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ABSTRACT 1 

 2 

Amphibians are a clade of over 8,400 species that provide unique research 3 

opportunities and challenges. With amphibians undergoing severe global declines, we 4 

posit that assessing our current understanding of amphibians is imperative. Focusing on 5 

the past five years (2016–2020), we examine trends in amphibian research, data, and 6 

systematics. New species of amphibians continue to be described at a pace of ~150 per 7 

year. Phylogenomic studies are increasing, fueling a growing consensus in the 8 

amphibian tree of life. Over 3,000 species of amphibians are now represented by 9 

expert-curated accounts or data in AmphibiaWeb, AmphibiaChina, BioWeb, or the 10 

Amphibian Disease Portal. Nevertheless, many species lack basic natural history data 11 

(e.g., diet records, morphological measurements, call recordings) and major gaps exist 12 

for entire amphibian clades. Genomic resources appear on the cusp of a rapid 13 

expansion, but large, repetitive amphibian genomes still pose significant challenges. 14 

Conservation continues to be a major focus for amphibian research and threats 15 

cataloged on AmphibiaWeb for 1,261 species highlight the need to address land use 16 

change and disease using adaptive management strategies. To further promote 17 

amphibian research and conservation, we underscore the importance of database 18 

integration and suggest that other understudied or imperiled clades would benefit from 19 

similar assessments of existing data.   20 

 21 

INTRODUCTION 22 

 23 

Amphibians are an ancient, diverse lineage of vertebrates that have been studied in 24 

research fields from evolution and ecology to engineering and medicine. Although 25 

amphibians are often considered to be sensitive to perturbation, they have survived the 26 

last four global mass extinction events and have a nearly worldwide distribution (Wake 27 

and Vredenburg, 2008; Kerby et al., 2010; Barnosky et al., 2011; Alroy, 2015). Most 28 

have biphasic lifestyles, serving as a vital link for energy and nutrient flows between 29 

terrestrial and aquatic systems (Finlay and Vredenburg, 2007). Many species have 30 

large populations and fast growth rates, occupying key roles in food webs as abundant 31 
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food sources whilst simultaneously shaping the functional diversity of their own prey 32 

communities (Colón-Gaud et al., 2009; Zipkin et al., 2020). Despite the ecological 33 

importance of amphibians and their diverse evolutionary histories, we lack basic natural 34 

history and geographic distribution data for a large proportion of species, with 16.4% 35 

(1,185 species) classified as Data Deficient by the IUCN – the highest proportion of data 36 

deficiency for any vertebrate class (IUCN, 2021).  37 

 38 

Amphibian research has grown rapidly over the last few decades, expanding from an 39 

early focus on several model species to an exploration and description of the evolution, 40 

ecology, and diversity of amphibians found globally. Researchers have developed 41 

amphibian model systems that are associated with sophisticated molecular and 42 

genomic tools based on decades of concentrated research into the molecular biology of 43 

three species – Xenopus laevis, Xenopus tropicalis, and Ambystoma mexicanum  44 

(Getwan and Lienkamp, 2017). Although these three model species scarcely capture 45 

the diversity of Amphibia (over 8,400 species; AmphibiaWeb 2021), they have served 46 

important roles during the last half century, providing insight into tetrapod evolution 47 

(Edholm et al., 2013; Rozenblit and Gollisch, 2020), developmental biology, molecular 48 

biology, neurobiology (Dascal, 1987; Yakushiji et al., 2009; Harland and Grainger, 49 

2011), and tissue regeneration (Nye et al., 2003; Freitas et al., 2019). Research on 50 

many  other amphibian genera has made notable historical contributions to biology: 51 

e.g., Plethodon cinereus in behavioral ecology and development (Dent 1942; Heatwole 52 

1962; Kleeberger and Werner 1982; Wyman and Hawksley-Lescault 1987; Kerney 53 

2011; Kerney et al. 2012); Engystomops in sexual selection (Ryan et al., 1990); Rana in 54 

cloning (Briggs and King, 1952); Rana and (Lefcort et al., 1998; Hopkins et al., 2000; 55 

Bridges, 2000; Pollet and Bendell-Young, 2000) Acris (Fleming et al., 1982; Clark et al., 56 

1998; Reeder et al., 1998) in community ecology and toxicology. New tools have since 57 

promoted the emergence of more model systems from classically “non-model” species 58 

and systems, such as dendrobatid poison frogs for the neurobiology of parental care 59 

