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Abstract 32 

Accurate and up-to-date biodiversity forecasts enable robust planning for environmental 33 

management and conservation of landscapes under a wide range of uses. Future predictions of 34 

the species composition of ecological communities complement more frequently reported species 35 

richness estimates to better characterize the different dimensions of biodiversity. The models that 36 

make community composition forecasts are calibrated with data on species’ geographic patterns 37 

for the present, which may not be good proxies for future patterns. The future establishment of 38 

novel communities represents data on species interactions unaccounted for by these models. 39 

However, detecting them in a systematic way presents challenges due to the lack of monitoring 40 

data for landscapes with high environmental turnover, where such communities are likely to 41 

establish. Here, we propose lightweight monitoring over both ecological and anthropogenic 42 

disturbance gradients using passive sensors (i.e., those that operate continuously without much 43 

human input) to detect novel communities with the aim of updating models that make 44 

community composition forecasts. Monitoring over these two gradients should maximize 45 

detection of novel communities and improve understanding of relationships between community 46 

composition and environmental change. Further, barriers regarding cost and effort are reduced by 47 

using relatively few sensors requiring minimal upkeep. Ongoing updates to community 48 

composition forecasts based on novel community data and better understanding of the associated 49 

uncertainty should improve future decision-making for both resource management and 50 

conservation efforts. 51 
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Research question 57 

How can we improve forecasts of community composition under ongoing global change without 58 

prohibitive cost or effort? 59 

 60 

Value 61 

Where species will be in the future, which will be found together, and how they will respond to 62 

ongoing global change are foundational questions for ecosystem management and conservation. 63 

Accurate forecasts of biodiversity enable better planning for allocation of resource use, 64 

maintenance of ecosystem services, response to invasive species, and establishment of protected 65 

areas (Newbold et al. 2015). Particularly, forecasts made across environmental gradients can lead 66 

to more informed management for areas that are natural (e.g., set aside for conservation), 67 

unnatural (e.g., under resource management), or semi-natural (e.g., socio-ecological production 68 

landscapes such as satoyama). However, models that make biodiversity forecasts can estimate 69 

inaccurate future environmental responses for species and communities if current data on 70 

species’ geographic patterns are not reasonable proxies for future patterns (Blois et al. 2013a). 71 

Future colonizations of newly suitable areas by species, leading to the establishment of 72 

communities with new species combinations (i.e., novel communities), represent heretofore 73 

unknown information about community composition and species interactions. Novel 74 

communities, which emerge more frequently with rapid landscape change (Finsinger et al. 2017), 75 

can expand or alter existing species interactions (Williams & Jackson 2007) and lead to 76 

disruptions in ecosystem services (Hobbs et al. 2006). Ongoing detection and documentation of 77 

novel communities is thus of vital importance to update community composition predictions for 78 

biodiversity forecasts.  79 

 80 

Unfortunately, locating novel communities in a systematic way is a challenging exercise due in 81 

large part to the lack of monitoring data across landscapes with high environmental turnover, 82 

where such communities are likely to establish. Many efforts to catalog biodiversity focus on 83 

flagship species or single estimates of species richness. On the other hand, biodiversity 84 

monitoring systems provide high-frequency data streams and could also be harnessed to update 85 

community forecasts (Bush et al. 2017). However, the high economic and labor costs can be 86 

prohibitive, and existing systems often have bias in their spatial coverage and representation of 87 



environmental heterogeneity (Metzger et al. 2013). Moreover, both conservation efforts (e.g., 88 

establishing protected areas; Kusumoto et al. 2017) and monitoring systems tend to prioritize 89 

specific ecosystems rather than the gradients between them (Fig. 1). The resulting lack of 90 

regularly updated data on novel communities can be seen as a bottleneck for prediction accuracy 91 

of community composition forecasts. 92 

 93 

Relevant hypotheses 94 

Community composition forecasts are typically made using space-for-time substitutions, which 95 

employ modeled relationships between the current geographic patterns of species and 96 

communities with environmental variables to predict future patterns (Blois et al. 2013b). These 97 

predictions are most often made using either stacked or joint species distribution models 98 

