currently nearing any of these regime changes but predict a

consistent increase in fire extent mainly induced by deforestation. Therefore, stopping deforestation could

be an important factor in reducing the potential for drastic alterations in tropical forests of the Amazon

region.

Introduction

Few regions of the terrestrial biosphere are unaffected by fire. Fires caused directly or indirectly by human

activities (Bowman et al. 2020) have different characteristics from natural fires, including in spatial pattern,

severity, burn frequency and seasonality, producing contrasting ecological consequences (Steel et al. 2021).

Recent years have seen an increase in fire intensity and extent in different regions (Bowman et al. 2020,

Pivello et al. 2021), partially attributable to the fact we are experiencing a biosphere temperature that is

1°C above historical records (Masson-Delmotte et al. 2021); it is hypothesized that this intensification could

reduce the spatial and temporal variation in fire regimes, called pyrodiversity (Kelly and Brotons 2017),

which in turn will generate substantial reductions in biodiversity and ecosystem processes such as carbon

storage (Dieleman et al. 2020, Furlaud et al. 2021). The regions most affected are likely the ones in which

fire has historically been rare or absent. In regions such as tropical forests (Barlow et al. 2020), extreme

fires could trigger extensive biodiversity loss as well as major ecosystems changes such as transitions from

forest to savannah or shrublands (Hirota et al. 2011, Fairman et al. 2015).

Fires in the Amazon region were historically rare, due to the ability of old-growth forest to maintain enough
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moisture to prevent fire spread, even after prolonged drought periods (Uhl and Kauffman 1990). Human

activities, specifically deforestation and resulting land-use changes over the past four decades, have created

conditions conducive to more frequent and widespread fires across the basin (Alencar et al. 2011, Aragão et al.

2018, Cardil et al. 2020). Another significant factor contributing to this phenomenon is the predicted increase

in droughts due to climatic change. Droughts can interact with deforestation, potentially exacerbating land

cover conversion and creating a dangerous positive feedback loop (Barlow et al. 2020). Furthermore, human

activities such as secondary vegetation slash-and-burn and cyclical fire-based pasture cleaning can serve as

ignition sources for forest fires (Aragão et al. 2018). Despite substantial reductions in deforestation rates

until 2018 (Feng et al. 2021), previous deforestation activities may still provide sufficient ignition sources for

fires to expand into adjacent forests (Aragão et al. 2018). This process could raise the importance of fires

unrelated to deforestation (Aragão et al. 2014).

Different models of fire for the Amazon have been developed to predict regime changes under climate change

scenarios. Here, we define a regime change as an abrupt transition in fire patterns across large areas, such

as a shift from infrequent scattered fires to more frequent and extensive burning (Kelly et al. 2020). These

models can be process-based (Le Page et al. 2017) or statistical (Fonseca et al. 2019), and generally consider

land-use change and other human activities, as well as local weather conditions, but they usually neglect

the spatial dynamics of fire spread. Statistical fire models take into account mainly environmental factors

(Turco et al. 2018), while process-oriented models include more mechanistic details (Thonicke et al. 2010),

and a few treat spatial dynamical phenomena (Schertzer et al. 2014). Such spatial dynamics are important

because they can provide insights into how local interactions give rise to emergent fire patterns (Pueyo et al.

2010), and potentially change the stability characteristics of the entire dynamical system (Levin and Durret

1996).

Simple models of fire have been used as an example of self-organized criticality (SOC), where systems can

self-organize into a state characterized by power-laws in different model outputs. For example, the forest fire

model of Drossel and Schwabl (1992) (DSM) was proposed to show SOC in relation to the size distribution of

disturbance events (Jensen 1998). Power-laws imply scale invariance, meaning that there is no characteristic

scale in the model. Later it was shown that DSM does not exhibit true scale invariance (Grassberger 2002)

and that the system needs to be somewhat tuned to observe criticality (Bonachela and Muñoz 2009). These

facts decreased its theoretical attractiveness, but the model could still be of high practical relevance. Some

modifications of the DSM model have been used to predict fire responses to climate change (Pueyo 2007),

and other DSM variants can reproduce features observed in empirical studies (Ratz 1995) such as the power-

law distributions of the fire sizes, the size and shape of unburned areas and the relationship between annual
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burned area and diversity of ecological stages (Zinck and Grimm 2009). An analysis of different models

showed that the key for reproducing all these patterns was changing the scale of grid cells to represent

several hectares, and the ‘memory effect’: flammability increases with the time since the last fire at a given

site (Zinck and Grimm 2009, Zinck et al. 2011). However, the exponent of the fire size distribution observed

in different ecoregions cannot still be reproduced by these models.

The simple models mentioned above could have critical behaviour characterized by a power-law distribution

in fire sizes and other model outputs. Such dynamics can be explained in terms of percolation theory

(Stauffer and Aharony 1994) where there is a transition between two states: one where propagation of fires

occurs, and another where it is very limited. The narrow region where the transition occurs is the critical

point, characterized by an order parameter (fire size) that depends on some external control parameter

(e.g. ignition probability) (Solé and Bascompte 2006). An example of this transition could be the case of

the recent Australia 2019-2020 mega-fires (Nolan et al. 2020, Nicoletti et al. 2023), which had devastating

consequences for biodiversity and ecosystem functioning (Kelly et al. 2020). Historically, indigenous fire

stewardship in Australian landscapes maintained flammable forest in a disconnected state by producing

frequent small scale fires (“Biodiversity in flames” 2020), thus preventing high-intensity fires and protecting

biodiversity. This regime was disrupted by fire suppression related to European colonization land-use change

(Hoffman et al. 2021) and climate (Adams et al. 2020), pushing the system toward a critical regime (Nicoletti

et al. 2023) with less ecosystem resilience to extreme fires. These extreme events are very difficult to predict

by Earth system models that do not fully incorporate the dynamic of fuel accumulation and vegetation

dynamics or their effects on biodiversity and ecosystem services (Sanderson and Fisher 2020).