(Roland and O’Connell, 2015; O’Connell, 2020) and the molecular evolution of chemical 60 

defense (Saporito et al., 2012; Tarvin et al., 2017; Caty et al., 2019; Alvarez-Buylla et 61 

al., 2022), toxic salamanders and resistant garter snakes for co-evolution (Geffeney et 62 
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al., 2005; Bucciarelli et al., 2022), Spea for phenotypic plasticity and life-history 63 

evolution (Levis et al., 2015, 2020), and Nanorana parkeri for adaptation to high 64 

elevation (Sun et al., 2015, 2018; Wang et al., 2018). As we will highlight here, the 65 

growing availability of amphibian genomes and other molecular resources poises 66 

amphibian researchers to further develop other amphibians as new “model” species. 67 

 68 

New genetic tools and increasing availability of amphibian sequence data are also 69 

reshaping and expanding our knowledge of amphibian phylogeny and evolution 70 

(Blackburn et al., 2019). Until recently, many deeper phylogenetic relationships 71 

remained unresolved, resulting in frequent taxonomic changes. Moreover, new species 72 

continue to be described, two or three each week on average. Since 2000, there has 73 

been an average of 150 new species described every year, with no sign of slowing 74 

down (AmphibiaWeb, 2021).  75 

 76 

Nevertheless, understanding current amphibian biodiversity is imperative, as 77 

amphibians are undergoing severe global population declines. The modern amphibian 78 

lineage is ancient (~300 million years old; Wake and Koo, 2018) and is now the most 79 

endangered vertebrate class in the ongoing Holocene Extinction (Stuart et al. 2004; 80 

Wake and Vredenburg 2008; Barnosky et al. 2011). Roughly 3% of anuran and 81 

caudatan diversity are believed to have declined to the point of extinction since the 82 

1970s (Alroy, 2015), and an estimated 40% of extant species are threatened with 83 

extinction (IUCN, 2021). Continued research on amphibian biology, as well as efforts to 84 

share the fruits of this research through public databases, can guide efforts to mitigate 85 

the threats of habitat loss, climate change, and infectious diseases—particularly in light 86 

of opportunities presented by broad global initiatives to protect biodiversity, such as the 87 

proposal to protect 30% of the earth's surface by 2030 (Kubiak, 2020; HAC, 2021).   88 

 89 

Given the ever-increasing accumulation of biological information, the expanding scale at 90 

which research is undertaken, and the urgent need for knowledge to combat amphibian 91 

declines, we aim to summarize the state of amphibian research to both improve 92 

awareness of existing resources and highlight gaps in knowledge. Focusing on the five 93 
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years from 2016 to2020, we assess the following: 1) trends in publishing, 2) advances 94 

in amphibian conservation research, 3) trends and updates in systematics and 95 

amphibian diversity, and 4) a review of existing community resources.  96 

 97 

MATERIALS AND METHODS 98 

 99 

Trends in publishing.– 100 

To assess changes in the focal topics of amphibian research from 2016 to 2020, we 101 

performed a standardized literature search in Web of Science (© Copyright Clarivate 102 

2022). First, we quantified the total number of amphibian scholarly articles published 103 

from 2016 to 2020, as well as the total number within each individual year, that had the 104 

following search term in their abstract: "amphibian" OR "amphibians" OR “Caudata” OR 105 

“salamander” OR “salamanders” OR “newt” OR “newts” OR “Anura” OR "anuran" OR 106 

"frog" OR "frogs" OR “toad” OR “toads” OR “Gymnophiona” OR “caecilian” OR 107 

“caecilians”. Next, we quantified the total number of amphibian scholarly articles 108 

published in those years (and within each year) in specific subfields of biology by adding 109 

additional search terms to the one above. The full list of added subfield search terms 110 

was: “behavior”, “development”, “diet”, “cell” AND “molecular”, “climate”, “conservation”, 111 

“ecology”, “eDNA”, “fossil” OR “fossils”, "genetic" OR "genetics", "genomic" OR 112 

"genomics", “genetic” OR “genetics” OR “genomic” OR “genomics”, “phylogenetic” OR 113 

“phylogenetics”, “phylogenomic” OR “phylogenomics”, “microbiome”, “morphology”, 114 

“physiology” and “trait” OR “traits”. In addition to reporting the absolute numbers of 115 

amphibian publications from 2016 to 2020, we report the percent change in amphibian 116 

publications (overall and within each subfield) over that five-year period (number of 117 

articles published in 2020/number of articles published in 2016). We searched the total 118 

number of scholarly articles published (all publications, no search terms) in 2016 and in 119 