(SDMs). The stacked SDM approach involves combining the predictions of SDMs fit with 99 

abiotic variables for individual species to estimate the community composition per spatial grid 100 

cell, then applying a biotic filter by removing unlikely candidate species from predicted 101 

communities based on knowledge of species interactions (SESAM; Guisan & Rahbek 2011). The 102 

joint SDM approach models multiple species’ distributions together in the same modeling 103 

framework and typically measures interaction strength based on co-occurrence correlations after 104 

accounting for shared environmental preferences (joint SDMs; Warton et al. 2015).  105 

 106 

But as changes to known species interaction networks will alter community predictions for both 107 

approaches, information on novel communities is crucial to improve the accuracy of long-term 108 

community forecasts. Although some data exists on current novel community establishment, 109 

ongoing global change will result in further shifts to present-day community structure. As 110 

species turnover tends to increase with environmental heterogeneity (Buckley and Jetz 2008), 111 

monitoring over gradients between different environments should be ideal for detecting existing 112 

novel communities and their future emergence.  113 

 114 

New research idea 115 

We propose monitoring over environmental gradients to detect novel communities and use this 116 

information to update community composition forecasts. Long-term monitoring over 117 

environmental gradients at a fine temporal resolution has a high likelihood of detecting novel 118 



community establishment (Fig. 1). Such detections represent information that can be used to 119 

identify mismatches between observations and predictions, leading to changes in community 120 

composition forecasts that rely on known relationships between species. It is important to note 121 

that this approach cannot determine the causes of novel community emergence, as other casual 122 

factors that correlate with environmental gradients may exist. 123 

 124 

Our proposal includes monitoring over two main gradients driving community change: 125 

ecological (e.g., forest to grassland, lowland to montane forest) and anthropogenic disturbance 126 

(e.g., forest to urban, primary to logged forest). Importantly, these two gradients have different 127 

temporal resolution: anthropogenic disturbance (e.g., land cover conversion) occurs on shorter 128 

timescales than natural ecosystem change. Monitoring over these gradients should both 129 

maximize detection of novel communities and improve understanding of community 130 

relationships with environmental change. Real-time predictions of change for heterogeneous 131 

landscapes using remote sensing data have exciting potential (e.g., Slingsby et al. 2020). There 132 

are also examples of in situ monitoring over natural gradients to increase coverage of conditions 133 

and detect species’ niche shifts (Carvalho et al. 2016). However, to our knowledge this is the 134 

first proposal to use in situ monitoring data from both ecological and anthropogenic disturbance 135 

gradients to make real-time updates to community forecasts. 136 

 137 

How to tackle the question through the proposed new idea 138 

Here, we advocate for the implementation of lightweight, in situ monitoring systems composed 139 

of transects over ecological and anthropogenic disturbance gradients in representative ecoregions 140 

around the world to collect structured data on novel communities. To reduce cost and effort, 141 

these transects can be composed of strategically placed passive sensors (i.e., those that operate 142 

continuously without much human input) including camera traps or audio recorders (although we 143 

discuss monitoring of terrestrial, relatively motile animals, the concept could be applied to other 144 

systems). Large camera trap grids monitored over short time periods provide a good balance of 145 

cost and accuracy for modeling species occupancy and richness, though accounting for 146 

seasonality presents challenges (Kays et al. 2020). In contrast, the lightweight system we propose 147 

serves only to collect detection data rather than produce datasets for modeling, utilizes different 148 

sensors to improve detection and expand the taxa sampled, and addresses seasonality by 149 



monitoring over annual cycles (Ross et al. 2018). Hence, fewer sensors in smaller grids or 150 

transects can be sufficient. Information on novel communities can directly improve community 151 

composition forecasts by updating species interaction information used to correct stacks of 152 

individual-species SDMs (Fig. 2), or by updating co-occurrence patterns used by joint SDMs. 153 

Additionally, these structured data can be combined with unstructured datasets (i.e., 154 

opportunistic presence data) using data integration approaches to improve the accuracy of large-155 

scale range models (Isaac et al. 2020). 156 

 157 

As uncertainty remains an issue for community composition forecasts made over space and time, 158 

it must be recognized that model predictions need validation and should be interpreted with 159 

caution. Although the modeling approaches discussed above can serve as diagnostic tools to help 160 

generate hypotheses about community assembly processes, both have existing methodological 161 

limitations (Zurell et al. 2020). Further, presence of species in new areas could reflect itinerant 162 

dispersal or short-lived sink populations rather than self-sustaining populations, and models of 163 