The objective of this work is to model and predict the changes in fire regimes in the Amazon region using a

simple spatial stochastic fire model, based on variables like precipitation and temperature that are included

in climate change scenarios. Our hypothesis is that climate change could drive Amazonian fire regime near a

critical region, leading to more extreme fires. We thus assume that the emergent dynamics can be described

by a process of slow accumulation of fuel and rapid discharge produced by the fires. More precisely, we

initially reconstruct past fire patterns using the NASA Moderate-Resolution Imaging Spectroradiometer

(MODIS) burnt area product. This step serves to verify our main assumption and to derive an ignition

probability. Subsequently, in the second step, we predict the ignition probability up to the year 2060 based

on different greenhouse gas Representative Concentration Pathways. The third step involves simulations to

explore the behavior of the Fire model. In the fourth step, we fit the Fire Model to the observed MODIS fire

patterns. Finally, utilizing the model forced with the ignition probability, we predict and analyze potential

changes in the modeled fire regimes for the Amazon, taking into account the influence of deforestation on
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model parameters.

We will employ a modified DSM forest fire model (Drossel and Schwabl 1992), incorporating elements of

long-distance forest dispersal and seasonality. Notably, the methodology involving the prediction of ignition

probability under diverse global change scenarios and subsequent application to force the fire model represents

a novel approach, as far as we are aware.

Methods

Our study region is the Amazon biome (see Supporting Information). This includes Brazil, which represents

60% of the area, as well as eight other countries (Bolivia, Colombia, Ecuador, Guyana, Peru, Suriname,

Venezuela, and French Guiana). We chose this region because a significant amount of fires extend to tropical

moist forests outside Brazil (Cardil et al. 2020), and the whole area is thought to be a crucial tipping element

of the Earth-system (Staver et al. 2011, Lenton and Williams 2013).

Reconstruction of past fire patterns from MODIS data

We estimated the monthly burned areas from 2001 to the end of 2021 using the NASA Moderate-Resolution

Imaging Spectroradiometer (MODIS) burnt area Collection 6 product MCD64A1 (Giglio et al. 2016), which

has a 460 m pixel resolution. We used Google Earth Engine with the JavaScript programming language

to download the data restricted to the region of interest (see source code availability below). Each image

represents the burned pixels as 1 and the non-burned as 0. We then calculated the burned clusters using

four nearest neighbours (Von Neumann neighbourhood) and the Hoshen–Kopelman algorithm (Hoshen and

Kopelman 1976). Each cluster contains contiguous pixels burned within a month and this represents a fire

event 𝑆, allowing us to calculate the number and sizes of fire clusters by month. We estimated the probability

of ignition 𝑓 as 𝑓(𝑡) = |𝑆𝑡|
𝑇 , where |𝑆𝑡| denotes the number of clusters 𝑆𝑡 that start in the month 𝑡 (if a fire

started in the previous month we avoided it to remove possible double counting), and 𝑇 is total number of

pixels in the region, to allow comparisons with the fire model.

We also estimated the distribution of fire sizes using an annual period to have enough fire clusters to

discriminate between different distributions. We aggregated the monthly images using a simple superposition;

the annual image has a 1 if it has one or more fires during the year, and 0 if it has none. This assumes

that most of the sites burn only once a year, we verified this using the MODIS data that on average only

0.06% burn more than once annually. After that, we ran again the Hoshen–Kopelman algorithm to obtain

the annual fire clusters. In this last case, it is probable that independent ignitions merge into a single

fire cluster. Similar methodologies allowing the merging of independent fires have been utilized in global
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fire studies (Andela et al. 2017). Then we fitted the following distributions to the fire sizes: power-law,

power-law with exponential cut-off, log-normal, and exponential. We used maximum likelihood to decide

which distribution fit the data best using the Akaike Information Criterion (𝐴𝐼𝐶) (Clauset et al. 2009).

Additionally, we computed a likelihood ratio test, Vuong’s test (Vuong 1989), for non-nested models. We

only considered it a true power-law when the value of the 𝐴𝐼𝐶 was at a minimum and the comparison with

the exponential distribution using the Vuong’s test was significant with p<0.05; if p>=0.05 we assumed that

the two distributions cannot be differentiated.

Fitting of ignition parameter

We estimated the ignition probability by month 𝑓 as explained above and related it to monthly precipitation

(𝑝𝑝𝑡), maximum temperature (𝑇𝑚𝑎𝑥) and a seasonal term (𝑚) representing the influence of the month of the

year in 𝑓 . These variables have generally been included in global and regional fire activity models (Huang et

al. 2015, Turco et al. 2018, Fonseca et al. 2019, Wei et al. 2020). More variables were used in these models,

but we are constrained by the variables available in the Climate Projections (see below). We obtained

environmental data from the TerraClimate dataset (Abatzoglou et al. 2018), averaging over the study

region, to represent the influence of regional climate over 𝑓 . We evaluated an increasingly complex series

of generalized additive models (GAMs), assuming a Gaussian distribution and transformed 𝑓 to logarithms,

because it had a highly skewed distribution. We also fitted the same models assuming a Gamma distribution

and no transformation for 𝑓 . For all the models we used thin plate regression splines (Pedersen et al. 2019)

as smoothing terms, and for interactions between environmental variables we used tensor products, using

restricted maximum likelihood (REML) to fit to the data (Pedersen et al. 2019). All these procedures were

available in the R package mgcv (Wood 2017) and all source code is available in the repository https://.

