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Abstract 13 

Bacterial organisms like surfaces. Water and soil contain a multiplicity of particulated 14 

material where bacterial populations and communities might attach. Microbiotic particles 15 

refers to any type of small particles (less than 2 mm) where bacteria (and other microbes) 16 

might attach, resulting in medium- long-term colonization. In this work, the interactions 17 

of bacterial organisms with microbiotic particles of the soil and water are reviewed. These 18 

particles include bacteria-bacteria aggregates, and aggregates with particles of fungi 19 

(particularly in the rhizosphere), protozoa, phytoplankton, zooplankton, biodetritus 20 

resulting from animal and vegetal decomposition, humus, mineral particles (clay, 21 

carbonates, silicates), and anthropogenic particles (including wastewater particles or 22 
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microplastics). At they turn, these particles might interact and coalesce (as in the marine 23 

snow). Natural phenomena (from river flows to tides, tsunamis, currents, or heavy winds) 24 

and anthropogenic activity (such as agriculture, waste-water management, mining, soil-25 

mass movement) favors interaction and  merging between all these soil and water 26 

particles, and consequently coalescence of their bacterial-associated populations and 27 

communities, resulting in an enhancement of mixed-recombinant communities capable 28 

of genetic exchange, including antimicrobial resistance genes, particularly in 29 

antimicrobial-polluted environments. Particles also favor compartmentalization of 30 

bacterial populations favoring diversification and acquisition of mutational resistance by 31 

random drift. In general, microbial evolution is accelerated by the aggregation of 32 

microbiotic particles. We propose that the world spread of antimicrobial resistance might 33 

relate with the environmental dynamics of microbiotic particles, and discuss possible 34 

methods to reduce this problem influencing One Health and Planetary Health. 35 
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Introduction 41 

Bacteria like surfaces. Surfaces create compartments, where organic molecules, 42 

microorganisms, and pollutants can concentrate, fragmenting the apparent homogeneity 43 

of water bodies, and making it difficult or impossible to accurately prediction of 44 

environmental health risks (Burkart, 2000). On the other hand, these concentrating 45 
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patches are a prerequisite for the formation of chemical gradients in the homogeneous 46 

(non-compartmentalized) space, which to a certain extent (until the limit of diffusion) are 47 

converted into their satellite “domains”. Compartmentalization contributes to the 48 

subdivision of bacterial populations that can colonize various patches (metapopulations), 49 

and (depending on the time of occupancy and the local selection) give rise to phenotypical 50 

or genotypical differentiation. The random bacterial occupation of micro-compartments 51 

might on the other hand favor drift evolution, providing opportunities to minorities that 52 

could have low possibilities of fixation in fully homogeneous environments.  53 

Bacterial genetic diversification is believed to result from spontaneous tendency for 54 

differentiation (and therefore populational complexification) arising from the sequential 55 

accumulation of random events over time. This theory is postulated by the “zero-force 56 

evolutionary law” stating that in any evolutionary system in which there is variation and 57 

heredity there is, in the absence of constraints, a random tendency for diversity and 58 

complexity to increase (McShea and Brandon, 2010). In fact, this tendency is a 59 

consequence of the second law of thermodynamics, in this case, increasing randomness 60 

in the molecular evolution of bacterial sequences over time (Wang et al., 2016).  61 

As suggested previously, however, not only time, but space constitutes the framework for 62 

evolution. In fact, time is required to gain spaces, which are needed to gain time. The 63 

reasons for the biological “hunger for time” (reproduction, survival) are a not-irrelevant 64 

philosophical question (Arenhart 2019; Baquero, 2005). However, differentiated spaces, 65 

compartments, are as critical as time in evolutionary dynamics. Organisms expanding in 66 

these spaces foster their evolutionary capabilities. This review proposes that the world 67 

spread of antimicrobial resistance can relate with the environmental dynamics of 68 

microbiotic particles, forming compartmentalized spaces where bacterial cells of different 69 

origin, frequently of different species, co-aggregate  and interact. Such coalescence 70 



 

4 
 

spaces constitute a wealth of “evolutionary reactors” for the evolution of antimicrobial 71 

resistance (Baquero et al., 2008).  72 

Surfaces, particles, and compartmentalized biospaces 73 

In addition to liking to live on surfaces, all living organisms like surfaces and themselves 74 

provide surfaces. The extension of the external surface of an average bacterial cell is about 75 