2020 to determine the background percent change in publication rate to serve as a 120 

reference point for the percent change in amphibian publications from 2016 to 2020. We 121 

documented which journals published the amphibian papers recovered in our 2016–122 

2020 literature search and how many languages were represented in these 123 

publications. We also review name changes of herpetology-focused journals. In an 124 
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effort to examine how many publications focused on model amphibian species, we 125 

determined how many amphibian publications in each research field also mentioned 126 

Xenopus laevis, Xenopus tropicalis, OR Ambystoma mexicanum in their abstracts.  127 

 128 

Advances in amphibian conservation research.– 129 

To understand the major contributors to amphibian declines, for each species we 130 

obtained IUCN Red List status (or provisional IUCN Red List statuses from the 131 

AmphibiaWeb database) and associated drivers of decline from AmphibiaWeb species 132 

accounts (see supplemental data files; AmphibiaWeb and IUCN data were downloaded 133 

as of September 2021). The twenty-five AmphibiaWeb drivers of decline were collapsed 134 

into ten broad categories which, owing to the nature of these threats, do not form 135 

entirely discrete, non-overlapping units. For instance, the following categories all 136 

ultimately relate to habitat modification or loss, but were divided as follows to allow for 137 

more granular insight into important amphibian threats: a ‘habitat alteration and loss’ 138 

category includes general habitat alteration and loss, secondary succession, subtle 139 

changes to necessary specialized habitat, and habitat fragmentation; a ‘resource 140 

exploitation’ category includes habitat modification from deforestation or logging related 141 

activities, mining, and intensified agriculture or grazing; a ‘roads and urban 142 

development’ category includes urbanization, disturbance or death from vehicular traffic, 143 

barriers to movement, and accidental traps; and an ‘intentional changes to hydrology’ 144 

category includes drainage of habitat and dams changing river flow and/or covering 145 

habitat. The remaining threat categories were as follows: a ‘pollutants’ category includes 146 

local and long-distance pesticides, toxins, fertilizers, and pollutants; a ‘climatic factors’ 147 

category includes climate change, prolonged drought, floods, increased UVB, or 148 

increased sensitivity to it; a ‘disease and immune functioning’ category includes 149 

disease, parasitism, and weakened immune capacity; a ‘predators and competitors’ 150 

category includes changing dynamics with both introduced and native species; an 151 

‘intentional mortality’ category includes over-harvesting, the pet trade, and collecting; 152 

and a ‘genetic degradation’ category includes loss of genetic diversity from small 153 

population phenomena and loss of distinctiveness through hybridization. We visualized 154 

these data by order and IUCN status for each decline category and discussed in the 155 
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context of major new findings on habitat loss and disease as drivers of amphibian 156 

declines between 2016 and 2020.  157 

 158 

Trends and updates in amphibian diversity and systematics.– 159 

To visualize the accumulation of new species over time, we used the complete 160 

AmphibiaWeb database of new species between 2007 and 2020 (see supplemental 161 

data files) to provide a baseline comparison to identify any trend changes during 2016–162 

2020. We joined the type localities of these new species to country and biogeographic 163 

realm using Quantum GIS (vers. 3.2, QGIS Development Team, 2021). We made a 164 

heatmap of the type localities of the new species (2016–2020) using the heatmap option 165 

in QGIS and calculated the number of new species per region using the QGIS point 166 

cluster option with radius distance set to 800 km for both the heatmap and clusters. We 167 

summarized the cumulative number of new species graphically in R (R Core Team, 168 

2021) using ggplot2 v3.3.5 (Wickham, 2016), cowplot v1.1.1 (Wilke, 2020), lubridate 169 

v1.80 (Grolemund and Wickham, 2011), rentrez v1.2.3 (Winter, 2017), tidyverse v1.3.1 170 

(Wickham et al., 2019), XML v3.99-0.8 (Lang, 2021), and included data in the 171 

phylogenetic matrix as described in the section below (“A review of community 172 

resources”). We also review higher level taxonomic changes in modern amphibians, 173 

largely based on recent phylogenomic studies. 174 

 175 

A review of community resources.– 176 

We compiled a list of published amphibian genomes by searching the NCBI Genome 177 

database with the “Organism” field set to “Amphibia” and reviewing Google Scholar 178 

results for “amphibian genome”. We obtained a list of all available amphibian genetic 179 

sequences in the NCBI Sequence Read Archive (SRA; on 21 June 2021) by setting the 180 

“Organism” search field to “Amphibia” and downloading metadata files from Run 181 