We selected the best models using 𝐴𝐼𝐶 (Wood 2017). To evaluate the predictive power of the models we use

cross-validation, we split the data set into a training set representing 85% of the data and testing set (always

3 years long) and repeated the procedure 10 times starting at different random dates. We then calculated the

mean absolute error (MAE) and the Root Mean Squared Error (RMSE) for the three best models selected

with 𝐴𝐼𝐶 (see Supporting Information). The formulas of MAE and RMSE are as follows:

MAE = 1
𝑛 ∑𝑛

𝑖=1 |𝑓𝑖 − ̂𝑓𝑖|

RMSE = √ 1
𝑛 ∑𝑛

𝑖=1(𝑓𝑖 − ̂𝑓𝑖)2

Where 𝑓𝑖 is the observed ignition probability 𝑓 at month 𝑖, ̂𝑓𝑖 the predicted 𝑓 and 𝑛 the total number

of months used for predictions. We selected the model with the smallest Mean Absolute Error (MAE)
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and Root Mean Square Error (RMSE) to generate predictions of the ignition probability up to 2060.

These predictions serve as input for the fire model, as explained in more detail below. Driving data

were obtained from the NASA Earth Exchange Global Daily Downscaled Climate Projections NEX-

GDPP (https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp)(Thrasher et

al. 2012), which were estimated with General Circulation Models (GCM) runs conducted under the

Coupled Model Intercomparison Project Phase 5 (Taylor et al. 2012). We averaged over the 21 CMIP5

models and over the study region to obtain the monthly values of the needed variables: precipitation

and maximum temperature. By using the ensemble average, we aimed to reduce individual model biases

and capture collective uncertainties, thereby providing more robust and reliable predictions (Avila-Diaz

et al. 2020a, b). Then we estimated the probability of ignition up to 2060 using the fitted GAM across

two of the four Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5 (Meinshausen et

al. 2011). Such RCPs are greenhouse gas concentration trajectories adopted by the IPCC and used for

climate modelling and research (Moss et al. 2010). RCP4.5 represents an intermediate scenario, indicating

a peak in emissions around 2040 followed by a decline. On the other hand, RCP8.5 depicts a scenario where

emissions persistently increase throughout the 21st century.

Fire Model definition and exploration

Conceptually the model represents two key biological processes: forest burning and forest recovery. We

assume that the forest layer represents the flammable biomass or fuel layer of the forest (rather than absolute

forest cover), as the focus is on modeling fire spread dynamics. When a site is burned in the model, it does

not necessarily mean that all vegetation is killed - rather, it represents the consumption of flammable fuels.

The regrowth or recovery process simulates vegetation re-establishing flammable biomass over time. The

model lacks a spatially explicit representation of the deforestation process. This deliberate simplification was

made to maintain model simplicity and ensure a more manageable fitting procedure for the current scope of

the research.

The model uses a two-dimensional square lattice to represent the spatial region. Each site in the lattice can

be in one of three different states: an empty or burned site, a flammable forest (called forest for short), or a

burning forest. The lattice is updated in parallel, according to the following steps:

1. We pick at random a burning site, and it becomes an empty site in the following step (the model’s

timestep is one day)

2. We pick at random a forest site and it becomes a burning forest if one or more of its four nearest

neighbour sites are burning
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3. We pick at random another forest site and it produces (with probability 𝑝) a another forest site in

empty site at a distance drawn from a power-law dispersal kernel with exponent 𝑑𝑒. This models the

process of forest expansion beyond its immediate neighborhood.

4. A random site can catch fire spontaneously with probability 𝑓 , i.e., which varies monthly to reflect

the fire season. This parameter is fitted to fire data for predictions, global change scenarios, and

deforestation scenarios (refer to the previous section for details).

We assumed absorbing boundary conditions and a lattice size of 450x450 sites, but also ran simulations with

other sizes, resulting in equivalent results. Rule 3 means that a burned or empty site can become forest

more quickly when it is near a forest site, but also that some sites can become forest even when far from

established forest sites–depending on the kernel exponent, it could be any site in the lattice (Marco et al.

2011). The choice of a power-law dispersal is justified because forests dispersion generally exhibits fat-tailed

kernels (Clark et al. 2005, Seri et al. 2012).

This model is very similar to the DSM forest fire model (Drossel and Schwabl 1992): it exhibits critical

behaviour when 𝜃 = 𝑝/𝑓 tends to ∞, and thus must satisfy the condition that 𝑓 << 𝑝. This condition

means that the chances of an empty site turning into forest are much higher than the chances of a healthy

forest site catching fire spontaneously, as is generally observed in natural systems. The model involves the

separation between three time scales: the fast burning of forest clusters, the slow recovery of forest, and the

even slower rate of fire ignition. Then in the critical regime there is a slow accumulation of forest that forms

connected clusters, and eventually as the ignition probability is very low these clusters connect the whole

lattice— here is the link with percolation theory (Stauffer and Aharony 1994)— and a single ignition event

can produce large fires. After this, the density of the forest becomes very low and the accumulation cycle

begins again. This regime is characterized by wide fluctuations in the size of fires and the density of trees,

with both following approximately power-law size distributions. If the ignition probability 𝑓 is too high fires

are frequent, forest sites become disconnected and small fires, of characteristic size, dominate the system.

