
v.6 

   
 

 

   
 

ROBITT: a tool for assessing the risk-of-bias in studies of 1 

temporal trends in ecology 2 

Boyd, R.J.1, Powney, G.D.1, Burns, F.2, Danet, A.3, Duchenne, F.4, Grainger, M.5, Jarvis, S.G.6, Martin, G.7, 3 

Nilsen, E.B.5,10, Porcher, E.3, Stewart, G.B.8, Wilson, O.J.9, Pescott, O.L.1 4 

1. UK Centre for Ecology & Hydrology, Wallingford, UK 5 
2. RSPB Centre for Conservation Science, David Attenborough Building, Pembroke Street, Cambridge, 6 
CB2 3QZ, UK 7 
3. Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, 8 
CNRS, Sorbonne Université, CP 135, 57 rue Cuvier 75005 Paris, France 9 
4. Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, 10 
Switzerland 11 
5. Norwegian Institute for Nature Research (NINA),P.O. Box 5685, Torgard, NO-7485 Trondheim, Norway  12 
6. UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK 13 
7. Laboratoire EDB Évolution & Diversité Biologique UMR 5174, Université de Toulouse, Université 14 
Toulouse 3 Paul Sabatier, UPS, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France 15 
8. Evidence Synthesis Lab, School of Natural and Environmental Science, University of Newcastle, 16 
Newcastle-upon-Tyne, NE1 7RU  17 
9. Plantlife, Salisbury, Wiltshire, UK 18 
10. Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway 19 
 20 

Abstract 21 

1. Aggregated species occurrence and abundance data from disparate sources are increasingly 22 

accessible to ecologists for the analysis of temporal trends in biodiversity. However, sampling biases 23 

relevant to any given research question are often poorly explored and infrequently reported; this has 24 

the potential to undermine statistical inference. In other disciplines, but particularly medicine, 25 

researchers are frequently required to complete “risk-of-bias” assessments to expose and document the 26 

potential for biases to undermine inference. The huge growth in available data, and recent controversies 27 

surrounding their use to infer temporal trends, indicate that similar tools are urgently needed in 28 

ecology. 29 

2. We introduce ROBITT, a structured tool for assessing the “Risk-Of-Bias In studies of Temporal Trends 30 

in ecology”. ROBITT has a similar format to its counterparts in other disciplines: it comprises signalling 31 

questions designed to elicit information on the potential for bias in key study domains. In answering 32 

these, users will define their inferential goal(s) and relevant statistical population. This information is 33 

used to assess potential sampling biases across domains relevant to the research question (e.g. 34 

geography, taxonomy, environment), and how these vary through time. If assessments indicate likely 35 

sampling biases, then the user must explain what mitigating action will be taken. 36 

3. Everything that users need to complete a ROBITT assessment is provided: the tool, a guidance 37 

document, and a worked example. Following other disciplines, the tool and guidance document were 38 
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developed through a consensus-forming process across experts working in relevant areas of ecology and 39 

evidence synthesis. 40 

4. We propose that researchers should be strongly encouraged to include a ROBITT assessment as 41 

supplementary information when publishing studies of biodiversity trends. This will help researchers to 42 

structure their thinking, clearly acknowledge potential sampling issues, and provides an opportunity to 43 

describe data checks that might otherwise not be reported. ROBITT will also enable reviewers, editors, 44 

and readers to establish whether research conclusions are supported given a particular dataset 45 

combined with some analytical approach. In turn, it should strengthen evidence-based policy and 46 

practice, reduce differing interpretations of data, and provide a clearer picture of the uncertainties 47 

associated with our understanding of ecological reality. 48 

Key words 49 
risk-of-bias; species occurrence data; temporal trends; Essential Biodiversity Variables; indicators; 50 

uncertainty 51 

 52 

Introduction  53 

Species occupancy and abundance are two fundamental state variables in ecology. Understanding the 54 

rates at which these variables might be changing is required to monitor progress towards international 55 

biodiversity targets and the effects of conservation interventions. Ultimately, this information comes 56 

from data documenting the sighting of one or more individuals of some taxon; that is, species 57 

occurrence data, or, in some countries, “biological records” (note that here we use this term to cover 58 

abundance data, as such information may be considered an attribute of an occurrence). Species 59 

occurrence data from disparate sources are often combined, and then analysed statistically, to derive 60 

measures of biodiversity over large taxonomic, spatial, and temporal extents (e.g. Gregory et al., 2005). 61 

Indeed, this is the premise of species population “Essential Biodiversity Variables” (Jetz et al., 2019; 62 

Kissling et al., 2018; Pereira et al., 2013). The temporal component of these data products may be 63 

averaged over spatial (e.g., regional, national, global) and taxonomic domains to produce indicators 64 

(GEO BON, 2015); these have become a key source of information on ecological change for policy 65 

makers (Navarro et al., 2017). Frequently then, evidence of temporal trends in aspects of global 66 

biodiversity are derived through the statistical analysis of raw data on the occurrence and/or abundance 67 

of various taxa. 68 

Species occurrence data vary widely in terms of the ways in which they were recorded, why they were 69 

collected, and the information that they subsequently provide. First, presence-only data (sometimes 70 

also called primary biodiversity data; e.g. Ball-Damerow et al., 2019) document the sighting of some 71 

species, with information on where and when the sighting occurred. These data are derived from a 72 

variety of sources, including natural history collections in museums and herbaria, surveys by 73 

professional biologists, and various types of data collected by volunteer naturalists or other types of 74 

citizen scientist (Collen et al., 2013; Spear et al., 2017). Second, presence-absence data provide 75 

additional information on sampling events which did not yield a detection of the focal taxon. These data 76 

are most likely to be collected through structured monitoring schemes using specific protocols (but see 77 

