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Abstract 
Background
Taxonomic bias is a known issue within the field of biology, causing scientific knowledge to be unevenly distributed across species. However, a systematic quantification of the research interest that the scientific community has allocated to individual species remains a big data problem. Scalable approaches are needed to integrate biodiversity datasets and bibliometric methods across large numbers of species. The outputs of these analyses are important for identifying understudied species and directing future research to fill these gaps. 
Findings
In this study, we used the species h-index to quantity the research interest in 7,521 species of mammals. We tested factors potentially driving species h-index, by using a Bayesian phylogenetic generalised linear mixed model (GLMM). We found that a third of the mammals had a species h-index of zero, while a select few had inflated research interest. Further, mammals with higher species h-index had larger body masses, were found in temperate latitudes, had more humans uses, including domestication, and were in lower risk IUCN Red List categories. These results surprisingly suggested that critically endangered mammals are understudied. A higher interest in domesticated species suggested that human use rather than conservation drives mammalian scientific literature. 
Conclusion
Our study has demonstrated a scalable workflow and systematically identified understudied species of mammals, as well as identified the likely drivers of this taxonomic bias in the literature. This case study can become a benchmark for future research that asks similar biological and meta-research questions for other taxa.
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Introduction
Effective conservation of the earth’s amazing biodiversity requires sound scientific knowledge of species’ biology and ecology, with the addition of adequate communication from scientists [1]. However, such knowledge is often not only missing [2], but also biased. Some species receive disproportionally more research interest while others very little, reflected in scientific publications – known as taxonomic bias [3]. Although taxonomic bias in the scientific literature is prevalent [4,5], there has been little effort to rectify the problem. Even worse, this problem seemed to have become more extreme in the last few decades [6,7]. To work towards reducing the gaps of knowledge in the literature, one first need to understand what is causing such inequality in research interest among species.
Many potential drivers exist for taxonomic bias. For instance, there is a human preference to study and conserve iconic or ‘charismatic’ taxa, which are usually large mammals such as the African bush elephant (Loxodonta africana) and black rhinoceros (Diceros bicornis) [8]. Indeed, large mammalian vertebrates are over-represented in the conservation literature [9,10]. Of relevance, the anthropomorphic stimuli hypothesis posits that humans are attracted to species that are more phylogenetically related to us [11]. Such human tendencies likely explain the inflated research effort towards vertebrate taxa [5]. This hypothesis is also related to the reason why we have much (bio)medical research, using rodent model systems such as rats (Rattus norvegicus and mice Mus musculus), because of our shared physiological traits [12]. Studying species closer to scientists’ proximity [5,13], where the animals live in accessible locations, and for economic reasons, such as agriculture and aquaculture research, can also exacerbate taxonomic bias in the literature. Consequently, these drivers have over time created strong unevenness in the taxonomic distribution of scientific knowledge. 
Researchers have investigated such taxonomic bias in the academic literature, but these studies appeared to have two main shortcomings. First, because of the previous difficulties constructing scalable workflows, the coverage of these studies is often not comprehensive. While several studies have quantified species-level bias among  plants [14], mammals [15–18], birds [19], fish [20], and amphibians [21] respectively, their sample sizes remain no more than a few hundred species, encompassing only small portions of species in a given taxonomic group. Until now, only two studies have evaluated species-level taxonomic bias for the thousands of species and across multiple clades [4,22]. However, these studies focused solely on species included on the International Union for Conservation of Nature (IUCN) Red List, therefore, potentially failing to provide more comprehensive and holistic understanding of the drivers of taxonomic bias in research. 
Second, there are currently no standardized methods to quantify taxonomic bias at the level of individual species. Publication count is one of the most commonly used proxy to gauge taxonomic bias [4,5,7,15,18,20–24]. However, while the total number of publications could capture the total research effort on a given species, it does not capture research interest per se (i.e., how much attention from research community these publications received). A logical alternative would be to use citation count [25], as it captures the total research interest. Nonetheless, high impact papers can easily inflate this number [26] and give a false impression that a species is receiving more interest than in reality. Hirsch’s h-index [26] kills two birds with one stone by taking into account both the number of publications and number of citations. So far, there exist only a handful of studies that have adapted the ‘species’ h-index’ for measuring and comparing research interests among different species [14,16,17,19,27]. 
This study seeks to quantify the research interest in mammals, using the species h-index [14,16,17,19]. We introduce a workflow demonstrating how to obtain species h-index for any species and how to ask relevant meta-science as well as biological questions on research interest. As a case study, we choose the class Mammalia, which consists of over 7,500, species, since they are one of the most well-studied taxonomic groups, with extensive data readily available. Then, we test how our surrogate for research interest, species h-index, could be related to the following six potential drivers: 1) body size, 2) location of natural habitat, 3) phylogenetic relatedness, 4) human uses and domestication, 5) (IUCN Red List status, and 6) general interest (encompassing drivers 1 - 5, quantified via Google Trends; see below). We outline our hypothesis and rationale for each potential driver in Table 1.