One of the features not present in the original forest fire model is that forests can have long-distance dispersal;

ecologically, this determines population spread, the colonization of empty habitats, and the assembly of local

communities (Nathan et al. 2008). The inclusion of long distance dispersal can modify the distribution of

forest clusters, the distribution of fire sizes, and the dynamics of the model (Marco et al. 2011). When forest

dispersal is limited mainly to nearest neighbours, forest recovery produces clusters that tend to coalesce

and form uniform clusters with few or no isolated forest sites. When the forest burns, these isolated forest

sites are the points from where the forest recovers (assuming no external colonization); when these are not
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present there is an increased probability that the forest becomes extinct. With long-distance dispersal, there

is an important number of isolated forest sites, thus decreasing the probability of forest extinction (see

Supporting Information). These processes are particularly important when 𝜃 is low and fires are smaller

but more frequent. In dynamical terms there is a critical extinction value 𝜃𝑒𝑥𝑡, when 𝜃 < 𝜃𝑒𝑥𝑡 the forest

become extinct. However, the critical value depends on the dispersal distance governed by 𝑑𝑒. At higher

𝑑𝑒, the dispersal distance is smaller, the forest patches are more compact and isolated, leading to a higher

probability of complete burning and a lower 𝜃𝑒𝑥𝑡.

The second feature not present in the original forest fire model is seasonality. In natural systems, certain

times of the year exhibit environmental conditions that significantly increase the probability of fire ignition,

while during the remaining periods, the probability of fires is much lower. This results in a periodic cycle of

forest accumulation and a brief duration of intense fires, commonly known as the fire season. Consequently,

the model incorporates a short period characterized by a low 𝜃𝑚𝑖𝑛 and a longer period with a high 𝜃𝑚𝑎𝑥.

When both the minimum and maximum 𝜃 values are big enough to fall within the critical region, the model’s

long-term behavior resembles the critical regime, with maximum fire sizes occurring during the fire season.

If 𝜃𝑚𝑎𝑥 is within the critical region and 𝜃𝑚𝑖𝑛 is outside it, the model’s dynamics may exhibit more extreme

fires (similar to the critical regime) compared to an equivalent non-seasonal model. Conversely, when both 𝜃
values are outside the critical region, the dynamics may approach the extinction zone if one or both of them

are below 𝜃𝑒𝑥𝑡. In this scenario, seasonal differences in fire sizes are less pronounced.

Increasing the length of the fire season as predicted in climate change scenarios (Pausas and Keeley 2021)

will produce the model to spend more time at a lower 𝜃 decreasing the connectivity of the forest and the size

of fires. Moreover, this could increase the possibility of critical extinction if both 𝜃𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛 are below

𝜃𝑒𝑥𝑡. In this work we assume that the forest is flammable forest; the extinction of this state could mean that

environmental conditions become wetter and the forest does not burn anymore. If environmental conditions

become drier, the extinction of forest probably means a transition to another type of vegetation and then

the conditions to apply this model will no longer hold.

We conducted a set of exploratory simulations, with a range of parameters compatible with what we found

for the Amazon region, to characterize the regimes described above (see Supporting Information). Using

a lattice size of 450x450 sites, we ran the simulations for 60 years with an initial forest density of 0.3 (we

found that different initial conditions gave similar results) and used the final 40 years to estimate the total

annual fire size, the maximum cluster fire size, the distribution of fire sizes and the total number of fires.

To determine the cluster fire sizes and distributions we used the same methods described previously for the

MODIS fire data. We ran a factorial combination of dispersal exponent 𝑑𝑒 and 𝜃 and 10 repetitions of each
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parameter set. First, we ran the experiment with 𝜃 fixed, keeping the ignition probability 𝑓 constant, and

then repeated the experiment with seasonality: we simulated a fire season of 3 months each year multiplying

𝑓 by 10. A dispersal exponent 𝑑𝑒 >> 1 (e.g. 𝑑𝑒 = 102) is equivalent to a dispersal to the nearest neighbours,

while 𝑑𝑒 = 2.0155 corresponds to a mean dispersal distance of 66 sites (see Supporting Information), i.e. long

range dispersal.

Fire Model Fitting

As we already estimated the 𝑓 parameter from the 21 years of MODIS data, we only needed to estimate

the dispersal exponent 𝑑𝑒 and the probability 𝑝 of forest growth. This parameter 𝑝 is expressed as 𝑟 = 1/𝑝,

representing the average number of days for forest to recover. For this estimation we duplicated the extension

of the estimated 𝑓 as if it started in 1980; we allowed 20 years for transient effects to dissipate in the model,

and then used the last 20 years to compare with monthly fire data. This choice was justified because most

human activities in the Amazon started in this decade during the conversion of large areas of forest to

agriculture (Brando et al. 2019).

To explore the parameter space we used Latin-hypercube sampling (Fang et al. 2005) with parameter ranges

2.5 − 2.00035 for 𝑑𝑒 (equivalent to a mean dispersal distance range of 3 - 290 sites) and 365 − 7300 days for

𝑟. As the model has a long transient period, we could suppose that the system is in a transient state, and

thus we also estimated the initial forest density as a parameter with a range of densities of 0.2 - 0.7. We

used 600 samples and 10 repeated simulations of the model for each sample, totalling 6000 simulations, and

selected the best parameter set using Approximate Bayesian Computation (ABC) (Csilléry et al. 2010, 2012)

by comparing the relative monthly fire size — i.e., the absolute size divided by the total number of sites (the

number of MODIS pixels for the Amazon biome or the number of lattice sites for simulations) – with model

predictions using Euclidean distance. During an initial test, we observed that the peaks in the model were

delayed by 2-3 months; the same happens in more realistic process-based models (Thonicke et al. 2010),

and as we were not interested in predicting the exact seasonal fire patterns, so instead of using the complete

monthly time series we used the monthly maximum fire size of the year. We validated this choice using a

random model simulation with known parameters as data and verifying that we could recover the parameters

(see source code). The second step of our fitting procedure was to use power-law fire distribution to perform

another ABC; we thus ran 10 simulations for each of the parameter sets in the posterior distribution and

then calculated the fire cluster distributions using the same methods explained previously. We used ABC to

select a second posterior parameter distribution compared to the median value of the power-law exponent

from MODIS data. The tolerance (proportion of results accepted nearest the target values) for both ABC
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procedures was set at 0.05.