Sullivan et al., 2014). Third, abundance data provide more information still: they document the number 78 



v.6 

   
 

 

   
 

(or other quantity) of individuals. Both structured and unstructured (i.e. opportunistic) sampling 79 

schemes may collect abundance data, although this is often more likely to be associated with structured 80 

monitoring. All these data can provide information on temporal trends in biodiversity, but only if they 81 

are accessible to researchers. 82 

In recent years, species occurrence data have both increased in volume, and have become increasingly 83 

accessible. This increase in accessibility can be ascribed to several initiatives: the digitization of historic 84 

biological records (Page et al., 2015); the proliferation and growth of citizen science monitoring 85 

initiatives (Spear et al., 2017); the launch of online data aggregators such as GBIF and similar regional 86 

portals (Nelson and Ellis, 2019); and the compilation of more specialist databases focused on particular 87 

types of ecological community (Dengler et al., 2011), monitoring data (Dornelas et al., 2018) or other 88 

evidence types (Hudson et al., 2017). Thanks to these initiatives, it is now relatively straightforward for 89 

ecologists to access large quantities of data, from disparate sources, and to use them for various 90 

analytical or other reporting purposes. However, quantity of data does not necessarily equal quality of 91 

scientific insight, and there have been important questions raised concerning the suitability of some 92 

biodiversity data types for drawing reliable inferences about true change over time (e.g. Ball-Damerow 93 

et al., 2019; Cardinale et al., 2018; Pescott et al., 2019). 94 

To help the reader fully appreciate the potential challenges associated with the analysis of 95 

heterogeneous biodiversity data, it is useful to define some key statistical concepts (see Box 1 for a 96 

glossary of terms). Whilst there are many possible definitions of statistics (Barnett, 1982), one typical 97 

conception is that of reasoning under uncertainty and inherent variability, with classical texts (e.g. 98 

Lehmann, 1959) focusing on the use of observed data to make inferences concerning unobserved 99 

distributions. For example, monitoring-type investigations can be clearly appreciated as a sample-based 100 

approach to understanding features of some broader environment; likewise, smaller-scale experimental 101 

work is normally conducted with generalisation to a larger set of situations ultimately in mind. In both 102 

these cases, and everything in between, it is rarely feasible to census (or conduct experiments on) an 103 

entire population of interest: researchers rely on samples. This leads to questions concerning the validity 104 

of the resulting inferences. One assessment of a study’s validity is to ask whether these inferences are 105 

well-supported by the data in hand (known as internal validity). For sample-based results to be 106 

generalisable, however, they must also be true of the wider population of interest (external validity; Box 107 

1). A study’s claimed external validity is likely to be undermined if the sample is not representative of 108 

the population with respect to important features for the desired inferences (Meng, 2018); this is often 109 

known as “sampling bias” (Box 1), although in some areas “selection bias” is used as a synonym. 110 

To obtain a representative sample, researchers would ideally select individual units randomly from the 111 

population (probability sampling). However, there are many circumstances in which it is not possible to 112 

do this. In these cases, researchers might instead make use of nonprobability samples (such as those 113 

found in aggregated biodiversity databases); that is, samples that were not necessarily collected to be 114 

representative of a clearly defined statistical population, or which end up being unrepresentative due to 115 

data loss or subject drop-out. Small samples may also be unrepresentative of important features by 116 

chance, even if they are true probability samples. Before researchers can truly understand the 117 

representativeness of a sample, they must first formally define their research question and the 118 

statistical target population about which they intend to draw inferences. A failure to do this may result 119 

in researchers drawing erroneous conclusions about reality. 120 
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Box 1. Glossary of terms used in this paper and in the related literature on “risk-of-bias" assessments in 121 

other research areas (see Table 1). 122 

Bias (in general): A systematic deviation from the truth in data acquisition, analysis, interpretation, 
publication etc. Due to the many ways in which such deviations might occur, some disciplines have 
created catalogues of biases in order to support clarity of communication and focus between 
researchers (e.g. see https://catalogofbias.org/ for health research).  
Bias (in frequentist statistics): The tendency of a sampling distribution-based estimator to under- or 
overestimate the true population value of a parameter. 
Bias (in sampling): Where samples do not match the population in important characteristics (i.e., the 

sample is not representative of the population). Note the difference between estimator bias in 

frequentist statistics and sampling bias: frequentist bias is a property evaluated over multiple 

samples, whereas sampling bias, in the more general sense of a failure of representativeness, can be 

defined in the context of a single sample. A small sample may be unrepresentative even though it is a 

true probability sample. 

Convenience sampling: A form of nonprobability sampling, whereby units are selected because they 

are easily accessible. For example, a naturalist might record sightings in their back garden, or near a 

road, rather than travelling to a remote location. This results in a convenience sample; also 

sometimes called opportunistic sampling. 

Probability sampling: Sampling from a statistical population using probability theory; that is, random 

sampling of some form. Results in probability samples which will be representative of the statistical 

population on average (although random variation dictates that this is not always the case for 

particular samples, especially with small sample sizes). 

Nonprobability sampling: Sampling from a population whereby each member of that population does 

not have an equal chance of selection (or an equal chance conditional on some set of weights). 

Results in nonprobability samples which may be unrepresentative of the population in ways that 

could be important for resulting inferences if there are correlations between the selection mechanism 

and the properties of the population relevant to the research question (Meng, 2018). 

Parameter: A (statistical distribution-based) estimate of some quantity pertaining to a statistical 

population (e.g., its mean, variance, etc.). 