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[bookmark: _Toc77278098]Data collection and processing
We first collected a list of mammalian species from the Open Tree of Life (OTL) database [28] using the R package rotl [29] to create a complete mammalian species list. We then removed sub-species from the list and only kept species with binomial names, resulting in 6,952 species. Then, we obtained the following 7 statistical surrogate of the 6 potential drivers (Table 1): 1) body mass in g (n = 5,400; log10 transformed) 2) median latitude of species range (n = 4,721; obtained from centroids of all occurrence records from GBIF), 3) phylogenetic trees with branch lengths (n = 5,911 [30]), 4) IUCN Red List human use categories (n = 1,472; a binary categorial variable where a species was categorized into at least one of 19 human uses), 5) Wikipedia list of domesticated species (n = 159; a 3-level categorical variable: domesticated, partially domesticated & wild), 6) IUCN Red List status (n = 5,934; an ordinary variable with 5 levels: ‘Least Concern, ‘Vulnerable’, ‘Endangered’, ‘Critically Endangered’, and ‘Extinct in the Wild’ excluding extinct and data deficient), and 7) Google Trends index (n = 7,521; see Appendix Fig. S1 for a summary of the data completeness and data processing details and see the Supplementary information). After combining and cleaning the datasets, a total of 7,521 unique species remained on the list.
Notably, we added higher taxonomic clades to condense the 30 orders to 5 major clades according to molecular tree reconstructions [30,31]. These five high-lever taxa are: 1) Afrotheria representing an African lineage, including sea cows and elephants, 2) Xenarthra representing an American lineage that includes sloths and armadillos, 3) Euarchontoglires representing widely distributed species such as rodents and primates, 4) Laurasiatheria representing species such as whales, carnivores, and bats, and finally 5) Marsupials & Monotremes representing the non-eutherian mammals. We used these higher taxonomic groupings in visualizations of the results. 
For much of data collection and cleaning as well as all statistical analyses (see below), we used the R language version 4.0.2 [32] in the RStudio environment version 1.3.1093 [33]. All processing and analysis scripts were found at GitHub (https://github.com/jessicatytam/biases_in_mammalian_research). 
Data sources and species h-index
We extracted the bibliometric records from Scopus (data collection on 28 April 2021) and calculated the h-index of individual mammalian species with the R package specieshindex [34]. The package connects to the Scopus, Web of Science, and Bielefeld Academic Search Engine (BASE) literature databases. Using either binomial or genus names, the package can count the number of relevant bibliometric records for each species or genus on each database and extract them for local processing and analysis. Bibliometric information that can be extracted include citation count, publication date, authors, and more. specieshindex can then calculate the species h-index of individual species applying Hirsch’s h-index [26]. The h-index is defined as the largest number of publications (n) cited a minimum of the same number (n) of times (Appendix Fig. S2). The h-index in this scenario quantifies the research interest each individual species has received. The package has also implemented the calculation of other indices, such as the m-index, and h5 index, and plotting functionality. 
We used binomial names in Scopus database searches because of the ambiguity and lack of common names for uncommon species. We tackled the issue of species name synonyms by using the Boolean term ‘OR’ between each synonymous binomial name (collected from Open Tree of Life) in the search string. A total of 762,771 articles containing binomial names of mammals were extracted. Since the distribution of h-index was right-skewed with more species having a lower species h-index, we applied the formula  for visualization purposes, but we used the original count data for modeling (see below).
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Since some data was missing for body mass, latitude, and IUCN Red List status (Appendix Fig. S1), we imputed missing values for 5,497 species that were include in the model, to match the shorter length of the phylogenetic tree. We used the multiple imputation approach implemented in the R package mice [35]. Multiple imputation creates multiple sets of imputed values before unifying them to create a single set of data [36]. This is preferred over deletions of data records with missing values, as the latter can result in lowered statistical power and biases in the parameter estimates [37]. We used binomial name, h-index, human use, domestication, and Google Trends index to impute 3 variables with missing values (body mass, latitude, and IUCN Red List status), creating 10 complete datasets for statistical analyses. 
[bookmark: _Toc77278104]Statistical analysis and phylogenetic ‘heritability’
We ran two Bayesian phylogenetically controlled Poisson mixed models with the log link function and the additive dispersion term [38], implemented in the R package MCMCglmm [39]. The first model followed the predictions stated in the hypotheses (Table 1), and the second was identical except for modeling a linear effect of the IUCN Red List status rather than a quadratic effect. Both models used the same datasets with the sample size of 5,497 species, and 50 random phylogenetic trees with branch lengths from Upham et al. [30]. Fifty trees were selected since it is the minimum number of trees needed to account for uncertainties in phylogenetic data [40]. 
We ran 130,000 iterations for the chain with 30,000 burn-ins, drawing 1,000 samples from the imputed data in each iteration, and using a non-informative prior for both fixed and random effects. To obtain more accurate precision of model estimates, we repeated the same model for the 10 imputed datasets and 50 phylogenetic trees, resulting in a total of 500 model runs for each model respectively. The last 100 of the total 1,000 samples of each model were extracted for the calculation of the model results.
In the first model, we used the following predictor variables: body mass value on log10 scale (continuous), the absolute value of median latitude (continuous; converted to absolute value for linear distribution), human use (binomial), domestication (ordinal), IUCN Red List status (ordinal), and Google Trends index on (log10 + 1) scale (binomial) to model the outcome variable species h-index (count), as in the following formula: 