5-10 times the surface where the cell is deposited. In water systems, a wealth of particles 76 

providing attachment surfaces for microorganisms are available. These surfaces serve as 77 

condenser nodes for multiple bacterial species, thereby creating biospaces, Which are 78 

essentially a type of nest with an interwoven scaffolding structure determined by physico-79 

chemical attractants fostering bacterial adhesion to surfaces. These attachment surfaces 80 

are of biotic and abiotic nature, and the result of attachment is the formation of a biotic 81 

particle. Adhesion surfaces for microorganisms in water and soil environments include 82 

surfaces of prokaryotic or eukaryotic organisms (Simon et al., 2002). Frequently, 83 

bacterial attachment to surfaces is followed by the construction of biofilms, which result 84 

from the release of extracellular polymers, such as polysaccharides. In this paper, we will 85 

essentially focus on microbiotic particles, ranging in average size from 5 µm to 5 mm in 86 

diameter and composed by, or carrying, bacterial organisms.  87 

Bacteria-bacteria microbiotic particles 88 

Bacterial surfaces promote inter-bacterial homogenic or heterogenic adhesion, involving 89 

the same or different species. Homogenic adhesion occurs within the same clonal 90 

population, forming spontaneous aggregates in the growing process. In Gram-positive 91 

organisms, many genera form spontaneous aggregates in liquid media (classical examples 92 

include Staphylococcus, Streptococcus, Micrococcus, Enterococcus, Sarcina, Bacillus, 93 

Listeria, Corynebacterium, Mycobacterium, and Streptomyces).  Aggregates also occurs 94 
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in Gram-negative bacteria, typically mediated by trimeric autotransporter adhesins in the 95 

outer membrane (Bassler et al., 2015; Adlakha et al., 2019).  Mechanisms of auto-96 

aggregation (same species) has been recently reviewed (Nwoko and Okeke, 2021). In 97 

water environments, bacterial “flocs” might be integrated by one or more species, have 98 

being designed “suspended bacterial aggregates” (Cai, 2020), and constitute an 99 

intermediary step in adhesion to other biotic or abiotic surfaces, forming colonies or 100 

biofilms (Vlamakis et al., 2013). Homogeneous biofilms also provide “surfaces” able to 101 

adhere new bacterial cells, giving rise to multi-microbial compartmentalized consortia: 102 

complex biofilms (Katharios-Lanwermeyer et al., 2014). Such bacterial complex 103 

coaggregates could evolve to become a “unit of selection” (Okasha, 2006; Baquero et al., 104 

2021). that is, to a permanent assembly of organisms linked by cooperative or mutualistic 105 

interactions, leading to synergistic integrated functions in the ecosystems, as will be 106 

discussed later. 107 

Microalgae-bacteria microbiotic particles 108 

Microalgae eukaryotic cells, a main part of phytoplankton, are surrounded by a chemical 109 

“phycosphere” (Bell and Mitchell,1972), which can be colonized by microorganisms, 110 

ensuring a spatial long-term coexistence with bacterial groups, based on a complex 111 

interactive network of metabolites and signaling molecules(Seymour et al., 2017; Cirri 112 

and Pohnert, 2019) Most bacteria associated with microalgae, typically diatoms, are 113 

Proteobacteria and Bacteroidetes, which are also frequently linked to green algae. (Amin 114 

et al., 2012; Ramanan et al., 2016). During cyanobacterial blooms both Firmicutes and 115 

Proteobacteria increase in frequency (Zhang Weizhen et al., 2019).  116 

Microfungi-bacteria microbiotic particles 117 
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It has classically been considered that fungi are infrequently found in water, although can 118 

be been detected in deep see sediments (Damare and Raghukumar, 2008). In most cases, 119 

these fungal species also occur in soil and freshwater environments, suggesting a 120 

terrestrial origin (Rédou et al., 2015). However, more recent studies indicate a high fungal 121 

biomass in the oceans, including the artics, approaching the bacterial biomass (Hassett et 122 

al., 2019).Many of these microfungi (such as Chytridiomycota) are also found in soil and 123 

freshwater. In fact, microscopic fungi are frequenty present in soil, particularly associated 124 

with the plant rhizosphere, where they closely and permanently interact with specific 125 

bacterial communities. Incidentally, these might play a role in triggering the germination 126 

of fungal spores (Scherlach et al., 2013). Such aggregates modulate the mycorrhizal 127 

symbiosis, a type of positive interaction reflected in the concept of ‘mycorrhiza helper 128 

bacteria” (Frey-Klett et al., 2007). Kin recognition and cooperation among bacteria occurs 129 

in spatially structured Rhizobium populations (Zee and Bever, 2014). During periodic or 130 

accidental merging of soil and water bodies, such functional fungal-bacterial particles can 131 

enter the water environment. Out of mycorrhizal space, fungal-bacteria interactions in the 132 

soil are frequently antagonistic (Bahram et al., 2018), probably preventing permanent 133 

particulated coaggregates. Macrofungi as Ascomycota and Basidiomycota, which seem 134 

to be important ecological players in all aquatic ecosystems (Grossart et al., 2019), 135 

contribute to the formation of bacterial-colonizable particles as those resulting from leaf 136 

litter decomposition (Zhao et al., 2021).  137 

Protozoa-bacterial microbiotic particles 138 

Amoeba are frequent protists in soil and water, usually grazing bacteria, but eventually 139 

preserving them, using a kind of  “primitive agriculture” behavior (Brock et al., 2011). 140 