Statistic: An estimator of a population parameter derived from a sample of that population. (Note 

that a parametric model is implied by this definition). 

Statistical inference: The process of drawing inferences about a statistical population from a sample 

(or set of samples) from that population; the inferences made from any given sample will also depend 

on the study goals (e.g. prediction, causal understanding, description) and the statistical model or 

models used to investigate these (Barnett, 1982). (Note that here we distinguish description, as one 

possible inferential goal, from descriptive statistics, which are normally defined as simple descriptors 

of a sample). 

Statistical population: The complete set of units, with some identified properties, of which a sample 

is desired. For example, the true presence/absence status of all vascular plants in 1 km land-

https://catalogofbias.org/
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containing grid cells in a country. Sometimes also called the target population, or simply “population”. 

We avoid the latter term to avoid confusion with the common use of the term in ecology to refer to 

species’ populations. 

Representativeness: The degree to which a sample matches the population of interest in terms of 

features that are important for inference. This may apply to multiple domains; for example, a sample 

may be representative of the geographic domain of the population, but not the taxonomic domain. 

Representative samples are best obtained by probability sampling of a population. 

Unrepresentativeness is also referred to as “coverage error” in some disciplines (as distinct from the 

frequentist’s concept of confidence interval coverage). 

Validity: Validity is the degree to which a study’s conclusions are likely to be true of the statistical 

population about which inferences are desired. This may be decomposed into internal and external 

validity. Internal validity is the extent to which the desired inferences can be accurately extracted 

from the sample, e.g., whether the effect of some intervention is well-identified from some 

experimental or quasi-experimental approach. External validity is the degree to which the results may 

or may not generalise to the wider population of interest. The concepts of internal and external 

validity are most frequently encountered in the context of causal inference, where the main aim is 

typically to estimate the effect of some intervention, e.g., the effects of some new medical treatment 

or social policy; however, they also apply to descriptive and predictive research. For example, 

describing national-level temporal trends in a species from a very unrepresentative sample would 

have low external validity, even if the data themselves were collected in a very robust fashion from 

the sampled locations (i.e. with high internal validity). In relation to any clearly stated inferential goal 

then, low and high validity map to high and low risks of bias respectively. 

 123 

In studies of temporal biodiversity trends in ecology, researchers tend to define their statistical 124 

populations along the axes of space, time, and taxonomy (e.g. Dennis et al., 2019; Outhwaite et al., 125 

2019; Powney et al., 2019; van Strien et al., 2019). For example, one might be interested in trends in 126 

bird distributions in North America over the period 1950 to the present day, or in pollinator abundance 127 

in Great Britain in the 20th century. It is also worth noting that, although they may not always be defined 128 

explicitly, other axes may be important for inference. For example, researchers may be more interested 129 

in whether samples represent all areas of some multi-dimensional environmental space (e.g. as defined 130 

by a set of climatic and/or habitat variables), rather than just being considered representative of 131 

geographic space. Likewise, for some purposes, representative coverage of species' traits may be 132 

desired along with, or instead of, even taxonomic or phylogenetic coverage. To be representative of 133 

populations conceived of in this way, data would ideally be representative of all axes of importance. To 134 

illustrate this point using the first of the above examples, data would need to be sampled as close to 135 

randomly as possible across North America, across all bird species that occupy North America, and 136 

evenly over the period 1950 to the present day. Otherwise, it is possible that the data will be 137 

unrepresentative of the statistical populations of interest; for example, particular geographical areas 138 

may be over- or under-sampled in particular time periods, leading to a confounding of time and space, 139 

and, ultimately, conclusions that may bear little resemblance to the true state of nature that a 140 

researcher intended to uncover. 141 
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There are many situations in which species occurrence data are unlikely to be representative of the 142 

statistical populations as defined (or merely implied) by studies of temporal biodiversity trends. Data 143 

collected opportunistically (convenience samples) are highly likely to be non-random along the axes of 144 

space, time, and taxonomy (or other important dimensions)—the same axes on which ecologists tend to 145 

define their target populations (e.g. Belitz, 2021; Hughes et al., 2020; Pescott et al., 2019). Volunteer 146 

naturalists, for example, tend to preferentially sample accessible and attractive locations, and 147 

interesting (e.g. rare) species (Barends et al., 2020; Prendergast et al., 1993). Structured data, collected 148 

according to some planned sampling design, may well be representative of some particular set of 149 

spatial, temporal, and taxonomic domains; however, when multiple datasets, with different aims, 150 

extents, and protocols, are aggregated (e.g. as on GBIF), then the target population to which these data 151 

pertain becomes unclear. To illustrate this point, imagine several datasets, each derived from structured 152 

monitoring of some taxon in some spatial unit at regular time intervals (i.e. time series data). These data 153 

might be very informative about change in those units (but see Gonzalez et al., 2016), however, there is 154 

no reason to suppose that these data can be combined and used to draw robust inferences about some 155 

wider geographic domain, unless the samples happen to resemble a probability sample of the true 156 

broader population(s) of interest (Cardinale et al., 2018). The problem of a mismatch between sample 157 

and population could be avoided if researchers first assessed their data to inform their choice of 158 

population and/or the claimed scope of their inferences. Unfortunately we find that such cases are the 159 

exception rather than the rule. 160 

The frequent mismatch between sample and statistical target population in studies of trends in 161 

biodiversity has not gone unnoticed. It is a common subject for critical comments on studies in the 162 

ecological literature. For example, Sánchez-Bayo and Wyckhuys (2019) and van Klink et al. (2020) were 163 

both criticised for extrapolating their claims of insect declines beyond the taxonomic and geographical 164 

limits of their data (Desquilbet et al., 2020; Jähnig et al., 2021; Saunders et al., 2020; Simmons et al., 165 