The second model in the following formula:


During the testing stage, we checked for variance inflation factor (VIF) to make sure that the regressors were not correlated to each other. The VIF values ranged between 1.0 – 1.7 (Appendix Table S3). Low VIF values meant that the predictor variables are not co-linear and will not lead to inflated correlations. 
We estimated phylogenetic heritability (H2; [38]) to check for phylogenetic correlations among species, which is equivalent to Pagel’s lambda (λ). Values of H2 fall between 0 and 1. The output of the Bayesian model provided the values needed for H2 calculation using the following formula, provided by Nakagawa et al. [41]:

where var(species) and var(overdispersion) are the variance components for phylogenetic effects and the additive overdispersion term, which is equivalent to the residual term in a normal regression and mean(h) represents the average h-index values. 
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[bookmark: _Toc77278107]We calculated the species h-index for 7,521 species of mammals in total.  A species h-index of 0 was common in mammals with 32.26% (n = 2,426; Fig. S4) failing to have even one paper cited one time (Fig. 1). On the other hand, mammals with a species h-index of 100 and higher only included 34 species from across 6 orders.
There were also pronounced shifts in research interest through time. Publications in the early 1940s were largely on the orders Hyracoidea (hyraxes), Proboscidea (elephants), Soricomorpha (dissolved paraphyletic taxa of shrews – combined with Erinaceidae to form Eulipotyphla), and Didelphimorphia (opossums) (Fig. 2b). Early publications in these species were mostly comparative anatomy studies. In the 1950’s, the mammalian literature took on its modern stucture, with research  focused largely on 6 orders (Fig. 2a) – rodents (Rodentia, 1950-2021 mean = 30.94%), Primates (1950-2021 mean = 13.98%), bats (Chiroptera, 1950-2021 mean = 11.16%), carnivores (Carnivora, 1950-2021 mean = 11.61%), pigs, sheep, cattle and other even toed ungulates (Artiodactyla, 1950-2021 mean = 11.83%), and whales and dolphins (Cetacea, 1950-2021 mean = 3.15%). Higher species h-index was generally associated with larger body sizes (Fig. 4a), intermediate latitudes (Fig. 3, Fig. 4b), more human uses (Fig. 4c) and domestication (Fig. 4d), lower extinction risk (Fig. 4e), and higher general interest (Fig. 4f).
Statistical predictors of species’ h-index and phylogenetic signal 
We included 5,497 species of mammals in the Bayesian generalized linear mixed model (BGLMM). Body size positively and significantly predicted species h-index (BGLMM, b = 1.333, 95% credible interval (CI) = -0.082, 2.751; Appendix Table 2; Fig. 4a). While mammalian diversity is highest in the tropics, species found here had significantly lower species h-indices compared to those in the temperate regions and the poles (BGLMM, b = 0.022, 95% CI = 0.019, 0.025; Appendix Table 2; Fig. 3; Fig. 4b). Although the majority of mammals had a Google Trends index of 0, species h-index significantly increased with the Google Trends index (BGLMM, b = 0.490, 95% CI = 0.458, 0.522: Appendix Table 2; Fig. 4c). Although there seemed to be a hint of u-shape across IUCN Red List status, this quadratic effect was not statically significant (BGLMM, b = 2.356, 95% CI = -0.227, 5.083; Appendix Table 2; Fig. 4d; see also Appendix Fig. S5 for IUCN Red List statuses not included in the model). Both models showed a statistically significant linear decline of species h-index with increasing extinction risk (IUCN Red List status; see Appendix Table 3 for the results of the second model). Further, species h-indices significantly increased with both human use (BGLMM, b = 0.277, 95% CI = 0.175, 0.378; Appendix Table 2; Fig. 4e; see Appendix Fig. S6 for all human use categories) and domestication status (BGLMM, b = -0.377, 95% CI = -0.549, -0.205; Appendix Table 2; Fig. 4f). Finally, there was phylogenetic signal present in species h-index in the model (H2 = 0.636, 95% CI = 0.000, 0.659; Appendix Table 2; see Appendix Fig. S7 for phylogenetic tree).
[bookmark: _Toc77278108]Discussion
