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Predicting the tripartite network of mosquito-borne disease2

Abstract3

The potential for a pathogen to infect a host is mediated by traits of both the host4

and pathogen, as well as the complex interactions between them. Arthropod-borne5

viruses (arboviruses) require an intermediate arthropod vector, which introduces6

an additional layer of compatibility filters. Existing computational models for the7

prediction of host-virus networks rarely incorporate the unique aspects of vector8

transmission, instead treating vector biology as a hidden, unobserved layer. Here,9

we explore two possible extensions to existing approaches, to address this nuance:10

first, we added vector traits into predictions of the bipartite host-virus network;11

and second, we used host, vector, and virus traits to predict the tripartite host-12

vector-virus network. We tested both approaches on the most thoroughly charac-13

terized group of arboviruses; mosquito-borne flaviviruses of mammals, including14

dengue, yellow fever, and Zika virus. Using host-virus models, we find that the15

inclusion of vector traits may improve inference in some cases, while viral traits16

proved to be the most important for model performance. Further, we found that17

it was possible to predict full life cycles (host-vector-virus links), but the model18

only showed fair performance, and was heavily influenced by the geographic bias of19

component input datasets (especially the dipteran biting data). Both approaches20

are interesting avenues for further model development, but our results keenly un-21

derscore a need to collect more comprehensive datasets to characterize arbovirus22

ecology, across a wide geographic scope, especially outside of North America, and23

to better identify molecular traits that underpin host-vector-virus interactions.24

25
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Introduction26

Emerging viruses continue to pose a threat to human and wildlife populations [1].27

A growing set of computational tools have explored viral dynamics in the context28

of species interaction networks using a set of tools called link prediction models.29

Typically, these represent hosts and viruses as a bipartite network of either known30

interactions (that occur in nature [2, 3]) or all possible interactions (including, for31

example, experimental infections [4]), with both represented as links in the network32

[5]. Host-virus link prediction models are predominantly trained on the genomic,33

immunological, morphological, and ecological traits of hosts and viruses (e.g., [6,34

7]), while some approaches also leverage information on the latent structure of35

the network instead of, or in addition to, these traits [8, 9]. The objective of36

these modeling exercises is to learn about the underlying biology, explain and37

reproduce patterns found in nature, and anticipate what future dynamics of viral38

emergence could look like. For example, many models use networks to understand39

why some viruses can infect humans but others cannot, with the objective of40

identifying animal viruses that could someday infect humans for the first time.41

In most cases, these models assume that any given “link” between a host and a42

virus could represent a self-contained transmission cycle (though not necessarily43

onwards transmission, e.g., West Nile virus in humans and horses [10]).44

Vector-borne disease (VBD) transmission substantially complicates this con-45

ceptual framework. Vector-borne viruses require an additional species–usually an46

arthropod (hence arthropod-borne viruses, or arboviruses)–to move them between47

hosts, which adds complexity into their ecology, epidemiology, and evolution. For48

example, in the case of arboviruses, the presence of both virus and suitable hosts49

is not necessarily sufficient for transmission, and the presence or absence of suit-50

able vectors (e.g., their geographic distributions or host preferences) may be a51

latent variable in ecological datasets [11]. Moreover, the “compatibility filters”52

that can be inferred from the host-virus network will be incomplete, as models53

will miss both the molecular and physiological determinants of vector-virus com-54

patibility (i.e., vector competence) and the behavioral and ecological determinants55
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of vector-host compatibility (i.e., biting preferences, in the case of blood-feeding56

arthropods). If vectors are entirely omitted from the inference process, a model57

might therefore reach spurious conclusions about whether a given host and virus58

are incompatible based on their biology, or otherwise miss key drivers of network59

structure; for example, arboviruses have been shown repeatedly to have a higher-60

than-expected host breadth [12].61

No one canonical approach exists to address vector transmission in link predic-62

tion studies. Vector transmission could be described as a binary trait of viruses,63

which may help make some distinctions (e.g., separating the ecology of mosquito-64

borne and tick-borne flaviviruses from counterparts like hepatitis C), but leaves65

much to be desired in terms of information content (e.g., not distinguishing the66

tick- and mosquito-borne flaviviruses). The possibility of incorporating more de-67