2019). Similarly, Vellend et al. (2013) and Dornelas et al. (2014) were criticised for concluding that local 166 

species richness is not in decline globally from meta-analyses of studies that were geographically biased 167 

in relation to human disturbance and species richness itself (Cardinale et al., 2018; Gonzalez et al., 168 

2016). Crossley et al. (2020) and van Klink et al. (2020), on the other hand, were taxonomically selective 169 

when reporting their conclusions: both sets of authors included non-insect groups in their analyses, but 170 

restricted their conclusions (and paper titles) to insects (Desquilbet et al., 2021, 2020). Other studies of 171 

insect trends have been criticised with regards to whether particular modelling approaches have 172 

appropriately dealt with temporal biases in the data. For example, both Lister and Garcia (2018) and 173 

Soroye et al. (2020) have been criticised in this regard (Anon., 2020; Guzman et al., 2021; Willig et al., 174 

2019). This brief overview of some recent disagreements in the ecological literature on biodiversity 175 

trends highlights a fundamental problem: potential sampling biases are rarely communicated to the 176 

reader (and reviewers) in sufficient detail; instead, they are often addressed with a passing comment, if 177 

at all. This problem is particularly evident where the external validity of claims is concerned (Cardinale et 178 

al. 2018). Even if models are presented which claim to deal with various types of potential bias, clear 179 

descriptions of these biases, explanations of how proposed models address these specifically, and 180 

critical exploration of these claims (e.g. via appropriate sensitivity analyses) are only rarely encountered. 181 

As a result, inferential “over-reach” in paper titles, abstracts, and conclusions is not uncommon. 182 

In some other disciplines, strategies have been developed to assist researchers in avoiding potentially 183 

inappropriate inferential claims. In medicine and related areas for example, researchers are strongly 184 
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encouraged, if not mandated, to submit “risk-of-bias” (RoB) assessments when publishing their studies 185 

(Table 1). The function of these assessments is to clearly expose and document any threats to the 186 

validity of a study’s conclusions arising from potential biases in the underlying data. A number of RoB 187 

assessment tools have been developed for various types of data and study design (Table 1). These tools 188 

have been described as reflecting a “shift in focus from methodological quality to risk of bias” (Sterne et 189 

al., 2016)—a shift that has yet to take place in ecology, despite some efforts to provide structured 190 

approaches to documenting methodological choices in some areas (Grimm et al., 2010, 2006; Schmolke 191 

et al., 2010; Zurell et al., 2020). It is not difficult to appreciate why this shift was needed in the medical 192 

sciences: one would not want to approve some pharmaceutical product which had been demonstrated 193 

to be safe only for some subset of a population, for example. We argue here that the increasing policy 194 

relevance of inferences about temporal trends in biodiversity requires a similar shift in focus in our 195 

discipline. 196 

Table 1. A (non-exhaustive) list of risk-of-bias (RoB) tools, and broader checklists with RoB elements, 197 

used across scientific disciplines. 198 

Tool Field Study/ data type Details Reference(s) 

Cochrane RoB 
tool  

Medicine Randomized 
controlled trials of 
medical 
interventions 

Used where 
studies are to be 
included in 
systematic 
reviews 

Version 1: Higgins 
et al. (2011) 
Version 2: Sterne 
et al. (2019) 

Constraints to 
Generality tool 

Psychology Any inferential 
study 

Engenders clear 
definition of the 
statistical 
population of 
interest and 
assesses external 
validity 

Simons et al. 
(2017) 

GRADE Medicine Medical 
interventions 

Not exclusively a 
RoB tool but 
contains a RoB 
component. 

Schünemann et 
al. (2013) 

PRISMA Cross-discipline Systematic 
reviews and 
meta-analyses 

Contains 
questions about 
RoB at both the 
study and overall 
review level 

2020 version: 
Page et al. (2021) 

PROBAST Medicine Predictive 
modelling studies 

Used for 
predictive studies 
of diagnoses and 
prognoses 

Wolff et al. (2019) 

RoBANS Medicine Non-randomized 
(observational) 
studies of medical 
interventions 

- Kim et al. (2013) 
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ROBINS-E Public health Non-randomized 
(observational) 
studies of 
exposure 

Akin to ROBINS-I, 
but for studies of 
effects of 
exposure 

Bero et al. (2018) 

ROBINS-I  Medicine Non-randomized 
(observational) 
studies of medical 
interventions 

Compares data to 
that of a 
hypothetical 
randomized trial 

Sterne et al. 
(2016) 

 199 

In this paper, we introduce ROBITT, a tool for assessing the “Risk-Of-Bias In studies of Temporal Trends 200 

in ecology”. The tool has a similar format to its counterparts in other fields: it comprises a number of 201 