Scientific research is not spread evenly across mammal species: we found strong bias in ‘research interest’ in the literature, quantified by species h-index. A small group of species (n = 34) had a species h-index above 100, while one-third of the species (n = 2,426) received no scientific interest at all (h = 0). The modern mammalian literature was dominated by the orders Rodentia, Primates, Carnivora, Artiodactyla, Chiroptera, and Cetacea (Fig. 2), which resulted in a high value of phylogenetic heritability in the model (H2 = 64%; see Appendix Table 2). Overall, our analyses confirmed our predictions (Table 1), with the exception of IUCN Red List status that showed a significant linear decline with increasing extinction risk. This bias towards a few orders also appeared in species with high species h-indices (Fig. 1) and these commonly found in the high latitudes (Fig. 3). Mammals with high species h-indices were more likely to be large, less endangered, and be useful to humans (Fig. 4) (all these moderators showing statistically significant associations (Appendix Table 2)). These ‘research superstars’ include farmed animals, pets, and laboratory small mammals, as expected.
[bookmark: _Toc77278109]Low research interest in endangered small mammals
Although the relationship between the species IUCN Red List status and species h-index (Fig. 4d) resembled a u-shaped distribution, this trend was statistically non-significant (Appendix Table 2). Instead, we found a significant decline in research interest (species h-index) with conservation status (i.e., for more endangered mammals). Also, species h-index is positively related to increasing body mass (Fig. 4a). These findings jointly suggest that in general large mammals that are less endangered attract more research attention than smaller mammals that are severely endangered. Taxa with larger mammals, such as the big cats and African megafauna, are typically considered more charismatic [8,42]. In addition, since the proportion of larger species threatened with extinction is higher than that of smaller ones [9], it is no coincidence that they received more research interest than smaller mammals, in general. We found that taxa with smaller mammals in the IUCN Red List categories ‘Endangered’ and ‘Critically Endangered’ were likely to have low species h-indices. This indicates a lack of research focus on smaller species, especially those endangered, possibly because they are rarer in the wild and comparatively harder to research. 
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Domesticated species were among the top ranks of mammals with the highest species h-indices (Fig. 1, Fig. 4f). Mammals with human uses were also predicted to have higher species h-indices (Fig. 4e). The strong focus on  pets and livestock animals can be explained by their proximity to humans as well as our needs and preferences. Among all mammals on earth, wild mammals only make up 4% of the total mammalian biomass, while humans and livestock combine to form the other 96% [46], and this corresponds with their widespread occurrence due to the globalization of a small number of animal husbandry systems [47]. Our need to make our animal use more efficient has driven high volumes of research on these animals. For example, the literature on cattle or sheep can have contributions and interested readers from all over the world. The broad readership creates academic rewards for researchers and thus a positive feedback towards an ever-expanding literature on these animals.  In contrast, the research on the grizzled tree-kangaroo, a vulnerable wild species, can only be done on New Guinea and surrounding islands, severely limiting both the pool of potential researchers and potential readers of that research. Thus, not only is it logistically difficult to research grizzled tree-kangaroos, but the readership and academic rewards for doing so are very limited.
[bookmark: _Toc77278112]Geographical bias towards species in developed countries
We found that mammals with higher species h-indices were congregated in clusters centered at the temperate latitudes (Fig. 3, Fig. 4b). Some of these locations – in the USA, Europe, and Australia – are regions with high gross domestic product values, GDP [48], characteristic for developed countries. Not only are scientists in developed countries able to carry out more research activities with better funding, but they have better access to the infrastructure, such as laboratories, transport, and equipment. Higher education is also better implemented in these regions, which is largely lagging in developing countries [49,50]. Developing countries not  often require even more research funding to compensate for the scarcity of resources [51]. Since developed countries dominate global publication output [52], the geographical biases revealed in our analyses therefore reflect the research interests of scientists in wealthier countries.