tailed information on vector-borne transmission into these models has been under-68

explored, likely because arboviruses are usually seen as a complicated exception to69

existing datasets, rather than a feature with significant impacts on network struc-70

ture. Incorporating traits characterizing the life cycle of arboviruses might improve71

model performance, given that virus traits are often sparser than host traits, and72

their interactions usually have non-additive but positive effects on model perfor-73

mance. However, adding sparse traits that only describe some of the viruses in the74

network could also reduce accuracy if the network includes a mix of vector-borne75

and directly-transmitted viruses.76

Alternately, vectors could be added directly into the network as an additional77

layer of nodes (Figure 1). While previous work has predicted vector-virus networks78

[13], none have predicted host-vector-virus networks. Existing network models79

have been used to predict undetected links in tripartite networks [14], but this has80

yet to be explored for ecological networks. This approach would be much more81

informative than the bipartite form, but also requires difficult-to-obtain data: syl-82

vatic VBD cycles tend to be characterized one at a time in scientific literature (e.g.,83

“Culex quinquefasciatus vectors West Nile virus in house finches”). While available84

datasets could be used to reconstruct these cycles from each of their component85
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parts (biting preferences, vector competence, and host-virus compatibility), to our86

knowledge, this has not previously been explored in predictive work.87

To address this, we developed two new approaches and tested them on mosquito-88

borne flaviviruses, a well-studied group that includes important zoonoses like89

dengue, West Nile, yellow fever, and Zika viruses. Through a synthesis of ex-90

isting data sources, we combined data on mammal-virus associations [12], vector-91

flavivirus associations [13], and diptera-mammal biting preferences [15]. We com-92

bined these data into one mammal-mosquito-flavivirus network, which can also be93

reduced down to a mammal-flavivirus network where viruses’ mosquito commu-94

nities are represented as node metadata. Using boosted regression trees (BRT;95

a machine learning method popular in ecological modeling, also sometimes called96

gradient boosting machines), we tested two approaches to predicting vector-borne97

transmission as an aspect of the host-virus network. First, we predicted the98

mammal-flavivirus network using every possible combination of host, vector, and99

virus traits, as metadata for any given host-virus association, assuming that ad-100

ditional data layers would enhance model performance. This was generally shown101

to be true, although the combination of host and vector trait data was not infor-102

mative compared to the incorporation of viral trait data. Second, we developed a103

tripartite model of vector-borne disease transmission, in which each link represents104

a known host-vector-virus link and attempted to predict those complete cycles us-105

ing traits of hosts, mosquito vectors, and viruses. We found that these models106

performed more poorly on average, but that they were able to make better than107

random predictions, including some of relevance to arboviral ecology and human108

health.109

Methods110

Host, vector, and virus data Host-virus interaction data were obtained from111

the CLOVER database [16], a manually- and programmatically-curated database112

of host-virus associations built by reconciling four disparate datasets (the Host-113
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Parasite Phylogeny Project, or HP3 [12]; the Global Mammal Parasite Database114

v2.0 [17]; the Enhanced Infectious Disease Database [18]; and an unnamed dataset115

curated by Shaw et al. [19]). We used CLOVER release 0.1.2, which includes116

data on 5,477 known interactions between 831 viruses of 1,085 mammal species.117

These data have been carefully cleaned for taxonomic quality control and include118

detailed metadata on interaction evidence. These data are also part of a larger119

open database called The Global Virome in One Network (VIRION), the largest120

open atlas of vertebrate-virus associations [20]. Although more data is available121

from this source, we restricted our analysis to the manually-curated data to prevent122

inclusion of spurious interactions.123

Vector-virus association data were taken from a previous study that aimed to124

predict the mosquito-flavivirus network. [13] These data include 334 associations125

between 180 mosquito species and 37 flaviviruses. Host-vector association data126

were taken from a recent study of dipteran biting networks [15]. These data127

describe 1744 associations between 255 biting dipteran species and 214 hosts (in-128

cluding 67 mammals). Trait data for hosts, vectors, and viruses were assembled129

from published sources. Thirty-three traits on mosquito life history, ecology, and130

geography and 22 traits on viral features, were taken from the Evans et al. study131

of the mosquito-flavivirus network [13]. Finally, we used a total of 18 traits on132

mammal life history, ecology, and morphology from the PanTHERIA database133

[21].134

Modeling approach Boosted regression tree (BRT) models were used to model135

host-virus and host-vector-virus associations. BRT models have previously been136

used to model species distributions [22], predict associations in bipartite networks137