“signalling” questions (Sterne et al., 2016), each designed to elicit information on the potential for bias 202 

in the study being assessed. The user is first asked to define the statistical target population about which 203 

they intend to make inferences, and then to assess whether their data are likely to be representative of 204 

this population in the geographic, temporal, environmental, and taxonomic domains (the latter defined 205 

broadly as covering any organismal space that might be important for inferences for the study, e.g. 206 

taxonomic, phylogenetic, trait-based etc.) If the data are found to be potentially biased, then the user is 207 

also asked to explain how they will mitigate those biases. We begin by describing the development of 208 

the tool, including the solicitation of expert advice. We then provide an overview of the tool, describe its 209 

constituent sections, and refer the reader to the supplementary material for a full template, guidance 210 

document, and worked example. Finally, we discuss the potential value of the ROBITT tool to the field of 211 

ecology, and propose its inclusion as supplementary information for all studies of temporal trends based 212 

on all biodiversity datasets of occurrence and/or abundance data, but particularly for those retrieved 213 

from aggregated databases where true probability samples of the populations of inferential interest are 214 

unlikely to be found. 215 

ROBITT tool  216 

Development 217 

A prototype version of the ROBITT tool was created by RB, GP, and OP (authors). In a similar way to 218 

other RoB tools (e.g. Sterne et al., 2016), this prototype was refined over the course of two online 219 

workshops in which participants (the other authors) gave critical feedback. During the first workshop, 220 

participants were asked to review the tool, guided, but not restricted, by a broad set of prompting 221 

questions (supplementary material 3). During the second workshop, each participant presented their 222 

feedback. Feedback was grouped into broad themes that warranted discussion in terms of establishing a 223 

consensus across participants on the content and presentation of the tool. The workshop chair (OP) 224 

outlined the perceived consensus after open discussion on each point, and participants were asked for 225 

further comments. The ROBITT tool and guidance document were then updated and circulated to 226 

participants for additional feedback (this process used an online word processing tool, so that all 227 

feedback was visible to all participants). The tool and guidance versions presented here are the final 228 

result of this consensus-forming process. 229 

Overview  230 
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The ROBITT tool comprises 17 questions designed to elicit information on the potential for bias in a 231 

study. The user may answer the questions using text and/or figures. The first section, the “research 232 

statement and pre-bias assessments”, comprises four questions; the remainder of the tool constitutes 233 

the bias assessment itself. The ROBITT tool and supporting guidance document can be found in 234 

supplementary materials 1 and 2. The guidance document follows the PRISMA model (Page et al., 235 

2021b), in that an explanation of the rationale for each question is given, followed by a concise summary 236 

of the expected response. A worked example can be found in supplementary material 4. 237 

Tool sections 238 

Research statement and pre-bias assessment 239 

The purpose of this section is to assemble all the information needed to assess the risk of bias in the 240 

focal study. The first step in this section is to formally define the statistical target population about 241 

which inferences are desired. This must include a specification of the extents of any relevant domains of 242 

that population (e.g. geographic, temporal, taxonomic, environmental). It must also include a statement 243 

of the resolutions (grain sizes) at which analyses will be conducted (e.g., 1 km grid cells, annual 244 

increments, species level etc.). This is because the scale at which a research question is formulated can 245 

influence both data availability and the nature of, and potential for, biases (e.g. Pescott et al., 2019). The 246 

next step is to state the inferential goal; for example, “to estimate temporal trends in species’ 247 

occupancy”. In the remainder of this section, the user must document data provenances, and explain 248 

and justify any steps that were taken to modify or otherwise clean data. 249 

Bias assessment 250 

The next and main section of the ROBITT tool is the bias assessment. This section begins with a 251 

specification of the geographic (i.e. spatial), temporal, and taxonomic resolutions (i.e. grain sizes or 252 

scales) at which the assessment will be conducted. Generally, these should match the resolutions at 253 

which inferences are desired (as specified in the research statement section). It would very likely be 254 

inappropriate, for example, to assess one’s data in decadal time periods and 100 km grid cells, and then 255 

conclude that they were unbiased for making inferences about annual time periods at the 1 km 256 

resolution. We note that there may be limited exceptions to this: for example, one might intend to draw 257 

inferences at the taxonomic resolution of the species, but be unable to conduct their assessment at this 258 

scale. This is because it can be difficult to assess sampling biases at the species level using presence-only 259 

data, because such data say nothing, in isolation, about sampling effort where the focal species was not 260 

recorded. In this case, a common approach is to combine all records across species in a taxonomic group 261 

and assume that the combined distribution of those records reflects the distribution of sampling (see 262 

e.g. Phillips et al., 2009). Here then, the scale of a bias assessment might be subtly different to that at 263 

which inferences are desired, because information at one level is assumed (under some model) to 264 

provide information for assessing biases at another. 265 

The next three subsections denote our three main domains of potential bias: geographic, environmental 266 

and taxonomic (or other relevant organismal axis, such as phylogenetic or functional group). Note that 267 

temporal biases are dealt with within each of these three sections (see below for more on this). In each 268 

subsection, the user must answer three questions: the first two questions in each subsection are 269 

designed to reveal any potential biases relative to the research question (I.e. the inferential goal). The 270 
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first asks whether the data are representative of that domain; that is to say, do the data cover the whole 271 

domain evenly (ideally randomly)? The answer to this question will provide an indication of whether the 272 

desired scope of the inferential goal in that domain is justifiable. The second question asks whether the 273 

same portion of the focal domain has been sampled over time; that is, is there any indication of 274 

temporal changes in coverage in that domain? The answers to the second question in each subsection 275 

are crucial for assessing the suitability of the data for estimating temporal trends in biodiversity. To 276 

illustrate this point, imagine that species data are collected from one portion of some country in one 277 

time period, and then from another part in the next. Using these data to estimate changes in species’ 278 

distributions or abundances between time periods may then be problematic, because shifts in space are 279 

confounded with shifts in time. In one sense, the distinction between the first and second question can 280 

be considered equivalent to the distinction between external and internal validity (Box 1): a study might 281 

have low external validity (i.e. broad generalisability) if it is not representative of some domain overall; 282 

however, for a subset of that domain (e.g. a well-sampled portion of geographic space, perhaps a site 283 

for which a longitudinal study was conducted), the data might be very informative about change (i.e. 284 

high internal validity). The answers to these first two questions in each domain have important 285 

implications for how one goes about answering the third. 286 

The third question in each domain subsection asks the user to state how they will mitigate any potential 287 

biases indicated by the preceding two questions. There are several ways in which one might go about 288 

mitigating biases, such as through data manipulation or statistical correction procedures. Mitigation 289 

might also include simply redefining the statistical target population; this approach changes the 290 

question to be more appropriate to the data in hand, rather than attempting to use some model-based 291 

fix to support broader inference. We briefly review mitigation options in the Discussion section below. 292 