Finally, we used a sample of 100 elements from the final posterior parameter distribution and ran the model

with both the ignition probability estimated from MODIS data and the ignition probability estimated with

the GAM model for the period 2000-2021, to verify if the data fit within the prediction range. We performed

the ABC using a lattice size of 450x450 sites, and as we used relative values (i.e. absolute fire size divided

by the total number of sites) the model does not represent a defined scale.

Model Predictions

We used a sample of 100 elements from posterior parameter distributions and predictions for the parameter

𝑓 under RCP 4.5 and RCP 8.5 to perform simulations up to 2060. We started simulations in the year 1980 as

in the fitting procedure, but instead of using 𝑓 derived directly from data, we used 𝑓 obtained from the GAM

model, allowing us to compare actual and predicted fires using the same method to obtain 𝑓 . Additionally,

we ran a set of simulations with ignition probability 𝑓 derived from the GAM model applied to retrospective

GCM runs coupled with RCP 4.5 and compared them with simulations using ignition probability from

TerraClimate before 2022. This allowed us to assess the differences in model behavior when forced with

GCM models versus TerraClimate data.

Our model also does not explicitly account for deforestation’s impact; however, we approximate this by

dynamically adjusting parameters as deforestation intensifies. Initially fitted to the entire region based on

a singular flammable forest type assumption, these parameters reflect an average between two vegetation

categories: 1) post-deforestation vegetation, featuring higher ignition probability (𝑓) and faster recovery

(associated with higher growth probability, 𝑝); and 2) the original forest, with lower 𝑓 and 𝑝 values. Con-

sequently, escalating deforestation leads to an estimated increase in the average 𝑝 and 𝑓 values beyond the

fitted period (see supplementary material for more details). Leveraging the Hansen remote sensing product

(Hansen et al. 2013) updated until 2021, we calculated the mean deforestation rate for the Amazon biome.

Subsequently, under RCP4.5 and RCP8.5 scenarios, we demonstrate the potential impact of deforestation

on the model’s predictions. The estimated increase in 𝑓 post-2021 is shown in Supporting Information.

Results

Fire patterns from MODIS data

The monthly fires follow a strong seasonal pattern with a maximum between September and October (see

Supporting Information). We characterize the annual fire regime using the total fire size (total burned area)
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and the maximum fire cluster (the biggest fire event 𝑆𝑚𝑎𝑥). We note that the years with highest 𝑆𝑚𝑎𝑥 are

also years with a large total area size (Figure 1). The years 2007 and 2010 had the two highest 𝑆𝑚𝑎𝑥 and they

also have a power-law distribution (see Supporting Information). Power-law distributions are defined as 𝑐𝑆−𝛼

where 𝑐 is constant, 𝛼 the exponent and have an extra parameters: 𝑆 = 𝑥𝑚𝑖𝑛, which is the minimum value

for which the power-law holds. The constant 𝑐 is given by the normalization requirement (Newman 2005).

In the dataset, only 6 out of 20 years demonstrate fire sizes that conform to a power-law distribution (see

Supporting Information). It is noteworthy that some of these distributions display a range [𝑆𝑚𝑎𝑥−𝑥𝑚𝑖𝑛] with

notably higher values compared to years without power-law behavior. However, variability exists, as certain

years with power-law patterns exhibit a relatively small range. This dual extremity mirrors a discernible

pattern observed in the fire model under investigation.

Figure 1: Annual total fire size vs maximum fire size relative to Amazon biome, estimated with MODIS
burned area product. These observed data exhibit cycles of loading and discharge, years with high fire extent
and big fire events—the upper right region of the figure—which are followed by years of low fire extent and
no extreme events in the lower left region. A typical trajectory could be the years 2009, 2010 and 2011 where
this cycle can be clearly observed.
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Fitting of ignition parameter

We fitted GAM models for the ignition probability 𝑓 with single variables, combinations of two interacting

variables, and lags of one month, the best model with lower 𝐴𝐼𝐶 and lower MAE and RMSE was the Gaus-

sian with the interaction 𝑇𝑚𝑎𝑥 ∗ 𝑚 (see Supporting Information). The GAM fitted to the complete dataset

predicts the seasonality of 𝑓 very well but it does not capture the most extreme years of 𝑓 (see Supporting

Information) between years 2002 and 2011. This suggests that incorporating additional environmental vari-

ables or accounting for spatial heterogeneity in 𝑓 may be necessary to improve the GAM’s predictive power.

Including spatial heterogeneity would require modifications to the model, as accounted in the discussion sec-

tion. The Supporting Information includes an example of the cross-validation procedure, where the model

was fitted to the data from the early years (pre-2018) and used to predict the remaining data.

With the best-fitted GAM and the 𝑇𝑚𝑎𝑥 from the NASA Earth Exchange Global Daily Downscaled Climate

Projections, we predicted the monthly 𝑓 starting from 2021 for two greenhouse gas emissions scenarios:

RCP4.5 and RCP8.5. For the fire model simulations we added the GAM’s predictions using the actual data

previous to 2021, we can observe that the temporal pattern of 𝑓 before 2021 are seasonal but more irregular

and variable than the patterns after 2021 (see Supporting Information).