[23, 24, 25, 5], and in other conservation and management settings e.g., [26]. Much138

of the diversity of applications can be attributed in part to the allowance for nonlin-139

ear responses and variable interactions in BRT models. Since the regression tree140

is hierarchical, “upstream” splits based on one variable influence “downstream”141

splits, which automatically models variable interactions. Further, the process of142

boosting enhances learning on complex data, as the process produces many regres-143
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sion trees with a small number of splits, each of these “weak learners” iteratively144

build on previous trees to account for the remaining variation. This approach145

removes the need to partition variance among submodels, as the goal is not to146

examine the components of variance explained, but to assess overall model per-147

formance with the inclusion or exclusion of particular variable sets. Models were148

trained in the R statistical programming language [27] using the gbm package [28].149

Model 1: Modeling mammal-virus associations as a bipartite network150

We used the mammal and virus trait data as described above. However, mosquito151

vector ”traits” were created by calculating the number of mosquito species in a152

given genus which were demonstrated to transmit a particular flavivirus [13]. This153

is because each host-virus association could be transmitted by any number of154

mosquito species, creating a range of trait values that may be less informative155

than simply knowing breadth and composition of the vector community. This156

resulted in a total of 19 mosquito vector covariates, ranging in value from 0 to 22157

species. We removed covariates with less than 25% data coverage, resulting in 13158

host traits, 19 mosquito covariates (as virus traits), and 17 virus traits.159

The data were split into 80% training and 20% testing sets, where model per-160

formance was assessed on the 20% test set. A total of 20 models per covariate161

group were fit in order to account for the random train/test split. These same 20162

train/test divisions were used across the different covariate models, as we trained163

every possible combination of host, vector, and virus trait data to predict host-164

virus associations. Together, this resulted in a dataset that allows the estimation165

of the relative influence of host traits, viral traits, and vector community data on166

resulting mammal-virus associations. We sampled background data by randomly167

combining host and virus species, resulting in 25% known positive associations168

and 75% background data.169

We subset these data in two different ways, to explore how vector data may170

improve prediction of 1) flaviviruses for which we have some vector data (235171

known host-virus associations) and 2) all vector-borne viruses (3016 host-virus172
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associations). This breakdown corresponds to data subsets of 1) only mosquito-173

borne flaviviruses present in [13] and 2) all viruses that were recorded as vector-174

borne (or unknown) in the Clover data [16]. We present the flavivirus-specific175

results here, which are qualitatively similar to the more general models for all176

vector-borne viruses, which are in the Supplemental Materials.177

Model 2: Modeling mammal-mosquito-virus associations as a tripartite178

network Using the same data resource as used above on host-virus associations,179

we now considered the identity of the mosquito vector species, and the association180

between the vector and virus [13], and the feeding association between mosquito181

vector and mammal species [15]. While host and virus traits were largely the same182

as considered above, the mosquito vector traits consisted of a set of 33 mosquito183

vector traits from [13]. Host and virus traits must have 75% of data coverage –184

the same as in Model 1 – to be included in this analysis. This resulted in 8 host185

traits, 29 vector traits, and 16 virus traits. A tripartite link – detailing the full186

host-vector-virus cycle – was only considered if there were all three associations;187

host-vector association, vector-virus association, and host-virus association. This188

creates a situation where a host and vector species may interact, and that vector189

may be infected by a virus, but this is not a confirmed link if there is no evidence190

that the host is infected by the virus.191

A total of 135 full tripartite links were documented. We sampled background192

data by randomly combining host, vector, and virus species and then adding193

enough unique host-vector-virus background points to have 50% true tripartite194

links and 50% background data. Models were trained in the same manner as in195

Model 1.196

Assessing model performance Model performance was quantified using two197

measures; accuracy and the area under the receiver operating characteristic (AUC).198