There will also be cases in which the user feels it is not necessary to mitigate a lack of coverage or 293 

inconsistent sampling over time, because these are not relevant to their inferential goal. For example, if 294 

one is interested in understanding how species' abundances have changed in South Africa, then the data 295 

need not be sampled from the same portion of environmental space over time; indeed, if the data are 296 

representative of South Africa geographically in each time period, then they will necessarily be sampled 297 

from different portions of environmental space as land use and climate changes. Users should not feel 298 

compelled to explain a lack of coverage in any domain if it is not relevant to their inferential goal. 299 

The next, and final, subsection in the bias assessment is “Other potential biases”. This subsection is 300 

slightly different to the previous three subsections in that it does not relate to a single domain of bias; 301 

rather, it provides an opportunity for the user to consider any additional biases that might impact their 302 

research and to highlight any mitigation approaches. The first question in this subsection asks whether 303 

there are any temporal biases in the data that do not relate to the ecological states of interest (e.g. 304 

occupancy, abundance etc.). Often, these biases will relate to the estimation of some parameter in a 305 

statistical model. For example, site-occupancy models are frequently used to estimate temporal trends 306 

in species’ distributions (Kéry and Royle, 2016). These models normally require data from replicate visits 307 

to particular sites within short spaces of time (“closure periods”) to estimate species’ detection 308 

probabilities. Where these models are used, analysts might want to consider whether there is variation 309 

in the quantity and type of repeat visits that could result in biases in estimates in these parameters 310 

(Royle, 2006). We note that biases of this type may well go unnoticed in the answers to the previous 311 

questions. The next question in this subsection asks the user to consider whether there are any other 312 

biases that are not covered by the preceding questions that might potentially cause problems for 313 
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inference. Examples include biases relating to phenology, time of day, temporal baselines, etc. (e.g. 314 

Buckland and Johnston, 2017). The final question in this subsection is equivalent to the final question in 315 

the other domains: users are asked to explain, in detail, how they plan to mitigate any biases revealed in 316 

their answers to the two preceding questions. See the guidance document in supplementary material 2 317 

for greater detail on the expected content of researcher responses to the ROBITT questions, and other 318 

additional background information. 319 

Completing a ROBITT assessment 320 

Whilst the questions that constitute ROBITT require individual answers, it may be the case that 321 

researchers prefer to provide such responses in the main text of a research paper or report. This is not a 322 

problem; as a point of comparison, PRISMA (Page et al., 2021a) provides a checklist format that allows 323 

researchers to direct the reader to the answer to any given question. This could also be the case here; 324 

for example, clear subheading or section references could be provided in response to a question, 325 

provided it was the case that the manuscript text referenced was a clear and complete answer to that 326 

question. 327 

 328 

Users may go about answering the 13 questions in the bias assessment section of ROBITT in the best 329 

ways they see fit. It is worth noting, however, that there exists a substantial literature of studies which 330 

screen species occurrence data for various potential biases and, between them, these provide a suite of 331 

heuristics that could be deployed in answering such questions (Barends et al., 2020; Boyd et al., 2021; 332 

Meyer et al., 2016; Petersen et al., 2021; Ruete, 2015; Speed et al., 2018; Sumner et al., 2019; Troudet 333 

et al., 2018). In the simplest case, for example, a researcher might map their data to assess 334 

representativeness in the geographic domain of interest. Indeed, several maps could be produced, each 335 

pertaining to some time period, to assess temporal changes in geographic coverage. More formally, one 336 

could screen data for potential geographic biases by comparing the nearest neighbor distances of their 337 

data to those of a simulated random distribution (Clark and Evans, 1954). This gives a “nearest 338 

neighbour index” which indicates the extent to which the data departs from a random distribution in 339 

geographic space. Similar heuristics have been proposed to screen data for biases in the taxonomic and 340 

environmental dimensions. Instead, see the literature cited earlier in this paragraph, and Boyd et al. 341 

(2021) for a review and R package in which many such heuristics are implemented. We note, however, 342 

that a ROBITT assessment is not merely intended to be a repository for some set of contextless numbers 343 

or figures: sampling bias can strictly only be defined in relation to some inferential goal. The central 344 

point of ROBITT is that assessments of potential bias are clearly linked to a research question, and 345 

assessed in the context of this and any analytical tools being used to answer that question. 346 

In some cases completing a ROBITT assessment will be an iterative process. For example, researchers 347 

might complete a first iteration of the tool and find that data coverage is not sufficient in portions of 348 

their geographic domain of interest. In this case, they might decide to redefine their geographical 349 

domain to exclude the poorly sampled regions; this would mean completing a second iteration of the 350 