Social amoeba, such as Dictyostelium discoideum can form multicellular aggregates, and 141 

these particles incorporate living bacteria; in fact bacterial organisms can also kill and 142 
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grow at the expenses of dead amoebas (Pukatzki et al., 2002; Bahram et al., 2018; Nguyen et 143 

al., 2020). Slime molds (myxomycetes) are composed of aggregates of amoebal organisms 144 

fused in a large cell (plasmodia) by the centripetal attraction of a signaling agent, acrasin. 145 

Many types of bacteria, mostly belonging to Proteobacteria, have been found to be 146 

associated with these plasmodia (Shu et al., 2018).  147 

Zooplankton-bacterial microbiotic particles 148 

Similarly, zooplankton constitute a large compartmentalized biospace harboring 149 

permanent bacterial communities; for example colonizing the exoskeleton and/ or gut of 150 

crustacean plankton (de Corte et al., 2018). The microbiota associated with Daphnia 151 

consists of β-Proteobacteria, γ-Proteobacteria, and Flavobacteria (Cooper and Cressler, 152 

2020). However, individual zooplankton species can vary in their ability to host bacterial 153 

communities (Wang et al., 2021).  154 

Biodetritus-bacterial microbiotic particles 155 

In soil, bacterial aggregates can be established on biodetritus, which is physically 156 

unbound (not bound to soil mineral particles), particulated dead organic matter, including 157 

partially decomposed vegetables and animals (such as nematodes, entracheids, or pot 158 

worms) (Carter and Gregorich, 2007). Biodetritus is certainly not a part of the biota; 159 

however, its slow degradation and catabolism creates a dynamic structure somewhat 160 

analogous to the trophic-dynamic aspect of the biota, thereway influencing attached 161 

bacteria  (Rich and Wetzel, 1978). In seawater, diatom detritus is heavily colonized by γ-162 

Proteobacteria, α-Proteobacteria and Flavobacteria (Abell and Bowman, 2005). 163 

Phytoplankton bio-detritus creates a dynamic “detritosphere” with microbial processes of 164 

aggregation and degradation involving bacterial and protozoal successions (Biddanda and 165 

Pomeroy, 1988). Detritus originating from seaweeds and carrying attached bacteria, 166 
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including Proteobacteria, Bacteroidetes, Firmicutes, Cyanobacteria, Planctomycetes, 167 

Actinobacteria and Verrucomicrobia might also play a role in the spread of microbiotic 168 

particles (Selvarajan et al., 2019). Certainly water-farming (as for salmon) create 169 

conditions favoring the production of microbiotic particles near the farming facilities 170 

(Poirier et al., 2020) 171 

Humus-bacterial microbiotic particles 172 

Humus is the organic dark material in the ground resulting from the decomposition of 173 

plant and animal matter. The humic material can be of colloidal size (humic and fulvic 174 

acids) or larger and insoluble (humins); this material degrades, eventually resulting in 175 

soluble compounds. Studies with atomic force microscopy characterized the interactions 176 

between natural organic material and bacteria; adhesion was proportional to the molecular 177 

weight of the material, the size of the particle, and its charge density. The charge of the 178 

bacterial surface also influences adhesion(Abu-Lail et al., 2007). Humus form flocculated 179 

complexes with clay particles (see below).  180 

Mineral-bacterial microbiotic particles  181 

Organo-mineral assemblages are micro-aggregates involving bacteria, which is facilitated 182 

by bacterial extracellular polymeric substances. Pre-existing soil aggregate bacterial 183 

communities are incorporated into water environments under circumstances of soil-water 184 

merging. However, most aggregate bacterial communities and therefore most 185 

microbiome interactions are established in small (less than 2 mm) soil mineral aggregates 186 

of heterogeneous origins (such as clay minerals, that is, layered aluminum silicates, or 187 

carbonates), which are extremely resilient to physical-mechanical disruptions and water 188 

effects and form “microbial villages” (Wilpiszeski et al., 2019). Most importantly, 189 

microbes contribute to mineral (such as clay, or carbonates) authigenesis, which is the 190 
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process of in situ formation of mineral particles in sediments. The microbial exploitation 191 

of suspended clay particles in liquid environments promotes their micro-aggregation 192 

(Watts et al., 2005). Microbial biofilms constitute a reactive exopolysaccharide matrix 193 

that binds soluble chemical components and form solid inorganic particles (Konhauser 194 

and Urrutia, 1999; Wei et al., 2021). Structurally, the clay leaflets might be arranged in 195 

the form of 'houses of cards' and in fact aggregates look like 'hutches' housing the bacterial 196 

cells (Lünsdorf et al., 2000). Increased electrostatic interactions between clay particles, 197 

and the mineral-attached biofilm is critical for the flocculation process. forming bridges 198 

between clay particles, and leading to flocs formation (Mueller, 2015).  199 

Anthropogenic litter and bacterial microbiotic particles  200 

A characteristic example of anthropogenic litter are microplastic particles, which are 201 

millimeter-sized plastics, that can be currently detected in aquatic ecosystems worldwide. 202 