Accuracy was defined as the correctly estimated positives (true positives) and neg-199

atives (true negatives) over all the predictions, capturing the fraction of times the200

model correctly classified host-virus associations in the holdout data. Accuracy is201
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bounded between 0 and 1, where larger values correspond to higher model perfor-202

mance. AUC is a widely used metric of model discrimination that captures the203

ability of the classifier to rank positive instances higher than negative instances.204

AUC is bounded between 0 and 1, where a random model will perform with AUC205

of 0.5 on average, and values closer to 1 indicate higher model performance.206

Data and code availability R code and data to reproduce the analyses is207

available on figshare at208

https://doi.org/10.6084/m9.figshare.17033309.209

Results210

Model 1: The mammal-virus models Models trained only on host (AUC211

= 0.57) or vector (AUC = 0.46) traits consistently performed poorly at the task212

of host-virus link prediction (Figure 2), though the viral trait model performed213

well (AUC = 0.95). Generally, combinations of predictor features led to improved214

model performance. The full model including host, vector, and virus traits per-215

formed extremely well (AUC = 0.96). However, both the host-virus and vector-216

virus traits only models also performed extremely well (performance differences217

among these models were essentially indistinguishable; Figure 2). The inclusion of218

viral traits seems to have been particularly important; for comparison, the model219

using host and vector traits to predict host-virus associations barely performed220

better than random (AUC = 0.59).221

Variables important for predicting host-virus associations were generally con-222

served across submodels considering all combinations of host, vector, and virus223

traits (Figure 3). In the full bipartite model, the most informative variable was224

whether a virus was found in the Pacific region (likely a proxy for Zika virus,225

which spread through Pacific islands preceding the epidemic in the Americas).226

Other important characteristics predictive of host-virus associations in bipartite227

models including virus traits were disease severity, genome length, year of virus228
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isolation, if the virus is found in Africa or Australia, and viral clade. In models229

that omitted virus traits, the top predictors represented host allometry (body mass230

and metabolic rate, an unsurprising axis of variation) and Culex association, which231

likely captures a latent split between some bird-reservoired viruses (e.g., West Nile232

virus) and primate-reservoired ones (e.g., dengue and Zika virus).233

Overall, our results suggest that models learned from vector trait data, par-234

ticularly in the full model, where the contribution of each individual variable is235

more diffuse. However, our findings also indicate that the inclusion of vector data236

only minimally improved performance after data on hosts and viruses was already237

available. As host-virus models are usually trained only on host and virus trait238

data, our findings suggest that the incorporation of vector data into a host-virus239

model is an imperfect way to explore the role of vectors in structuring the host-240

virus network. However, this also suggests that improved arthropod trait data241

could improve model performance, and thus the importance of the vector cannot242

be overlooked.243

Finally, we investigated whether including vector trait data would improve per-244

formance even if only available for a subset of data informing the network. To test245

this, we trained the model on a network that included all the arboviruses present246

in the CLOVER dataset, even though viral trait data and vector associations were247

only known for flaviviruses. We found that the model using just host and virus248

traits performed substantially worse here (AUC = 0.70) than the flavivirus-only249

model with those traits (AUC = 0.95). We found that the best performing models250

were those that used vector and virus traits (AUC = 0.98) and those that included251

host, vector, and virus traits (AUC = 0.99; Figure 2). We suggest that this finding252

indicates that adding data on the vector aspect of transmission may be useful even253

when it only covers a subset of species in the network.254

Model 2: The tripartite model Models trained on tripartite (i.e., host-vector-255

virus) associations had moderate explanatory power (mean AUC = 0.64 (0.065);256

mean Accuracy = 0.66 (0.046) out of 100 models trained on random subsets). This257
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lower model performance could simply be due to the smaller amount of data used258

for training (recall that only 135 full tripartite links were known), or the imbalance259

between the number of potential full tripartite links given host, vector, and virus260

diversity, and the small number of realized links (see the small number of red links261

in Figure 4). Although the model’s performance was only fair, we found that the262

model still predicted higher suitability for tripartite links where one or two of the263

three possible components were confirmed (Figure 5), even though these would264

be recorded as a “0” outcome variable the same as if none of them were known.265

We suggest that this indicates the model was identifying and reproducing real266

biological signals of compatibility.267

The top nine covariates to predicting tripartite (i.e., host-vector-virus) associ-268