ROBITT form using the appropriate subset of the data. If users become aware that their data do not 351 

permit inferences across their desired domains midway through completing an iteration of the ROBITT 352 

form, there may be no need to continue with that iteration; instead, they might decide to redefine their 353 

domain as required and move onto the next iteration without answering every question. In these cases, 354 
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the user should clearly version control (i.e. tracking and recording changes over time) their documents 355 

and provide this history as supporting information to their studies. 356 

Discussion 357 

Sampling biases have long been recognised as a challenge for inference in ecology (e.g. Peters, 1991), 358 

however, no formal tools for assessing these have been produced to date. In this paper, we have 359 

designed and introduced ROBITT, a tool for assessing the potential “Risk-Of-Bias in studies of Temporal 360 

Trends in ecology”. The tool comprises a number of questions, each designed to clearly elicit the 361 

potential for bias in the study under assessment. In answering these questions, users will define their 362 

research question (i.e. inferential goal) and statistical target population across relevant domains, and 363 

then assess the degree to which their data are likely to be representative of those domains. We propose 364 

that researchers be strongly encouraged to include a ROBITT assessment as supporting information 365 

when publishing studies of temporal trends in biodiversity. We expect that this will support scientists in 366 

writing clear methods sections, strengthen evidence-based policy and practice, help resolve scientific 367 

controversies around biodiversity trends, assist editors, reviewers, and readers, and, ultimately, provide 368 

a more accurate picture of ecological reality. Accumulated over studies, ROBITT assessments will also 369 

highlight where data are required to address pressing questions concerning biodiversity change. 370 

We hope that the completion of a ROBITT form will become a standard requirement where researchers 371 

aim to estimate temporal trends in biodiversity from species occurrence data of any type. Many of the 372 

tools listed in Table 1 have set similar precedents in other disciplines. Whilst some reporting tools for 373 

various subdisciplines of ecology already exist, they do not exclusively focus on risk-of-bias. These 374 

include the ODD (Grimm et al., 2010, 2006) and TRACE (Schmolke et al., 2010) protocols for describing 375 

and documenting individual- and agent-based models (IBMs), and the ODMAP (Zurell et al., 2020) 376 

protocol for documenting the use of species distribution models. ODD and TRACE straddle the line 377 

between being strongly encouraged and mandatory: it would be very unusual for a new IBM, or even a 378 

study in which an IBM is used, to be published if it was not described and documented using these tools. 379 

ODMAP is a much newer tool, but we strongly suspect that this will become a similar requirement. If 380 

ROBITT can achieve similar uptake to reporting tools existing elsewhere in ecology and other disciplines, 381 

then we suggest that the field will benefit from a much clearer evidence base. In the medical sciences, 382 

some reporting tools have evolved from a general focus on methodological quality, to a more specific, 383 

and arguably more in-depth, focus on the impacts of potential bias to inference (Sterne et al., 2016). 384 

There is no doubt a place for both in ecology (indeed, some tools in medicine combine these aspects, 385 

e.g. Page et al., 2021a), however, we agree with Sterne et al. (2016), and others in the medical 386 

literature, that in-depth, qualitative, assessments of risk-of-bias across relevant domains are more useful 387 

and revealing than simply checking procedural items off a list. 388 

We suggest that researchers will get the greatest benefit from the ROBITT tool if they use it to structure 389 

their research. The questions contained in the tool are questions that researchers should be asking 390 

themselves regardless; indeed, ROBITT provides an opportunity to demonstrate the large amount of 391 

work that goes into studies of temporal trends in biodiversity, but which may not end up being 392 

described in a paper. If, on the other hand, a ROBITT form is completed just before, say, the submission 393 

of an article for publication, then it may reveal problems that could otherwise have been dealt with 394 

earlier. Completing the ROBITT form during the research process therefore has the potential to save 395 
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researchers' time, by providing a clear framework for structuring thought and making methodological 396 

decisions. 397 

Much of the risk-of-bias literature in other disciplines has focused on the effects of interventions (see 398 

Table 1). In this type of research, the questions asked are typically explicitly causal, because the desired 399 

inference concerns whether some action results in some outcome. This has also been the standard focus 400 

of evidence-based conservation, at least historically (e.g. Lortie et al., 2015). ROBITT, on the other hand, 401 

is primarily focused on descriptive inference of the type that is often used for ecological indicators (e.g. 402 

Gregory et al., 2005), or, more recently, by the Essential Biodiversity Variable literature (e.g. Jetz et al., 403 

2019). However, this distinction is not absolute, and there are many examples of ecological studies that 404 

use aggregated, or other, species occurrence data in attempts to reach causal conclusions. For example, 405 

Woodcock et al. (2016) split wild bee occurrence data for Britain into two spatial subsets based on the 406 

agricultural use of neonicotinoid insecticides, assessing temporal trends in occupancy for the taxa 407 

concerned in each subset. Whilst this type of assessment is correlative, there is often clearly a causal 408 

motivation (for example, the title of Woodcock et al. 2016 certainly implies causality). Whilst the ROBITT 409 

tool has not been designed to deal explicitly with these types of situations, we suggest that the tool will 410 

still be useful when researchers are attempting to make causal inferences from observational data. In 411 

this example (Woodcock et al., 2016), the domain representativeness of the data in the two spatial 412 

subsets could have been assessed separately in order to investigate the potential for confounding; 413 

additionally, the full dataset could also have been assessed in order to investigate its overall external 414 

validity. In the future however, we anticipate that other risk-of-bias tools will be developed within 415 

ecology to fully meet the needs of causal inference research (see Table 1 for potential models). 416 