Academic preferences towards certain mammal species also suggest that convenience is often prioritized over the species’ conservation status. This trend is evident in Fig. 3, where endangered species near the tropics had much lower species h-indices than species in temperate zones. Such preference towards species in the temperate zone is not unique to Mammalia. Scientific literature on species across all taxa, both vertebrates and invertebrates, is biased towards the temperate environment [53]. This is alarming given that 55% of species in the tropics are at risk of local extinctions from climate change, which is higher than that of temperate species, at 39% [54]. At the same time, tropical regions are biodiversity hotspots because of their high species richness [55]. Thus, species unique to those areas should be prioritized in conservation efforts and research.
[bookmark: _Toc77278113][bookmark: _Toc77278114]Potential limitations and future perspectives 
This study has four major limitations. Firstly,  the data sources that included varying lists of mammals, resulting in missing values in some of our predictors (body mass, latitude, and IUCN Red List status) (Appendix Fig. S1). Although this issue was mitigated by imputing values, the results of our study would be more reliable if complete data was available. We also incorporated synonyms and removed species that went extinct during the prehistorical and historical times. Nonetheless, unresolved synonyms and extinction status can potentially explain why the sample size of this study is 7,521 species of mammals, differing from Burgin et al.’s [56] resolved list with only 6,495 species. The issue of unresolved taxonomy is likely going to affect similar studies that attempt to gather data of multiple species from other taxa [57].
Secondly, we used the h-index [26] as a measurement of research interest since it takes into account both number of publications and numbers of citations. However, there are other similar indices that can be used to quantify research output and influence, including the h5 index, m-index, and i10 index. The h5 index is the h-index of publications that were published in the past 5 years [58]. The m-index is the h-index divided by the number of years since the first publication [26], which scales for time. The i10 index is the total number of articles with 10 or more citations; it is currently used by Google Scholar [59]. Future studies can compare these indices and investigate how they differ with specieshindex R package, which can calculate these other indices. 
[bookmark: _Toc77278116]Third, we used species h-index here to characterize the distribution of research interest across mammalian species. More research interest does not inform us on the kinds of research that has been done for a given species. Text mining could be used on full-text publications to single out studies with a given topic (e.g., conservation, behaviour, ecology or biomedical use) in future studies, although such endeavor would require access to full-texts.
Finally, although a proxy for general interest in species, presence in Google searches, was a strong and statistically significant predictor of species h-index (Fig. 4c, Appendix Table 2), members of the public, in general, are unlikely to use binomial names of species, which we used in this study. We decided against the use of common names for our analyses as many species have multiple common names and many common species names are often used the name of products or companies, and our searches would result in very messy data. Therefore, we require a better proxy for quantifying public interest in different species.
[bookmark: _Toc77278117]Conclusion 
This study has quantified species h-index for all available mammalian species as a case study and asked meta-scientific and biological questions. We have elucidated the current patchiness and biases in the mammalian research landscape using potential drivers of such biases that have been hypothesized before, but perhaps at the largest and finest scale than previously done. More importantly, we have demonstrated potential of addressing meta-research and biological questions by combining available online datasets and species h-indices calculated from a bibliometric database. Therefore, future studies can ask a rich set of similar and extended questions to quantify the research landscape of any taxa. 
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Tables
TABLE 1 Details of hypotheses. We predicted that species h-index can be influenced by body sizes, location of natural habitat, phylogeny, human uses and domestication, demography, and general interest.
	Potential driver
	Hypothesis and rationale
	Statistical surrogate
	Data source 