ations were host (n = 5) or virus (n = 4) traits (Figure 6). The top predictors269

mostly reflected the geography of transmission (host geographic range size, virus270

transmission in Asia, vector presence in Africa), the life history of the host (age271

at first birth, lifespan, weaning age, and neonate body mass), and aspects of viral272

transmission (genome length and transmission by non-mosquito arthropods).273

The predictions made by the tripartite model suggest the model may be able274

to recover interesting or important biologically-plausible interactions. Both the275

top predicted “undiscovered” human-mosquito-virus links (Table 1) and mammal-276

mosquito-virus links (Table 2) heavily over-represent a small number of viruses,277

in particular Wesselbron virus and West Nile virus. This is driven by the existing278

level of sampling in the data: West Nile has the greatest number of known hosts279

(n = 103 species) and mosquito vectors (n = 51); Wesselbron has the second high-280

est number of vectors (n = 41), though many fewer hosts (n = 11; ranked #13).281

This “rich-get-richer” has been previously debated as a strength or weakness for282

link prediction models; it may be that models are identifying a genuine biological283

signal of generality (which is known to be true for these viruses), but they may284

also be recapitulating sampling bias [5, 29] and underpredicting link probabilities285

for undersampled species. Indeed, the richness of flavivirus data available to us in286

this study is likely largely due to a discovery and data synthesis bump in the wake287
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of the Zika virus epidemic in the Americas. The mammal-mosquito-virus predic-288

tions also contain a visible signal of geographic bias: most of the top predictions289

either involve agricultural species (pigs, Sus scrofa; cows, Bos taurus; or sheep,290

Ovis aries), synanthropic species (black rats, Rattus rattus), or charismatic North291

American species (the opossum, Didelphis virginiana; the raccoon, Procyon lotor;292

the white-tailed deer, Odocoileus virginianus). These likely reflect a compounded293

bias between the host-virus association data and the biting data, the latter of294

which is particularly limited to North American and European species.295

Despite the signal of data bias in these predictions, the models reveal several296

predictions of biological interest. For example, Anopheles hyrcanus is predicted297

as a possible vector of Kokobera virus in humans. The virus was implicated in298

an outbreak of acute polyarticular illness in Australia in the 1980s based on serol-299

ogy, but it remains poorly understood [30]. The virus was first isolated from300

Culex annulirostris, which also vectors Japanese encephalitis virus and a hand-301

ful of others; An. hyrcanus is a European and Asian mosquito only currently302

known to vector Japanese encephalitis virus. Similarly, the model predicts that303

Culex tritaeniorhynchus – the main vector of Japanese encephalitis virus, found304

in southeast Asia – could transmit Murray Valley encephalitis virus in wallabies305

(Macropus agilis). Neither the Australian virus nor the host have been recorded306

in association with this vector, but as of 2021, the mosquito has been detected in307

Australia [31], indicating the possibility that this interaction could now emerge.308

Discussion309

In this study, we considered two approaches to incorporate arboviral life cycles310

into link prediction models of the mammal-flavivirus network. First, we used a311

host-virus (bipartite) framework, and assessed the relative influence of including312

different trait covariates. We found that viral traits were the strongest contributor313

to model performance, and the incorporation of host and vector traits into the bi-314

partite models did little to improve model performance. Second, we explored how315
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these models could be extended to predict the entire host-vector-virus (tripartite)316

network. This framing is both inherently more complex than the host-virus pre-317

dictive problem, and is massively limited by the availability of training data, but318

appears promising for future development.319

Neither of these approaches provided a complete solution to the host-vector-320

virus prediction problem, though their limitations differ slightly, with different321

implications for next steps. Adding vector community data to the bipartite (host-322

virus) models may be useful where data allow, but may be less important when323

more detailed, biologically meaningful viral trait data are available. Compared to324

synthetic datasets of animal ecology, life history, and morphology, only a handful325

of viral traits (e.g., genome length or disease severity) are available in a standard-326

ized format, to the point that viral host range is itself often used as a viral trait327