Many microbial organisms adhere to microplastics, forming biofilms (the microbial 203 

plastisphere) (Reisser et al., 2014; Galafassi et al., 2021). In Chinese river water, bacteria 204 

such as Flavobacterium, Pseudomonas (γ-Proteobacteria), Rhodoferax (β-Proteobacteria) 205 

Janthinobacterium (β-Proteobacteria) are enriched on microplastics when compared with 206 

water and sediment (Hu et al., 2021). The growing ensemble of microplastics in water 207 

probably constitute a novel ecological niche, exploited by bacterial biofilms hosting 208 

specific communities that differ from the surrounding planktonic ones (Sathicq et al., 209 

2021).  210 

Interactions among microbiotic particles in soil-water environments: 211 

bacterial coalescence and dispersal 212 

All the previously considered microbiotic particles of various origins, can interact, 213 

aggregate, and eventually exchange microbial populations (Figure 1). The frequency of 214 
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interactions is dependent both on the particle’s local density and on the dynamics of the 215 

local environment (Rahlff et al., 2021). The natural or anthropogenic areas where soil and 216 

water coalesce (such as coastal waters, particularly those with significant tides, rivers and 217 

estuaries, the sea bottom, lakes and river beds, agricultural irrigation channels, mining 218 

and tunnelling water and mud flows, snow break streams, and waterfalls) constitute the 219 

main source of soil particles where bacteria find occasion for the establishment of 220 

compartmentalized biospaces (Figure 2). Such soil-water coalescence can be stimulated 221 

by occasional events, such as sea or river-originated floods, tsunamis  and mud-tsunamis, 222 

accelerated deep sea currents, or heavy winds from terrestrial origin, including dust 223 

storms seeding from soil particles the sea surface movements (Behzad et al., 2018; 224 

Choufany et al., 2021; Pérez-Valdespino et al., 2021; Suhadolnik et al., 2021).  225 

 226 

 227 

Figure 1. Formation of microbiotic particles. Inter-bacterial clumps are formed by 228 

aggregation of cells of the same population (homogeneous clumps) or coaggregation of 229 

cells from different species (heterogeneous clumps). Particles can be formed from 230 
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bacteria (or bacterial clumps) interaction in water and soil with microalgae, microfungi, 231 

protozoa, zooplankton, biodetritus, humus or mineral particles. Complex coaggregates 232 

result from merging of these particles.  Balls of different colors represent different 233 

bacteria species or populations. The black ball is an antibiotic resistant bacterial 234 

population that might convert by genetic transfer other populations into antibiotic 235 

resistant ones (becoming black), which at they turn are able to make resistant their 236 

neighbors, eventually including pathogenic microorganisms.   On the right side, alginate 237 

beads technology might be useful to trap,  isolate, and study microbiotic particles of 238 

particular sizes. 239 

 240 

 241 

Figure 2. The origin and flow of microbiotic particles. Particles composed by, or 242 

aggregating bacterial populations, are generated in water and soil biological 243 

microparticles (including phytoplankton, zooplankton, soil particles, biodetritus) which 244 

coalesce in soil-water interfaces. Soil-water interactions among particles are favored by 245 

natural events (as floods, tsunamis, volcanic activity, raining, snow melting, sea, river 246 
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and groundwater dragging material, heavy winds)  and those resulting from 247 

anthropogenic activities (human water waste, agriculture, farming, mining, tunnelling, 248 

mass movements in roads or urbanization activities). The coalescence of microbiotic 249 

particles from different origins favors heterogeneous bacterial coaggregation, resulting in 250 

possible genetic transfer of antibiotic resistance genes.  251 

 252 

 253 

Natural landslides are a significant source of particles, including mobile intrusions  254 

produced by acute snow melt, intense rainfall, earthquakes, volcanic eruption, storm 255 

waves, rapid erosion from streams, and submarine landslides (Walker and Shiels, 2012). 256 

Microbial biodiversity in water is certainly increased by inoculation of microbes from 257 

soils (Crump ISME) In all cases, soil particles can mix with water during extended periods 258 

of time (mud formation), leading to increased microbial activity, reproduction and 259 

community mixing (Parvathi et al., 2019). Eruptions of muds and slurries (mud 260 

volcanoes) deeply influences bacterial and micro-eukaryotic communities (Coelho et al., 261 