global climate and anthropogenic change used to make community forecasts have inherently 164 

high uncertainty. Thus, field validation (i.e., community inventories to evaluate model 165 

performance) and consideration of ancillary data (i.e., population studies to confirm novel 166 

community establishment) are advisable before any management or policy decisions are made. It 167 

is important to note that uncertainty in community forecasts can also be harnessed to estimate 168 

different scenarios of community dynamics across a landscape.  169 

 170 

The importance of updated forecasts of (novel) ecological communities and how best to apply 171 

them to improve future decision-making is crucial to demonstrate to managers and conservation 172 

practitioners. For example, we expect forecasts to show how ecological gradients themselves 173 

should be considered high priority areas for monitoring and conservation actions due to their 174 

ability to maintain processes that foster evolutionary potential and ecological resilience to change 175 

(Blair et al. 2013). 176 

 177 

Motivation 178 

The ideas we propose here originate from discussions between the authors about how to improve 179 

community composition forecasts using new biodiversity monitoring strategies, and we wanted 180 



to share these ideas with the field to spark new ways forward for predicting community change. 181 

We intend to use the ideas in this paper as a foundation for future grant proposals. 182 
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Figure 1. Comparison of different passive data collection approaches in terms of cost (financial 259 

and labor) and detecting novel communities, designated on a scale of “low” (yellow), “medium” 260 

(orange), and “high” (red). Opportunistic occurrence data is low-cost to acquire, but represents 261 

an amalgam of various sampling areas, times, and methodologies, making it difficult to detect 262 

the confirmed establishment of novel communities. Grid arrays (n × n) of passive sensors for a 263 

single ecosystem collect structured data that can more reliably detect community occupancy yet 264 

are high-cost. Alternatively, a linear array (n × 1) of passive sensors collects structured data 265 

along a gradient and samples areas with greater environmental heterogeneity, which should 266 

result in higher detectability of novel communities with a lower cost. 267 

 268 

Figure 2. A conceptual example of how novel community detection can change landscape-level 269 

community composition forecasts on short timescales (no significant climate change, but 270 

possible ecological or anthropogenic change). This example was created using range estimates of 271 

virtual species in R and real data on climatic variables and Japanese ecoregions (Supplemental 272 

Information 1, 2). Two linear arrays of passive sensors monitor surrounding areas (black circles) 273 

across the gradient between two ecoregions (west: dark gray, east: light gray) delineated by a 274 

white dotted line. Species A occurs across both the east and west ecoregions, while species C 275 

occurs only in the east due to abiotic constraints. In time 1 (Panel (a)), species B occurs only in 276 

the west due to biotic constraints. Thus, although the fundamental niche of species B includes 277 

areas in the east ecoregion, it is not included in the eastern community predictions. In time 2 278 

(Panel (b)), the biotic constraint is released and species B can colonize parts of the east 279 

ecoregion, resulting in the establishment of novel communities BC and ABC. This information is 280 

used to extend the range prediction of species B into the east ecoregion, resulting in an updated 281 

community composition forecast.  282 
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Supplemental Information 1 

 

We used virtual species with predefined climatic preferences to demonstrate how detection of 

a novel community can update landscape-level predictions of community composition (see 

Supplemental Information 2 for code). We focused on a transition area in central Honshu 

island, Japan (xmin = 137, xmax = 138, ymin = 35.3, ymax = 35.9) between the Taiheiyo 

evergreen forests (west) and Taiheiyo montane deciduous forests (east) WWF ecoregions 

(Olson et al. 2001) and defined virtual species’ niches based on long-term average 

temperature and precipitation values (bio1 and bio12) from the CHELSA dataset (Karger et 

al. 2017, Karger et al. 2018). We simulated 3 species’ niches (A, B, and C) with Gaussian 

responses to reflect different climatic preferences and used them to construct suitability 

rasters, which we then converted to presence-absence maps using a logistic function (Leroy 

et al. 2016). Species A has higher suitability in the west ecoregion, species C in the east 

ecoregion, and species B has high suitability throughout. In time step 1, to simulate species 

restricted to particular ecoregions, we masked the east ecoregion from the range of species B 

and the west ecoregion from that of species C. Thus, time step 1 does not have any grid-cell 

community predictions that include all species. In time step 2, we allowed the range of 

species B to extend to the east, demonstrating an update to a community forecast after 

discoveries of novel communities BC and ABC (see Fig. 2). All analyses were performed in 