Fire model exploration

We ran the model for a range of the 𝜃 = 𝑝/𝑓 parameter, anticipating that larger values would produce

critical behaviour, consisting of large variability of fires between years and extremely large cluster fire sizes

that follow a power-law distribution. As expected, we obtained a larger proportion of power-law distributions

for the biggest size of 𝜃 (see Supporting Information), and particularly high variability and extremely large

fires (Figure 2). For simulations with seasonality, we observed the expected decrease in the number of years

where the size of the fire clusters follows a power-law distribution, also less variability and fewer extreme

fires, because in these cases 𝜃 decreases for the fire season. Seasonality also had the unexpected effect of

increasing the frequency of power-law distribution for 𝜃 = 25 with a bigger exponent than the ones for large

𝜃 (see Supporting Information); this pattern was also observed in the MODIS data.

In the simulations with 𝜃 = 25 and 250 and with shorter dispersal distances, the forest density tends to

decrease and eventually reaches zero, marking the absorbing phase transition reported for this type of model

(Nicoletti et al. 2023); this means that in these cases the parameter 𝜃 was below the critical point 𝜃𝑒𝑥𝑡

and so produces forest extinction (see Supporting Information). Increasing the dispersal distance produces

higher forest density, while seasonality has the opposite effect. In the case of high dispersal and low 𝜃 and

seasonality, we are again below 𝜃𝑒𝑥𝑡 (see Supporting Information). Note once again that forest density is the
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so-called active component of the model and represents the flammable forest.

Figure 2: Total annual fire size vs. max fire cluster for the Fire model. A & B Are simulations with fixed
𝜃, where 𝜃 = 𝑝/𝑓 , 𝑝 the forest recover probability and 𝑓 the ignition probability. A Are simulations with
dispersal exponent 𝑑𝑒 = 102, mean dispersal distance of 1 (equivalent to nearest neighbours ) and B with
𝑑𝑒 = 2.0155, mean dispersal distance of 66 sites. C & D Are simulations with a fire season of 90 days where
𝜃 is divided by 10 (the probability of ignition 𝑓 is multiplied by 10), and the same 𝑑𝑒 as previously.

Fire Model Fitting

After the first ABC we obtained the first posterior distribution of parameters (see Supporting Information).

The model generated simulations that closely resemble the monthly MODIS fire estimates, despite being

fit only using annual maxima (see Supporting Information). Repeated simulations with the same set of

parameters revealed significant variation due to the stochastic nature of the model dynamics (see Supporting

Information). A noticeable lag in the model’s monthly maxima compared to MODIS data (see Supporting

Information) may be due to the lack of a fire spread velocity parameter in the model. Despite this, when

evaluating the total annual fire size, the model produced intervals that encompassed the MODIS estimates

(see Supporting Information). Thus, the lag in the monthly maxima does not significantly impact our goal
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of predicting the total annual fire.

For the second ABC we used the posterior obtained in the first step, and calculated the power-law exponent of

the model simulations; this new set of parameters had a similar range as the first (see Supporting Information),

with simulated power-law exponents near the observed value (see Supporting Information). The average 𝜃
of the final posterior distribution has a mean of 61 a range between 9 and 910, which is a low-intermediate

range, considering the parameter range we used for the model exploration. The active state of the model,

representing the amount of forest, consistently displayed a median value of 0.2 across all scenarios (see

Supporting Information).

When examining predictions without temporal structure (Figure 3), both models, one simulated with the

ignition probability (𝑓) calculated from the data and the other with 𝑓 estimated using the GAM model,

produced results consistent with the observed data range. Comparing medians, the predicted total fire size

closely matched the data (Figure 3A), while the predicted number of fires was slightly higher (Figure 3C).

The maximum fire size (𝑆𝑚𝑎𝑥) was moderately elevated (Figure 3B), and the power-law exponent (𝛼) of the

fire size distribution was lower (Figure 3D). It is worth noting that these results are interconnected, as a

lower 𝛼 signifies larger fire events. The model exhibited an extended range with a few very large fires, an

outcome expected due to the nonlinear nature of the model and the number of simulations (around 100 for

each observed data).

Fire model predictions

The modelled temporal series, based on the 𝑓 from the GAM model for the 2001-2021 period, exhibits a

95th percentile interval that encompasses almost all the fire data (with the exception of the 2010 extreme

fire). The median of the series suggests a decreasing trend in annual fires over this time period (Figure 4).

This decrease, along with inter-annual fluctuations, is also apparent in the observational fire data shown

in Figure 1. Specifically, the most extensive fires occurred in the first decade from 2001-2010, while the

subsequent period from 2011-2021 experienced substantially less extensive burning. After 2021, the model

utilizes General Circulation Model (GCM) predictions to estimate the fire ignition 𝑓 , and a mean rate of

deforestation from data.

Under both RCP scenarios in the absence of deforestation, a consistent pattern emerges with a gradual

increase in the total annual fires. However, the annual peak values observed in this scenario remain below

those recorded during the 2001-2021 period. In contrast, when considering deforestation, a notable surge

is evident in both the median and extreme annual fire occurrences (Figure 4). While both RCP scenarios

exhibit comparable trends, there is an expansion in the range of annual fires within the RCP8.5 scenario.
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Figure 3: Predictions of the fire model compared with observed data for the years 2001-2021. We used
best-fit parameters, the ignition probability from MODIS, and the ignition probability from the estimated
GAM models (Simul GAM), and run 100 simulations of the model. To make them comparable we divided
all the outputs (except power-law exponent) by the total number of pixels in the region/model; black points
are the medians.
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This expansion is primarily driven by lower minimum fire occurrences.

The simulations based 𝑓 estimated from GAM models using General Circulation Models under Representative

Concentration Pathways (RCP) 4.5, along with retrospective simulations before 2006 (see Supplementary

Material), showed a similar mean trend but with less variability compared to simulations forced with 𝑓
estimated from TerraClimate data (see Supplementary Information).