2016). Volcanic ash falling intp the sea supports  a diverse bacterial community (Witt et 262 

al., 2017)   263 

The role of anthropogenic soil-mass movements in the dispersal of bacterial-colonizable 264 

particles should not be underestimated, including agricultural and mining activities, 265 

urbanization, and parks or roads construction (Jaboyedoff et al., 2016). How climate 266 

change influences all these processes is an important issue. Warmer and drier periods 267 

retain soil microbioparticles that can then be dispersed by more frequent air and water 268 

runoff events (Fröhlich-Nowoisky et al., 2016). Air-carried particles are mostly from soil 269 

origin, and many contain microorganisms, forming the so-called “aerobiome” (de Groot 270 
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et al., 2021). Microbes of such particles have a strong interaction with those of water 271 

bacterioneuston, bacteria located in the thin layer between water and air (Cunliffe et al., 272 

2009; Hervas and Casamayor, 2009). particularly in foam interphases, favored by surface-273 

active substances. Marine foam might contain a high abundance of γ-Proteobacteria 274 

including bacterioneuston organisms as Pseudoalteromonas and Vibrio (Rahlff et al., 275 

2021).   276 

Indeed, most particles of sufficient size (“large villages”) have a stratified bacterial 277 

community structure, with deep, very stable residents, and more mobile (exchangeable) 278 

populations on the surface (Bailey et al., 2013). Such mobility is certainly reduced under 279 

dry conditions, and significant variations in moisture might periodically or intermittently 280 

occur. Not much is known about the consequences of the drying process, but in principle 281 

Gram positives should retain viability whereas Gram negatives, such as Enterobacterales, 282 

with a lower salt tolerance (Brown, 1976), will be submitted to water stress and can be 283 

reduced in number. However, some bacterial Gram-negative organisms have adapted to 284 

periodic water stress by excreting glycoproteins and polysaccharides. This adaptation is 285 

probably the main function of alginate, which can retain moisture and assuring viability 286 

of under dry conditions (Gacesa, 1998; Marshall et al., 2019). That results in the 287 

formation of a biofilm under which other coexisting bacteria might be spared from 288 

extinction. Alginate also provides osmotolerance, probably by intracellular accumulation 289 

(Sá et al., 2019). In addition, exopolysaccharides coating soil particles, and dead bacterial 290 

remains, contribute to the formation of aggregates where next incoming bacterial 291 

communities might attach (Kindler et al., 2006). Particular attention should be paid to 292 

predicting “microbial hotspots” in soil, where generally plant-associated microbiotic 293 

particles, can bloom in short periods of time (Kuzyakov and Blagodatskaya, 2015). These 294 

ephemeral hotspots also occurs in foamy particles in the sea surface (Rahlff et al., 2021). 295 
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It would be useful to construct a “grammar of interactions” among microbiotic particles, 296 

which should consider not only the identification of classic taxa, but the local ecotypes 297 

that help stabilize the diversification of the species to preserve the same functions despite 298 

environmental changes (García-García et al., 2019). Indeed that is influenced by the of 299 

particle’s connectivity, depending on dynamics of the different ecological sub-300 

compartments; as an example, evolution (diversification) of Shewanella differs in the 301 

upper ocean to the abyssal zones (Tang et al., 2021). 302 

Microbiotic particles dispersal by marine snow 303 

In water systems, the cumulative process of the aggregation of microbiotic particles is 304 

depicted by macroscopic aggregates (from 0.5 mm to a few centimeters in diameter), also 305 

known as marine snow (or lake snow), which sink in water at variable speeds (Alldredge 306 

and Silver, 1988). Microbiotic particles in marine snow frequently include fungi 307 

(Bochdansky et al., 2017). In fact, marine snow is a complex microhabitat containing a 308 

diversity of bacterial lineages such Planctomycetes, Firmicutes, Bacteroides, and the α-, 309 

γ- δ-, and ε- classes of the phylum Proteobacteria (Rath et al., 1998). Such biological 310 

richness influences processes of microbial photosynthesis, decomposition, and nutrient 311 

regeneration, constituting a real snow microcosm (Azam and Long, 2001). Typically, 312 

microorganisms contained in marine snow are subjected to successional changes, derived 313 

from the earlier processes, eventually leading to disaggregation, and sinking kinetics 314 

(Alldredge et al., 1990).  Bacterial successions can also be the result of specific 315 

amensalistic interactions mediated by antimicrobial substances (Grossart et al., 2003), as 316 

occurs in other natural microbiotas (Baquero et al., 2019). In addition to vertical migration 317 

of marine snow (Mestre et al., 2018; Sanz-Sáez et al., 2020), and suspended sediment 318 

aggregates, horizontal migration associated with currents and water flows (Simon et al., 319 