R (R Core Team 2021); vector data operations were conducted with package sf (Pebesma 

2018), gridded data operations with the package raster (Hijmans 2021), and plotting with the 

package rasterVis (Perpiñán Lamigueiro & Hijmans 2021). 
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#	Supplemental	Information	2	for	Kass	et	al.	Ecological	Research	Idea
Paper	2021
#	This	code	reproduces	the	analysis	for	Figure	2	described	in
Supplemental	Information	1

#	load	packages
#	NOTE:	make	sure	to	update	all	packages
#	rasterVis	may	need	to	be	updated	with
remotes::install_github('oscarperpinan/rasterVis')
#	to	plot	the	categorical	raster	legends	correctly
library(virtualspecies)
library(sf)
library(dismo)
library(RColorBrewer)
library(rasterVis)
library(latticeExtra)
library(dplyr)

#	define	local	directory	where	data	lives	and	where	files	should	be	saved
#	NOTE:	data	used	in	this	analysis	are	publicly	available	from:
#	CHELSA	bioclimatic	variables	(bio1	and	bio12;	file	names	may	differ):	
#	https://chelsa-climate.org/bioclim/
#	WWF:	https://www.worldwildlife.org/publications/terrestrial-ecoregions-
of-the-world
d	<-	""

#	load	CHELSA	bioclimatic	data	and	rename	variables
f.ras	<-	file.path(d,	"CHELSA_bioclim")
envs	<-	stack(file.path(f.ras,	"CHELSA_bio10_01.tif"),
																file.path(f.ras,	"CHELSA_bio10_12.tif"))
names(envs)	<-	c("bio1",	"bio12")
#	define	analysis	extent
e	<-	extent(c(xmin=137,xmax=138,ymin=35.3,ymax=35.9))
#	crop	CHELSA	data	to	extent
envs	<-	crop(envs,	e)

#	load	WWF	ecoregions	polygon	shapefile	(free	to	download)
ecoreg	<-	read_sf(file.path(d,	"wwf_ecoregions/wwf_terr_ecos.shp"))
#	filter	out	the	ecoregions	of	interest
ecoreg	<-	ecoreg	%>%	filter(grepl(c("Nihonkai|Taiheiyo|Honshu"),
ECO_NAME))

#	make	a	mask	of	the	climate	rasters	for	each	ecoregion
reg1	<-	mask(envs,	ecoreg	%>%	
															filter(ECO_NAME	==	"Taiheiyo	evergreen	forests"))
reg2	<-	mask(envs,	ecoreg	%>%	
															filter(ECO_NAME	==	"Taiheiyo	montane	deciduous	forests"))

#	define	climatic	responses	for	virtual	species,	chosen	to	make	species	A
#	have	higher	suitability	in	the	Taiheiyo	evergreen	forests,	species	C
#	to	have	higher	suitability	in	the	Taiheiyo	montane	deciduous	forests,	
#	and	species	B	to	have	areas	of	high	suitability	throughout
spA.resp	<-	formatFunctions(bio1	=	c(fun	=	'dnorm',	mean	=	140,	sd	=	60),
																												bio12	=	c(fun	=	'dnorm',	mean	=	1500,	sd	=
400))
spB.resp	<-	formatFunctions(bio1	=	c(fun	=	'dnorm',	mean	=	120,	sd	=	40),
																												bio12	=	c(fun	=	'dnorm',	mean	=	1300,	sd	=
200))



spC.resp	<-	formatFunctions(bio1	=	c(fun	=	'dnorm',	mean	=	100,	sd	=	40),
																												bio12	=	c(fun	=	'dnorm',	mean	=	1200,	sd	=
600))

#	generate	suitability	rasters	for	virtual	species
spA	<-	generateSpFromFun(raster.stack	=	envs[[c("bio1",	"bio12")]],	
																									parameters	=	spA.resp,	plot	=	TRUE)
plot(st_geometry(ecoreg),	add=TRUE)
spB	<-	generateSpFromFun(raster.stack	=	envs[[c("bio1",	"bio12")]],	
																									parameters	=	spB.resp,	plot	=	TRUE)
plot(st_geometry(ecoreg),	add=TRUE)
spC	<-	generateSpFromFun(raster.stack	=	envs[[c("bio1",	"bio12")]],	
																									parameters	=	spC.resp,	plot	=	TRUE)
plot(st_geometry(ecoreg),	add=TRUE)