Figure 4: Time series of predictions of the fire model without (left) and with (right) deforestation, compared
with observed data for the years 2001-2060. We used best-fit parameter distributions, the ignition proba-
bility derived from GAM models estimated using actual data up to 2021, and projections based on General
Circulation Models (GCMs) following two greenhouse gas emissions scenarios, namely Representative Con-
centration Pathways (RCPs) 4.5 and 8.5 for subsequent years. A vertical dashed line separates the regions
before and after 2021. The data points represent actual observations, while the solid line denotes the median
of simulations with accompanying 95% confidence interval bands. All outputs are presented relative to the
total area.

The trends depicted in the total annual versus maximum fire plot by decade (Figure 5) align with the obser-

vations described above. The plot encompasses all model simulations, highlighting the model’s proficiency

in simulating extreme fires. However, an anticipated trend solely attributable to climate change scenarios
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would indicate a decline in extreme fires and total annual fire occurrences. Incorporating deforestation into

the analysis revealed a significant escalation in both the maximum fire size and the overall total fire size.

Figure 5 illustrates the trend observed for RCP 4.5, which is also similar to that depicted in Supporting

Information for RCP 8.5. Both RCP scenarios exhibit a similar pattern.

Figure 5: Total annual size of fires vs maximum monthly fire size % relative to the area of the region,
data, predictions and predictions including deforestation. The data column was estimated using the MODIS
burned area product. The predictions by decade were estimated with a fitted model using a monthly ignition
probability calculated with data from General Circulation Models under two greenhouse gas emissions sce-
narios known as Representative Concentration Pathways (RCPs), here only RCP4.5 and RCP8.5 is shown
in Supporting Information. For the years 2001-2021 the ignition probability was estimated from actual data.

Discussion

Based on spatial forest-fire dynamics, the model fitted to actual data successfully reproduces past fire patterns

and provides insights into the future dynamics of Amazon fires. The predictions up to year 2060 suggest

that the Amazon fire dynamics are driven to an increase in total annual and extreme fires mainly caused by

deforestation. Surprisingly, this increase did not occur under a scenario of climatic forcing alone. In fact,
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in the latter case, the model actually predicts a reduction of extreme annual fires and a slight increase in

annual fire size.

This last result might be due to a double average that we used for the General Circulation Models (GCM):

we averaged the temperature over the spatial extent of the region and over all the 21 GCMs. When we used

the actual data —also averaged over the region— the model predicts in the range of observed extreme fires.

For this reason, we hypothesize that increased temporal variability of the ignition probability could produce

an increase in the extreme fires not captured by the model due to the smoothed nature of the CGM data.

We furthermore hypothesize that our results might in general underestimate the impact of climate change on

total fire size, because our model only assumes increased fire ignition in drier conditions but ignores increased

fire propagation under the same conditions.

By contrast, the increase in the median tendency of annual fires under deforestation scenarios appears to be

a robust prediction, consistent with the projected rise in fire weather conditions for the region (Abatzoglou et

al. 2019). It is furthermore also in line with the observation that declining total fire sizes in years 2001-2021

coincide with decreasing levels of deforestation. The deforestation levels in the Brazilian Amazon were 44%

lower in 2020 compared to the levels recorded from 1996 to 2005 (Silva Junior et al. 2020). One interesting

application of this model is its ability to provide insights into trends that extend beyond the fluctuations of

actual data.

A critical regime would imply far more extreme fires and an absorbing phase transition that could signal

an imminent forest-savanna transition, without extreme fires but with more frequent fires. The actual and

predicted fire regime seems to lie between these regimes. This model does not explicitly include deforesta-

tion or slash-and-burn and other agricultural areas—these are implicitly represented in the flammable forest

state—and thus the continuous increase of these land uses represented in the deforestation scenarios, com-

bined with the increase in the probability of ignition 𝑓 and produce important changes in the Amazonian

fire regime.

Similar models have been used to fit fire data and determine if a given system is in a critical regime. For

example, Zinck et al. (Zinck et al. 2011) found that some regions of Canada have experienced a change in the

fire regime from a non-critical to critical. They argued that the original Drossel-Schwabl model (DSM) did

not give the correct values of the power-law exponent of fire distributions, and thus modified the model to

represent fire propagation as a stochastic birth-death process. This means modelling fire as a contact process

(Oborny et al. 2007) that develops over the forest sites; the same concept was further explored concerning

the recent Australian mega-fires (Nicoletti et al. 2023). Here we took a different approach: as in the DSM
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our model is based on deterministic spread of fire, and we added what we think are the minimal processes

needed for more realism: seasonality and forest dispersal distance. We agree with Zink et al. (2011) that

an extension of the original DSM was needed to represent fire processes observed in ecosystems, but we also

argue that not all complexity can or should be added. In fact, it is necessary to keep the model tractable

in order to e.g. perform parameter-space explorations. Our model is consequently phenomenological, in the

sense that it does not include all mechanisms present at local scales but still tries to predict fire dynamics

at broad scales.

One of the advantages of this kind of model is that it can be applied to different systems. This is the case for

the original DSM model which has been applied to brain activity and rainfalls (Palmieri and Jensen 2020).