2002),  also occur, contributing to the dispersal of the composing microbiotic particles 320 
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and the new possible associations with other microbial communities (Droppo, 2001). The 321 

final result is the dissemination of microorganisms to very distant environments (Hooper 322 

et al., 2008) (Figures 1 and 2). 323 

Processes of micro and macro-aggregation determine the bacterial content of water 324 

sediments, and particularly of the benthic zone, where soil and water coalesce, a field that 325 

requires further research (Simon et al., 2002; Wotton, 2007). In fact, particle-attached 326 

bacterial communities in the deep ocean have a particular lifestyle as compared with free-327 

living organisms (Acinas et al., 2021).  328 

Evolution in the compartmentalized water biospaces 329 

Several models have been established to study evolution in compartmentalized biospaces. 330 

A number of particulated biotic interactions tends to be fixed by evolution, such as algae-331 

bacteria interactions (Ramanan et al., 2016). Experiments with artificial microcapsules, 332 

for made with a “membrane” of alginate-chitosan (Figure 1) have shown that 333 

compartmentalization in particles can contribute to the preservation of diversity (Zadorin 334 

et al., 2019), evading the dominance of a single organism or genotype resulting from 335 

periodic selection that occur in homogeneous environments (Atwood et al., 1951). 336 

Preservation of diversity in particles fosters genetic drift, and therefore maintains 337 

potentially adaptive changes that are lost in mixed planktonic environments (Baquero et 338 

al., 2021). In addition, particulation of communities ensures that different genotypes can 339 

be subjected to environmental stress, contributing to the overall evolvability of natural 340 

populations (Baquero, 2009; Rocca et al., 2019).  341 

Bacterial populations tend to form closed compartments, such as colonies or biofilms 342 

attached to biotic or abiotic surfaces. There are probably “surface recognition” signals 343 

leading to these multicellular structures (Troselj et al., 2018; Kimkes and Heinemann, 344 
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2020). Such dense-population organizations have an internal structure with layers of cells 345 

in various physiological stages, “compartments within compartments” (You et al., 2019), 346 

and can release organisms outside the compartment, such it occurs when planktonic cells 347 

are released from sessile populations in biofilms (Bester et al., 2009). It has been proposed 348 

that evolution in biofilms generate greater genetic diversity than mixed planctonic 349 

environments, and this enhanced diversity   leads 350 

to different pathways of antibiotic resistance (Santos-Lopez et al., 2019). In fact  surface-351 

microbe biology frequently leads to local differentiation, including the emergence of 352 

antibiotic resistant mutations (Rainey and Travisano, 1998; Oliver et al., 2000).  353 

Compartments can be occupied by multiple species, and there are also multispecies 354 

biofilms in natural environments (Yang et al., 2011), frequently resulting from 355 

spontaneous coaggregation (Rickard et al., 2003). How densely populated compartments, 356 

such as biofilms can be invaded by external microorganisms (which can become part of 357 

the consortium) is an interesting topic that has been recently modeled, showing the 358 

importance of species concentrations on the biofilm free boundary ((D’acunto et al., 359 

2014)) In any case, such dense aggregation of diverse populations facilitates horizontal 360 

gene transfer (including antibiotic resistance genes), and it has been proposed that biofilm 361 

communities in water environments are hot spots for gaining adaptive traits (Zadorin et 362 

al., 2019; Abe et al., 2020).   363 

 364 

Particulation by microbial coaggregation: functional ensembles? 365 

Coaggregation refers to a process by which individual microbial individual cells, either 366 

from a single clonal lineage or species, or from different species, recognize and attach to 367 

one another (London J et al., 1996; Rickard et al., 2003)The clues for recognition are not 368 
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yet understood in detail, but most probably are the result of natural selection, and should 369 

involve a kind of surface recognition code, probably involving lectins and polysaccharide 370 

interactions, resembling the DNA codes used in protein synthesis (Baquero, 2014). 371 

Clumps or coaggregates involving two types of cells are formed immediately upon 372 

mixing the partner populations, a phenomenon that has been particularly studied in oral 373 

plaque microbial consortia (Kolenbrander et al., 1993)Various methods have been 374 

evaluated to measure coaggregation (Kinder and Holt, 1994). Quantitative 375 

spectrophotometry (based on flocculation of clumps) has shown that coaggregation 376 

occurs weakly among bacteria from different sites, such as oral or intestinal species 377 

(Ledder et al., 2008).  A complete “grammar of interactions” is not yet available, but will 378 

be critical to understand the niche’s coalescence and the resulting microbiome merging, 379 

which could be described as multidimensional network (Baquero et al., 2019, 2021). 380 

Some species serve as bridging “nodes” to which other species attach, as it has been 381 

shown with Acinetobacter species in water bodies, from activated sludge (Malik et al., 382 

2003) to drinking water (Simões et al., 2008), or with Blastomonas in fresh water (Rickard 383 

et al., 2002; Afonso et al., 2021). Extracellular polymers play an important role in 384 

coaggregation of aquatic biofilms (Hede and Khandeparker, 2020). There is an “ecology 385 

of coaggregation”, so that the process can be modified by variations in external physical 386 

or chemical factors (Oki et al., 2018). In general, however, coaggregation ensures the 387 

permanence (resilience) of species-species interactions in fluctuating environments. 388 