#	use	logistic	function	to	convert	suitability	rasters	to
#	binary	presence-absence	rasters	(i.e.,	range	estimates)
#	NOTE:	seeds	are	set	to	ensure	reproducibility	of	original	analysis
set.seed(462)
spA.pa	<-	convertToPA(spA,	beta	=	0.75)
set.seed(462)
spB.pa	<-	convertToPA(spB,	beta	=	0.75)
set.seed(462)
spC.pa	<-	convertToPA(spC,	beta	=	0.75)

#	make	a	mask	of	the	PA	map	for	species	B	for	Taiheiyo	evergreen	forests
#	and	a	mask	for	species	C	for	Taiheiyo	montane	deciduous	forests
#	NOTE:	this	limits	their	distributions	to	these	ecoregions
spB.pa.reg1	<-	mask(spB.pa$pa.raster,	reg1$bio1)
spB.pa.reg1[is.na(spB.pa.reg1)]	<-	0
spC.pa.reg2	<-	mask(spC.pa$pa.raster,	reg2$bio1)
spC.pa.reg2[is.na(spC.pa.reg2)]	<-	0

#	overlay	the	PA	maps	for	all	species	to	get	community	composition	for
two	times,
#	where	time	1	has	species	B	restricted	to	region	1	and	species	C	to
region	2,	and
#	time	2	has	species	B	allowed	to	extend	to	both	regions
#	NOTE:	this	is	done	by	multiplying	species	B	and	C	by	different	powers
of	10
#	to	create	a	community	"code"	
#	NOTE:	the	levels	set	are	different	because	time	2	has	more	different
communities
#	than	time	1
envs.cc.t1	<-	overlay(spA.pa$pa.raster,	spB.pa.reg1,	spC.pa.reg2,	
																						fun	=	function(x,y,z)	x	+	10*y	+	100*z)	
envs.cc.t1[envs.cc.t1==0]	<-	NA
envs.cc.t1	<-	as.factor(envs.cc.t1)
levels(envs.cc.t1)[[1]]$community	<-	c("A","B","AB","C","AC")
envs.cc.t2	<-	overlay(spA.pa$pa.raster,	spB.pa$pa.raster,	spC.pa.reg2,	
																						fun	=	function(x,y,z)	x	+	10*y	+	100*z)
envs.cc.t2[envs.cc.t2==0]	<-	NA
envs.cc.t2	<-	as.factor(envs.cc.t2)
levels(envs.cc.t2)[[1]]$community	<-	c("A","B","AB","C","AC","BC","ABC")

#	define	colors	for	plotting	different	communities
cols	<-	c(brewer.pal(9,	"Set1")[1:6],	"#4d4d4d")
names(cols)	<-	c("A","B","BC","AB","AC","C","ABC")



theme1	<-	rasterTheme(cols[levels(envs.cc.t1)[[1]][,2]])
theme2	<-	rasterTheme(cols[levels(envs.cc.t2)[[1]][,2]])

#	define	points	to	depict	passive	sensors	for	biodiversity	monitoring	
pts	<-	matrix(c(rep(seq(137.1,	137.9,	0.2),	2),rep(35.7,	5),rep(35.5,
5)),	ncol=2)	%>%	SpatialPoints()

#	plot	maps	for	time	1	and	time	2
#	NOTE:	colors	and	lines	in	Figure	2	were	further	edited	in	Adobe
Illustrator
pdf(file.path(d,	"fig2.pdf"),	onefile	=	TRUE)
print(levelplot(envs.cc.t1,	par.settings	=	theme1,	main	=	"Time	1")	+	
								layer(sp.polygons(as(ecoreg,	"Spatial"),	lwd	=	3,	lty	=	3))	+	
								layer(sp.points(pts,	col="black",	lwd=5,	pch=21,	cex=5)))
print(levelplot(envs.cc.t2,	par.settings	=	theme2,	main	=	"Time	2")	+	
								layer(sp.polygons(as(ecoreg,	"Spatial"),	lwd	=	3,	lty	=	3))	+	
								layer(sp.points(pts,	col="black",	lwd=5,	pch=21,	cex=5)))
dev.off()
																																																			