	Size of species
	We predict that higher body masses correlate with higher species h-index. Larger mammals, i.e. megafaunal species such as elephants and rhinoceroses, receive more research interest because they are generally considered as more ‘charismatic’ [8,42]. 
	Body mass
(transformed with log10)
	Wilman et al. [60]

	Location of natural habitat
	We predict that species found in temperate latitudes have higher species h-index. Mammals near the temperate zones attract more research interest as more researchers originate from these areas, such as North America, Europe, Australia, New Zealand, and southern Africa [5]. Thus, mammals whose natural habitat are within these regions are better studied.
	Median latitude
	GBIF [61]

	Phylogenetic relatedness
	We predict that there are phylogenetic signals present in the dataset. Mammals that are more phylogenetically related receive similar species h-index because related species share similar traits that may influence the propensity of researchers to study members of a given clade [62]. 
	Branch lengths of phylogenetic tree
	Upham et al. [30]

	Human use &
Domestication
	We predict that mammals with more human uses and domesticated mammals have higher species h-index. Some examples of human uses include transportation (e.g. horses and elephants), companionship (e.g. cats and dogs), food products (e.g. sheep and cattle), etc. Lab animals (e.g. rabbits and rodents) are likely to receive most research interest since the main purpose of keeping these animals is for scientific research [63,64]. 
	IUCN Red List human use categories & Wikipedia list of domesticated species
	IUCN Red List [65], & Wikipedia [66]

	Demography
	We predict a u-shaped distribution of species h-index, where species in the ‘Least Concern’ and ‘Critically Endangered’ categories receive higher species h-index. Previous studies showed no correlations between the mammals’ IUCN Red List status and their research interest [16,17,19]. 
	IUCN Red List status
	IUCN Red List [65]; cleaned with rredlist [67]

	General interest
	We predict that more general interest correlates with higher species h-index. Research and general interests are highly correlated since we tend to be more attracted to ‘charismatic’ species, such as lions and elephants [42], and are more willing to donate for their conservation causes [68], resulting in more research interest.
	Google Trends index
	Google Trends [69]; extracted with gtrendsR [70]





TABLE 2 Summary of statistical results from the Bayesian generalized linear mixed model (BGLMM). The distributions here follow the distributions stated in the hypothesis.
	Estimate
	Mean
	95% Credible Interval (CI)