During the workshops at which we refined the ROBITT tool, several key issues were raised by 417 

participants. One issue that was raised by multiple participants was that, whilst it might be easy to 418 

define one’s target population, in some cases it will not be easy to determine whether any given sample 419 

is representative of that population. For example, a researcher might define their population as wild 420 

bees in Chile in the 2010s. They might then download presence-only data from GBIF and attempt to 421 

assess its representativeness. Mapping the data might reveal that they are not randomly distributed 422 

across the country, but does this reflect the true distribution of wild bees in Chile, or does it reflect non-423 

random sampling? The user might also want to establish whether they have data for all known species 424 

of wild bee in Chile; how do they know whether this is the case? The answers to these questions will 425 

vary on a case-by-case basis. 426 

Whilst it will not always necessarily be easy to establish whether a sample is representative of a 427 

population or not, we propose some simple criteria. First, and most importantly, wherever possible 428 

subject-matter experts should be consulted; such experts should be able to tease apart sampling biases 429 

from true biological phenomena. For example, an expert might know, or suspect, that a species or taxon 430 

group occupies areas where it has not been recorded (e.g. perhaps historic data have not been digitised, 431 

or more current data are not being shared effectively); this is likely to be a strong indication of sampling 432 

bias. On the other hand, the expert might suggest that the distribution of presence-only data reflects 433 

their understanding of the distribution of the focal taxon; this could indicate that the data are unbiased 434 

despite being non-randomly distributed across the geographical domain of interest (we note that 435 

expert-drawn range maps might be useful in this respect). Second, it might be possible to supplement 436 

expert advice with information from other sources. For example, regional or national Floras, Faunas, and 437 
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other such taxonomic publications may list (undigitised) specimens, or provide information on regional 438 

occurrences at a coarse spatio-temporal level. These resources can also sometimes be accessed online 439 

(e.g. https://www.discoverlife.org/mp/20q?guide=Apoidea_species). Third, when using presence-only 440 

data for a reasonably large number of species in the same taxonomic group (e.g., bees, birds), it may be 441 

acceptable to assume that the combined distribution of records for all species approximates the 442 

distribution of sampling. Indeed, this is the premise of well-established bias mitigation strategies for 443 

fitting species distribution models (Dudík et al., 2005; Phillips et al., 2009). In this case, the combined 444 

data would ideally be randomly distributed across the geographical domain of interest. Fourth, 445 

presence/absence and abundance data are a direct reflection of the distribution of sampling (i.e. a 446 

species might not be detected but a record is still made of the sampling event), therefore such data 447 

provide reliable information on absences. If the basis of sampling is known (e.g. random, systematic-448 

random, stratified-random etc.), then data may be representative, at least within the bounds of the 449 

original survey; however, even in this situation, such a sample may still be unrepresentative of an 450 

analyst’s target population (perhaps only part of the geographical area is covered, or some 451 

environmental gradient was not targeted by the original scheme design). We can see very few scenarios, 452 

then, where it will not be possible to at least approximate the degree to which a dataset is 453 

representative of a given population using all the likely available knowledge that could be brought to 454 

bear on a question. Indeed, this is the ultimate rationale behind qualitative risk-of-bias tools based on 455 

expert assessments (Table 1). In the final instance, if analysts cannot reach an informed conclusion with 456 

regards to the likely representativeness of a sample, then broader inference is not likely to be 457 

meaningful; in this case simple descriptive (i.e. non-inferential) statistics could be used, and this 458 

limitation acknowledged, with paper titles, abstracts, conclusions etc. all clearly reflecting this situation. 459 

Four of the questions in ROBITT provide researchers with an opportunity to think about whether and 460 

how they can mitigate biases revealed elsewhere in the tool. It is not possible to review all possible 461 

measures that could be taken by researchers here; indeed, a full treatment of adjustments and models 462 

for dealing with bias would have to cover many topics within statistics and ecological data management. 463 

However, we note here three general approaches to bias mitigation. The first is to modify the data in 464 

some way (e.g. spatial, temporal or environmental thinning; Inman et al. 2021). The second is model the 465 

biases; typically, this will involve incorporation of variables thought to capture the biasing mechanism in 466 

some form of regression analysis (e.g. van Strien et al., 2019), although other approaches are possible 467 

(Ahmad Suhaimi et al., 2021). Finally, we suspect that in many cases ROBITT will reveal the need to 468 

restrict the desired extent of researcher’s inferences. This might include, for example, redefining the 469 

spatial extent of an analysis to reflect the fact that data are scarcely available in some portion of 470 

geographic space, or coarsening the temporal resolution to “smooth over” temporal biases in 471 

geographic or taxonomic coverage (Pescott et al., 2019). Of course, any modifications to the extents of 472 

the statistical population should be reflected in paper titles and abstracts, etc. We suspect that using 473 

some, or all three, of the general bias mitigation strategies outlined above, researchers will usually be 474 

able to proceed with their analyses, even if those analyses relate to more limited statistical populations 475 

than initially envisioned. 476 

Bias mitigation strategies may also require sensitivity analyses, particularly if the assessed potential for 477 

bias in a domain is uncertain: statistical fixes may make inference worse. For example, thinning datasets 478 

obviously removes information (this choice may therefore depend on model aims—if prediction rather 479 

than description is key, then exploiting areas with more information using partial pooling may be better 480 

https://www.discoverlife.org/mp/20q?guide=Apoidea_species
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than thinning; Gelman, 2006; weighting can increase estimate variance Gelman, 2007; and parameters 481 

in more complicated regression models purporting to deal with bias may be unidentifiable (Lele, 2010). 482 

The problem of inference from biased samples is, unfortunately, rather difficult, and quick fixes do not 483 

exist. Given this, we conclude with a recognition that the version of ROBITT presented in this paper can 484 

likely be improved in the future, and we welcome feedback from all who use it. We expect to publish 485 

periodic updates to the tool in order to increase its usefulness and clarity. 486 
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