Does a reproducible coaggregate act as a single individual biological unit? Are stable 389 

coaggregates endowed with particular organism-like traits? Certainly, there are chemical 390 

interactions among members of multispecies biofilms (Yang et al., 2011; Burmølle et al., 391 

2014; Liu et al., 2016). It has been shown that gene expression in the partner species can 392 

be modified by coaggregation (Jakubovics et al., 2008), and therefore the coaggregate 393 



 

18 
 

can be a source of emerging properties from a social individuality (Sadiq et al., 2021). 394 

The major difficulty in predicting the composition of microbiotic particles is due to the 395 

multi-stability in multispecies communities, combining with ecological noise (Wright et 396 

al., 2021).   397 

Microbiotic aggregates and antimicrobial resistance 398 

Both antibiotics and antibiotic resistance genes originate and are present in water and soil 399 

environments (Martínez, 2008; Cabello and Godfrey, 2018)In recent decades (1970 to the 400 

2000s) the abundance of antibiotic resistance genes in European archive soils have 401 

increased 10-fold (Knapp et al., 2010). Microbiotic aggregates in soil and water 402 

environments have a considerable influence on the emergence and evolution of 403 

antimicrobial resistance (Baquero et al., 2021). There are several reasons:  404 

1) Efficient antibiotic interactions require close cell-cell physical neighborhood 405 

(Burmølle et al., 2014), even cell-to-cell contact (Lemonnier et al., 2008).  406 

2) Non-aggregated antibiotic-producers do not reach the critical density to ensure 407 

antibiosis, and non-aggregated susceptible organisms do not reach the number that 408 

ensures the acquisition of mutations or the acquisition of foreign resistance genes, which 409 

in some cases respond to quorum sensing. 410 

 3) Cell-to-cell contact is required for interbacterial horizontal gene transfer of antibiotic-411 

resistance genes, and involves transformation, conjugation (plasmids, integrative-412 

conjugative elements), and particularly in soils and marine habitats, DNA-packing 413 

extracellular vesicles and DNA transfer through intercellular nanotubes (Woegerbauer et 414 

al., 2020) .   415 
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4) “Functionally equivalent” bacterial species tends to cluster in the same type of 416 

aggregates, and kin-recognition favors the horizontal transfer of antibiotic resistance 417 

genes (Baquero et al., 2019). Most microbial organisms present in water and soil 418 

aggregates, including all branches of the Proteobacteria phylum (most antibiotic-resistant 419 

gram-negative pathogens belong to γ-Proteobacteria) can exchange genes, including 420 

antibiotic-resistance and metal-resistance (Kloesges et al., 2011; Pohl et al., 2014). 421 

Horizontal gene transfer is frequent in the oceans (McDaniel et al., 2010; Hemme et al., 422 

2016).   423 

5) Most organisms producing antibiotics have a soil or water origin. The genus 424 

Streptomyces (Actinobacteria in general) is one of the self-aggregated bacterial organisms 425 

more frequently found in soil and water. Interestingly, this class of organisms is the main 426 

source (at least two-thirds) of the groups of antibiotics used in the treatment of infections, 427 

including aminoglycosides, beta-lactams and beta-lactamase inhibitors, tetracyclines, 428 

macrolides, lincosamides, streptogramins, phenicols, rifamicins, fosfomycin, 429 

glycopeptides, novobiocin, daptomycin, or platensimycin, and these antibiotics are only 430 

the tip of iceberg of the detected antimicrobial compounds (Mast and Stegmann, 2019). 431 

Self-aggregation of dividing cells is probably an evolutionary strategy to produce locally 432 

sufficient concentrations of bioactive compounds, as antibiotics, either acting as 433 

antimicrobials or as intermicrobial signaling agents (Linares et al., 2006). In addition, 434 

there is always the possibility of transfer of antibiotic resistance genes from antibiotic 435 

producers to pathogens (Jiang et al., 2017). In water, organisms such as Shewanella are 436 

frequently part of coaggregates, and might be involved in the spread of antibiotic 437 

resistance (Rickard et al., 2003; Cabello and Godfrey, 2018).   438 

6) Antimicrobials of anthropogenic origin are extensively polluting soil and water 439 

environments, and they tend to accumulate in particulated material (Baquero et al., 2008; 440 
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Rodriguez-Mozaz et al., 2020; Huang et al., 2021)retaining their antibacterial activities 441 

and consequently selecting, even at very low concentrations, for antibiotic resistant 442 

bacteria (Chander et al., 2005).  443 

7) The most dangerous type of microbiotic particles involved in antibiotic resistance are 444 

those resulting from human and animal fecal pollution of water and soil, including those 445 

originating in waste water treatment plants (Karkman et al., 2018; Pärnänen et al., 2019). 446 