	Fixed effects
	
	

	Intercept
	1.333
	-0.082, 2.751

	log10(Body mass) 
	0.094
	0.025, 0.157

	Latitude (absolute value)
	0.022
	0.019, 0.025

	IUCN Red List status (1st degree polynomial)
	-16.463
	-19.509, -13.367

	IUCN Red List status (2nd degree polynomial)
	2.356
	-0.227, 5.083

	Human use
	0.277
	0.175, 0.378

	Domestication status
	-0.377
	-0.549, -0.205

	log10(Google Trends)
	0.490
	0.458, 0.522

	Random effects
	
	

	Phylogeny
	1.592
	1.076, 2.222

	Non-phylogeny 
	0.806
	0.745, 0.868

	Phylogenetic heritability (H2)
	0.636 (*0.641)
	0.000, 0.659 (*0.515, 0.659)

	*Phylogenetic signal after removing posterior samples with the H2 value of 0, which represented 20.4% of the trees we used.




TABLE 3 Summary of statistical results from the Bayesian generalized linear mixed model (BGLMM). The distributions here follow the distributions stated in the hypothesis, except with IUCN Red List status set to a linear relationship.
	Estimate
	Mean
	95% Credible Interval (CI)

	Fixed effects
	
	

	Intercept
	1.720
	0.301, 3.149

	log10(Body mass)
	0.093
	0.025, 0.156

	Latitude (absolute value)
	0.022
	0.019, 0.025

	IUCN Red List status
	-0.255
	-0.303, -0.206

	Human use
	0.273
	0.172, 0.376

	Domestication status
	-0.381
	-0.552, -0.208

	log10(Google Trends)
	0.491
	0.459, 0.524

	Random effects
	
	

	Phylogeny
	1.594
	1.075, 2.218

	Non-phylogeny 
	0.806
	0.745, 0.870

	Phylogenetic heritability (H2)
	0.636 (*0.641)
	0.000, 0.659 (*0.515, 0.660)

	*Phylogenetic signal after removing posterior samples with the H2 value of 0, which represented 20.4% of the trees we used.






Figures
[image: Chart

Description automatically generated]
FIGURE 1 Species h-index of mammals. The main plot shows 34 mammals with h = 100 or more, representing 6 different orders marked by dots of different colors. Figure in the inset shows the distribution of species h-index of all mammals, with the species scoring above h = 100 or more marked by the red box. 
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FIGURE 2 The changes in mammalian literature from 1940 to 28 April 2021. (a) The number of publications per year for 30 mammalian orders and the proportion of species per order from the collated mammalian dataset represented by the doughnut chart, and (b) change in the frequency of publications on 30 mammalian orders present in the dataset. Total number of mammalian species analysed is 7,521.
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FIGURE 3 Centroids of global distributions of 4,435 mammalian species. The species’ corresponding h-index values are illustrated by dot colour and their IUCN Red List status by dot size.
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FIGURE 4 Relationship between predictor variables and species h-index values. (a) Species average body mass (n = 5,158 species, fitted curves represent 50% quantile for each clade), (b) Median latitude of species geographical distribution (n = 4,435 species, fitted curve from generalised additive model (GAM) with shaded grey area representing 95% confidence interval; density bar on top of the plot illustrates the number of species at each latitude). (c) Human use categories (n = 7,521, nNo documented use = 6,124, and nUse documented = 1,397). (d) Domestication status (n = 7,521 species, nDomesticated = 12, nPartially-domesticated = 136, and nWild = 7373). (e) IUCN Red List status (n = 5,244 species, nLeast Concern = 3152, nVulnerable = 530, nEndangered = 512, nCritically Endangered = 208, and nExtinct in the Wild = 2). (f) Google Trends Index summed for each species (n = 7,521 species, nGoogle Trends Index > 0 = 1,323, and nGoogle Trends Index = 0 = 6,124 species).  Box plots in (c), (d), and (e) show the median, 25th and 75th percentiles, and lower and upper extremes.
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