(e.g., our “primate” or “bird” traits, or ”host breadth” (see Table S1)). Recently,328

some studies have begun to use immunogenetic or genome composition variables329

to characterize host and virus compatibility more directly [32, 33, 34, 35, 36, 37];330

comparable features for vectors are not yet available or tested in this framework.331

Shifting towards these kinds of predictors could help models identify more mean-332

ingful signals of virus-animal compatibility, and proportionally reduce the signal333

of bias in predictions.334

In contrast, directly modeling the host-vector-virus tripartite network addresses335

the nuance of vector transmission head-on, but this problem is more severely data336

limited. As a result, these predictions are very visibly influenced by the geographic337

and taxonomic bias in the component datasets. However, these data limitations338

can be addressed by investment in future work characterizing arboviral life cycles in339

understudied areas [38]. Vector-virus combinations can be tested in the laboratory,340

including in model-experiment feedback designs that leverage existing predictions341

(e.g., [13]) much like model-guided fieldwork can be used to optimize viral discovery342

[25]. Similarly, further investigation of mosquito biting behavior will help resolve343

the host-vector component [15], highlighting the need for “basic” natural history344

research even on mosquitoes that are not known to be primary vectors of human345
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disease.346

Our study is the first to attempt modeling the entire tripartite host-vector-virus347

network. This is a clear knowledge gap in existing approaches to modeling the348

host-virus network: identifying a suitable host-pathogen association that has no349

shared vector may not accurately estimate spillover risk. This may be particularly350

relevant to efforts to identify viruses with undiscovered zoonotic potential, as the351

presence or absence of human-biting mosquitoes will be a key contributor to their352

emergence risk [39]. Similarly, the tripartite framework can provide useful insights353

into the establishment of sylvatic cycles in interepidemic periods or upon expansion354

into new geographic areas. The ability of arboviruses to persist in non-human hosts355

may determine whether an epidemic ends as immunity grows (like Zika virus in356

the Americas, which was primarily transmitted human-to-human by Aedes aegypti357

and Ae. albopictus) or instead becomes a regular occurrence (e.g., yellow fever358

in the Americas, which is maintained by Haemogogus spp. and Sabethes spp. in359

non-human primates, between human epidemics driven by Aedes aegypti). These360

are likely to be particularly important nuances as arboviruses continue to spread361

around an increasingly globalized world in a changing climate [40, 41, 42, 43]362

The broader question of “how should we model multi-layer ecological interaction363

networks” is also one that is likely to have broader implications in computational364

ecology. For example, there are other cases where researchers are interested the365

traits that structure tripartite networks, such as bat-bat fly-pathogen networks or366

plant-pest-parasitoid networks. Multilayer networks are also a topic of increasing367

interest in network science and mathematics, which will likely open doors for more368

advanced predictive approaches than the extensions we propose here. This is369

therefore a promising space for the development of future models, particularly if370

approached through the lens of iterative validation and data collection [25].371
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Figures513
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... 

P( h i ,  m j ,  v k ) ~  T i   +   T j   +   T k 

(A) (B) 

Figure 1: (A) Predicting host-virus associations (a bipartite network) based on
host traits (Th), virus traits (Tv), and vector communities (m(v)) associated with
viruses, is a different problem than (B) predicting host-vector-virus associations
(a tripartite network) based on host traits, vector traits, and virus traits. In
this paper, we consider both solutions as approaches to end goals like forecasting
potential novel associations or spillover scenarios
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Figure 2: Model performance – quantified using AUC (left panel) and accuracy
(right panel) – was highest when host, vector, and virus traits were included in the
model (reported values are mean and standard deviation based on 20 model runs,
assessing performance on a random 20% subset of the data). However, host-virus
association model performance was not appreciably increased by the addition of 32
host trait covariates, suggesting that host-virus associations may be best predicted
by considering information on the vector and the virus.
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Figure 3: The relative importance of host (orange), vector (blue), and virus (pur-
ple) traits on predictive model performance. Each column corresponds to a differ-
ent combination of these three trait groups, with the first column corresponding
to the full model (as indicated at the bottom of each column using the glyphs).
Variables are ordered based on the full model.23



Figure 4: Full graph of host-virus associations (host species are in orange and
viruses in purple), where links between host and virus species represent known
associations. Red links are those which the full host-vector-virus cycle is known.
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Figure 5: The tripartite model predicts a higher average probability for associa-
tions that have one or two links known (which are still not recorded as positive
values in the training data) than those with no elements known to be possible.
This suggests that the model is capable of more than just recapitulating the data,
and is able to distinguish different levels of biological plausibility within unknown
tripartite elements.
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Tables514

Table 1: Top predicted epidemic cycles in humans. All vectors are known
to be human-biting; all viruses are known to be zoonotic based on either clinical
or serological data.