Large-scale wastewater treatment plants discharge hundreds of tons of total suspended 447 

particles into water bodies every year, and antibiotic resistance genes are perpetuated in 448 

the sediments (Brown et al., 2018). However, a significant decay of resistance genes can 449 

occur over time in some environments (Brown et al., 2020). Microbiotic particles based 450 

on microplastics contribute to the emergence and spread of antibiotic resistance (Wang et 451 

al., 2020; Hu et al., 2021). However, the relative importance of microplastic biotic 452 

particles is dependent on the inoculation environment and the weight of such contribution 453 

can differ by location (Galafassi et al., 2021).  454 

The effect of antibiotic anthropogenic pollution has penetrated in the deepest region of 455 

the oceans, such as the Mariana Trench, where antibiotic resistance genes of possible 456 

human or animal origin have been detected (Yang et al., 2021). In fact, an ocean 457 

resistome, with an ensemble of antibiotic resistance genes, is now available, that includes 458 

genes conferring resistance to some of the most relevant clinical antibiotics, some of them 459 

which are particularly abundant in specific geographic locations (Cuadrat et al., 2020). 460 

Further research is needed to correlate these findings with the density of the various 461 

microbiotic particles. 462 

Counteracting antibiotic resistance by controlling microbiotic particles 463 
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How can we counteract the dangerous spread of antibiotic resistance mediated by water-464 

soil particles? It appears to be an almost impossible task at the global scale, but eventually 465 

some interventions can be locally effective. Note that density and distribution of particles 466 

might bias surveillance results focusing bacterial fecal pollution. The density of 467 

suspended particulate matter influences the recovery of faecal indicator bacteria, and this 468 

“local factor” should be taken into account (Perkins et al., 2016). Access to water bodies 469 

of human and animal microbiotic particles containing antibiotic resistance is highly 470 

dependent on the socio-economic status of the country, and this access, based on a lack 471 

of proper sanitation procedures, is probably more important than the antibiotic 472 

consumption in shaping the local rate of resistance in human and animal 473 

pathogens(Collignon et al., 2018).  474 

Removal of water microbiotic particles is an essential step to decontaminating the 475 

environment from antibiotic resistance (Kumar and Pal, 2018; Liang et al., 2021). Various 476 

procedures have been proposed (Lawler, 1986) or are under research for removal or 477 

deactivation of water particles. In addition to the classic sedimentation, flocculation, 478 

coagulation, or disinfection process, filtration and ultrafiltration, as well as cold 479 

atmospheric plasma technology (Kim and Dempsey, 2008), hydrodynamic vortex 480 

separators (Gronowska-Szneler and Sawicki, 2014); dissolved air flotation (Han et al., 481 

2007; El-Kalliny et al., 2021) and other procedures will be necessary. Nanoparticles-482 

based biotechnology is a promising field. The field includes “insertion” in the natural 483 

process of aggregation of nanoparticles that recognize particular microorganisms (even 484 

located in biofilms) and kill them, such as those synthesized from natural organic matter 485 

(mostly composed of humic and fulvic acids) and silver or gold particles, which are then 486 

released in the environment. The use of nanoparticles with zinc oxide and titanium 487 

dioxide in combination with halophilic bacteria (which reduce nutrients) has been 488 
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proposed to reduce the biological part of microbiotic particles (Weber et al., 2021). 489 

However, the environmental safety of nanoparticles remain in discussion (Hajipour et al., 490 

2021). Other suggested approaches is the use of “environmental probiotics” as 491 

Pseudoalteromonas, with antibiofilm activity (Dheilly et al., 2010) or particular types of 492 

natural clay minerals with antimicrobial and antibiofilm effects (Behroozian et al., 2020)  493 

Final coda: microbiotic particles in planetary health  494 

The preservation of a healthy equilibrium among biological and chemical constituents of 495 

the human-colonized Earth constitutes the objective of the One Health and Global Health 496 

approaches, in fact, of Planetary Health (Myers, 2017; Hernando-Amado et al., 2019). 497 

Such equilibrium can be altered by human interventions, as can be depicted by the 498 

deleterious changes in the oceans (Pedrós-Alió et al., 2021), and it requires robust 499 

counter-interventions to ensure that Earth’s organisms are maintained in a homeostatic, 500 

constant internal state despite perturbations from their surroundings (Tang and Mcmillen, 501 

2016). From a Planetary Health perspective, we can propose that the dynamic network of 502 

interactions among microbiotic particles in the soil and water constitute a linking 503 

material, a kind of cement for a unified life-holobiont, where everything depends on 504 

everything else (Davies, 2009). The analysis and characterization of such a network 505 

requires further research, which should lead to suitable corrective interventions to ensure 506 

our common well-being. 507 
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