In these two systems there are cycles of loading and discharge, a broad region where the fluctuations peak

as the critical behaviour is established, and not a critical point with a very sharp transition as the theory

of second-order phase transitions suggests (Stauffer and Aharony 1994). A similar behaviour occurs in our

model version, but not in the original DSM, due to the temporal dependence of the parameters imposed

by the fire seasons, where during some months there is a higher ignition probability 𝑓 . This changes the

control parameters with respect to the DMS model since, in fact, we do not observe a transition for a

specific value of the 𝜃 parameter. Our results suggest that instead of having a specific fine-tuning to observe

critical fire spread, a critical region similar to a “Griffiths phase” may be present in our model. Originally

defined in statistical physics (Moretti and Muñoz 2013), a Griffiths phase represents an extended region

in the parameter space characterized with power-laws scaling behaviour that arises from heterogeneity at

local burning patterns. In our model, some areas may experience infrequent small fires as in the historical

Amazon, while others see more active, irregular burning influenced by localized factors. However, we lack a

rigorous result in this regard.

We observed the anticipated impact of the 2010 drought on fires in the Amazon biome, resulting in the most

extensive fire occurrences on record, even though deforestation rates were significantly lower than in the

previous decade (Aragão et al. 2018). In contrast, other drought years, such as the one associated with the

El Niño event in 2015-2016, led to a considerably lower number of fires compared to the 2010 drought. This

discrepancy may be attributed to the nonlinear loading and discharge cycles inherent in the dynamics of

fire-forest systems. Following fires and droughts, fuel accumulates during wetter years, potentially yielding

different effects during extreme events. Our model, which incorporates the influence of drought using actual

and predicted temperatures to estimate the probability of ignition (𝑓), supports the hypothesis that nonlinear

effects play a substantial role in fire dynamics. Using the inverse of the 𝑝 parameter the model also predicts

that the forest will be recovered between 13 and 19 years, close to the 23 years suggested by Alencar (Alencar
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et al. 2011).

While droughts are considered the primary cause of fires in the Amazon, deforestation is becoming the second

(Aragão et al. 2018). In addition, Cardil (2020) found that in 2018 most of the fires (85%) were produced in

areas deforested in 2018. The fitted parameters, forced with the ignition probability estimated from actual

data are incompatible with such a high proportion, but are close to the proportion observed in previous

years. A model incorporating explicit parameters for deforested areas would be needed to resolve this.

The forest state in our model symbolizes flammable forest, given that undisturbed tropical forest in the

Amazon is generally considered non-flammable with a very low probability of natural fires (Fonseca et al.

2019). In contrast, deforested areas are flammable, and our fitted parameters encapsulate an average of these

scenarios. The proportion of these types is changing due to increased interfaces between undisturbed forest,

human-degraded forest, and other land uses (Aragão et al. 2018). Human-induced fires persist, originating

from the transportation network and external regions (Barlow et al. 2020). These fires can invade standing

forest, and if climate change makes forests hotter and drier, they may sustain more extensive fires (Brando

et al. 2019). Our model incorporates these changes by varying the proportion of forest that burns and is

deforested. Thus, besides the range of variation in 𝜃 is higher for the scenarios with deforestation, but as

we maintain the average 𝜃 constant at the fitted values, it is also expected that the deforestation scenarios

are far from a critical regime as without deforestation. Additionally, as the magnitude of fires increases, the

probability of forests losing their capacity to recover from frequent fires and droughts increases (Brando et

al. 2019).

It is important to note several caveats about our methodology and approach. The model assumes that

after a fire, the site cannot burn again until there is vegetation regrowth and fuel buildup, representing a

negative feedback. It was hypothesized that understory wildfires increase the flammability of seasonally dry

Amazon forests (Nepstad et al. 1999), representing a positive feedback. Additionally, prior disturbances

from logging and fire were found to be the best predictors of fire occurrence in another eastern Amazon

landscape (Alencar et al. 2004). In an experimental study, no evidence of the positive feedback was found

(Balch et al. 2008). However, the negative feedback was not as drastic as represented in the model because,

after one fire —depending on the intensity— the fuel may be not completely consumed, allowing the site to

burn again in the next fire season. Because our model is probabilistic, even if the probability of regrowth 𝑝
is low, a small proportion of sites could recover by the next burning season, depending on the density of the

surrounding forest. This proportion increases when 𝑝 is higher, as assumed in our deforestation scenarios.

A more accurate version of the model could incorporate a local parameter for the ignition probability 𝑓
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instead of the current global 𝑓 , allowing each site to have a different 𝑓 based on its local fire history. Other

improvements to the model could include explicitly incorporating two types of vegetation. While these

changes would add more realism to the mechanisms represented in the model, they would also imply more

parameters, increased data requirements, and a more complex procedure for fitting the model. The model

presented in this paper, despite its improvements over the original DSM model, is a first step towards a more

accurate and complex model. However, increasing model complexity should be approached with caution, as

it does not always result in better predictive capabilities.

Our primary conclusion is that if deforestation and degradation in the Amazon decrease, the region could

exhibit improved resilience against predicted climate change, mitigating the risk of the Amazonian tropical

forest collapsing into a savanna. Several studies have proposed that an accumulated net deforestation ranging

from 20% to 40% in the Amazon could trigger a swift transition to non-forest ecosystems (Nobre et al. 2016,

Lovejoy and Nobre 2018). Currently, around 20% of the Amazon’s forest has been lost since the 1960s, and

environmental signals suggest ongoing fluctuations in the system (Lovejoy and Nobre 2018). Analysis of

early warning transition signals indicates proximity to a transition point (Saravia et al. 2018). However,

our model suggests that the fire regime will not undergo a significant change solely due to climate change;

instead, deforestation emerges as the more influential driver. Moreover, asserting the safety of the Amazon

solely by halting deforestation is not warranted. Synergies between climate and land use disturbances, as

indicated in a recent study by Flores et al. (2024), propose a safe boundary with a cap of 10% accumulated

deforestation. Achieving this threshold necessitates extensive restoration efforts to rehabilitate a significant

portion of degraded forest.
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