Host Mosquito Virus Prob
H. sapiens Culex pipiens Wesselsbron virus 0.81
H. sapiens Aedes aegypti West Nile virus 0.74
H. sapiens Aedes aegypti Japanese encephalitis virus 0.73
H. sapiens Culex pipiens Murray Valley encephalitis virus 0.73
H. sapiens Culex sitiens West Nile virus 0.72
H. sapiens Aedes scapularis West Nile virus 0.68
H. sapiens Mansonia uniformis West Nile virus 0.68
H. sapiens Anopheles coustani Wesselsbron virus 0.67
H. sapiens Culex pipiens Yellow fever virus 0.67
H. sapiens Aedes aegypti Ilheus virus 0.66
H. sapiens Aedes albopictus Ilheus virus 0.65
H. sapiens Anopheles hyrcanus Kokobera virus 0.62
H. sapiens Culex nigripalpus Wesselsbron virus 0.61
H. sapiens Aedes cantans Wesselsbron virus 0.61
H. sapiens Mansonia africana West Nile virus 0.61
H. sapiens Culex perexiguus Wesselsbron virus 0.60
H. sapiens Culex thalassius Wesselsbron virus 0.60
H. sapiens Culex gelidus West Nile virus 0.60
H. sapiens Culex annulirostris St. Louis encephalitis virus 0.59
H. sapiens Anopheles pharoensis West Nile virus 0.59
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Table 2: Top predicted enzootic cycles. All mammals in the top 20 are either
species found alongside humans (cows, sheep, pigs, and rats) or easily-sampled
species from eastern North America (deer, raccoons, and possums).

Host Mosquito Virus Prob
Sus scrofa Aedes albopictus West Nile virus 0.70
Sus scrofa Mansonia uniformis Wesselsbron virus 0.69

Didelphis virginiana Aedes aegypti Wesselsbron virus 0.67
Didelphis virginiana Aedes albopictus Wesselsbron virus 0.67

Sus scrofa Anopheles coustani Wesselsbron virus 0.66
Sus scrofa Culex quinquefasciatus Japanese encephalitis virus 0.65

Procyon lotor Culex tritaeniorhynchus West Nile virus 0.62
Odocoileus virginianus Anopheles pharoensis Wesselsbron virus 0.62

Procyon lotor Culex pipiens Japanese encephalitis virus 0.61
Didelphis virginiana Aedes aegypti West Nile virus 0.59

Odocoileus virginianus Aedes albopictus St. Louis encephalitis virus 0.56
Bos taurus Aedes vexans West Nile virus 0.56
Bos taurus Culex tritaeniorhynchus West Nile virus 0.55

Procyon lotor Culex annulirostris West Nile virus 0.55
Macropus agilis Culex tritaeniorhynchus Murray Valley encephalitis virus 0.54

Bos taurus Anopheles maculipennis Wesselsbron virus 0.54
Ovis aries Culex quinquefasciatus Ilheus virus 0.53

Procyon lotor Culex tarsalis West Nile virus 0.52
Rattus rattus Aedes aegypti Zika virus 0.51

Odocoileus virginianus Culex tritaeniorhynchus Banzi virus 0.51
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Supplemental Material515

Predicting the tripartite network of mosquito-borne disease516

Trait data517

Trait data were compiled from a variety of sources, with host trait data coming518

from PanTHERIA [21], and vector and virus trait data from Evans et al. 2017519

[13].520

Table S1: Host, vector, and virus covariates con-
sidered in the models of host-virus (h-v col-
umn) and host-vector-virus (h-m-v column) as-
sociations. See the Pantheria documentation
(https://esapubs.org/archive/ecol/E090/184/metadata.htm)
for more information on host trait variables.

Taxa Variable Units Definition h-v h-m-v
Host

Lifespan days Maximum observed lifespan ✓ ✓

Age at sexual maturity days Age at which individual is sexu-
ally mature

✓ ✓

Home range size km2 Area used by individual for daily
tasks on average

✓

Gestation length days Period of time young are gestated ✓ ✓

Neonate body mass grams Average neonate body mass ✓ ✓

Population density n / km2 Number of individuals per unit
area, on average

✓

Age at first birth days Age at which females give birth
to their first litter

✓ ✓

Litters per year n / year Average number of litters per year ✓

Max lifespan months Longest observed lifespan ✓ ✓

Basal metabolic rate mLO2 / hr Individual metabolic rate ✓
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Interbirth interval months Period in between reproductive
bouts

✓ ✓

Age at eye opening days Time when neonates open eyes ✓

Social group size count Number of individuals per social
group

✓

Adult forearm length mm Length of adult forearm ✓

Dispersal age days Age at which young leave parents ✓

Neonate head-body
length

mm Body length of neonates ✓

Weaning age days Period of time when young stop
weaning

✓ ✓

Weaning body mass grams Mass of young during weaning ✓ ✓

Vector
Mosquito genus numeric Number of mosquito species of

genus that vector a given virus
✓

Human biter 1/0 Vector bites humans ✓

Host breadth count Number of host species bitten ✓

Non-primate mammals 1/0 Are non-primate mammals bitten ✓

Geographic range count Number of countries species col-
lected

✓

Geographic location - Could include any or all of the
following; Africa, Middle East,
Australia, Pacific, Asia, Europe,
North America, South America

✓

Biting behavior - Timing of biting behavior. Can
be; dawn, day, dusk, and/or night

✓

Artificial container 1/0 Vector breeds in artificial contain-
ers

✓
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Oviposition site - Larval site. Could include one or
all of; treehole, container, pond,
rockhole, marsh, swamp, ground
pool, or rice paddy

✓

Permanent habitat 1/0 Species uses permanent habitat ✓

Habitat discrimination count number of habitat types ✓

Urban preference 1/0 vector shows urban preference ✓

Indoor preference 1/0 vector shows indoor preference ✓

Viral range count Number species within genus to
harbor virus

✓

Virus
Average genome length numeric Length of viral genome ✓ ✓

Geographic location - Could include any or all of the
following; Africa, Middle East,
Australia, Pacific, Asia, Europe,
North America, South America

✓ ✓

Clade – Viral clade (roman numerals) ✓

Year isolated year Virus isolation year ✓ ✓

Other arthropod 1/0 Vectored by other arthropods ✓

Host breadth count number of known hosts ✓ ✓

Encephalitis 1/0 Virus causes encephalitis ✓ ✓

Fever 1/0 Virus causes fever ✓ ✓

Disease severity numeric How severe is disease ✓ ✓

Bird host 1/0 Virus infects birds ✓
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What if we consider all vector-borne viruses?521
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Figure S1: Model performance – quantified using AUC (left panel) and accuracy
(right panel) – was highest when host, vector, and virus traits were included in the
model (reported values are mean and standard deviation based on 20 model runs,
assessing performance on a random 20% subset of the data). However, host-virus
association model performance was not appreciably increased by the addition of
vector data compared to just host and vector traits (AUC = 0.98).
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Different models and similar predictions522

When predicting host-virus associations, the different models had quite differ-523

ent variable importance values, apart from obviously having different explanatory524

variables. One question we had was whether models trained on different covari-525

ates would not only have similar overall performance, but identify the same likely526

host-virus associations as other models. To explore this graphically, we generated527

a correlation matrix (Figure S2), where we find strong positive relationships be-528

tween different model predictions. Interestingly, the least positive correlation was529

from the full model, suggesting that the predictions from the full model differed530

from models which consisted of nested subsets of the same features as in the full531

model.532
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Figure S2: Correlation matrix between model predictions of the full set of subset
models including different combinations of host, vector, and virus traits. The
full model, including all traits, resulted in the predictions that were most weakly
related to the other model predictions, though this model had similar performance
as other models (see main text Figure 2). Lower triangle values and color scale
correspond to Pearson’s correlation coefficient values.
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