Selector. To obtain metadata on the available sequences in the NCBI GenBank 182 

Nucleotide database, we used the Entrez retrieval tool (Clark et al., 2016; NCBI 183 

Resource Coordinators, 2016). GenBank data were downloaded on 27 June 2021 in 1-184 

month batches from January 1982 to December 2020 using esearch (-db nuccore -185 

query "amphibia [ORGN]" -mindate "$yr/$month" -maxdate "$yr/$month"), extracting the 186 
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following elements from the document summary: Caption, Title, CreateDate, TaxId. We 187 

used the CreateDate information as the deposit date for each sequence. Using regular 188 

expressions and lists of keywords in R, we categorized each sequence as mitochondrial 189 

DNA (title containing one or more of the words "cytochrome oxidase", "COX", "tRNA", 190 

"ND", "ribosomal RNA", "rRNA", "NADH dehydro", "mitochondri", "cyt[. ]b","cytochrome 191 

b", "ATP8", "ATP6", "control region", "d-loop", or "cytb"), as mRNA (title containing one 192 

or more of the words "mRNA”, “transcript, or “TSA:”), or genomic DNA (all other 193 

sequences). To assign a taxonomic order to each sequence in the SRA and GenBank 194 

datasets, we merged sequence metadata with the NCBI taxonomy database 195 

(https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/new_taxdump/) using tools from the R 196 

package ‘dplyr’ v1.0.6 (Wickham et al., 2021). See supplemental data files for raw data. 197 

 198 

To count the cumulative number of species represented in the SRA database over time, 199 

we summed the number of unique species names in SRA metadata across years. We 200 

note, however, that these numbers are artificially inflated because of unspecified (e.g., “201 

Hyloxalus sp. 1 WG-2019”), subspecies (e.g., “Cryptobranchus alleganiensis bishopi”), 202 

and hybrid (e.g., “Hyla intermedia x Hyla sp. n. DJ-2018”) samples that are included in 203 

the data. To more accurately count the number of species added to NCBI databases 204 

each year, we used the entrez_search function from the R package ‘rentrez’ v1.2.3 205 

(Winter, 2017) to query the ncbi taxonomy database by year and by Order, with 206 

additional search terms to filter out ambiguous or unspecified sequences (query = 207 

“<Order> and [SubTree] AND <year> AND species[Rank] NOT uncultured[prop] NOT 208 

unspecified[prop]”). 209 

 210 

To quantify the representation of amphibian species in other public databases, we 211 

collated metadata from several databases that contain information about amphibians. 212 

We identified all major bioacoustic repositories by surveying relevant literature and 213 

asked leading experts in bioacoustics. For each repository, we used website searches 214 

to obtain the number of available recordings and the number of species represented 215 

(see supplemental data files). If those data were not available, we contacted the person 216 

in charge of the website to obtain the database of the recordings. For microCT data, we 217 
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identified all amphibian scans available on MorphoSource 218 

(https://www.morphosource.org, Boyer et al., 2016), DigiMorph (http://digimorph.org), 219 

and Phenome10K (https://www.phenome10k.org; see supplemental data files for 220 

MorphoSource and Phenome10K results). We downloaded Amphibian Disease Portal 221 

data on Batrachochytrium dendrobatidis (Bd) swabs taken and swabs testing positive 222 

for Bd, and summarized by amphibian family, by year, and by geography in R v4.1.0 (R 223 

Core Team, 2021) and plotted geographic representation of the database over time 224 

(see supplemental data files). Finally, in addition to these trait- or data type-specific 225 

databases, we also review existing large databases that provide information on 226 

amphibian morphological, ecological, and life-history traits.  227 

 228 

We summarized the phenotypic, genetic, and disease data available for each anuran 229 

family in a phylogenetic matrix plot using a trimmed version of the phylogeny from Hime 230 

et al., 2021. We added four families to match the AmphibiaWeb taxonomy, 231 

Allophrynidae, Micrixalidae, Ranixalidae, and Chikilidae, that were not in the original 232 

tree by either using a species within a sister family to represent the missing family (in 233 

the cases of Allophrynidae and Chikilidae) or artificially adding branches to the tree 234 

using the bind.tree function (in the cases of Micrixalidae and Ranixalidae). 235 

 236 

Data analysis and visualization.– 237 

Plots and data formatting were performed in R v4.1.0 (R Core Team, 2021) with the 238 

following packages: cowplot v1.1.1 (Wilke, 2020), dplyr v1.0.7 (Wickham et al. 2021), 239 

ggplot2 v3.3.5 (Wickham, 2016), reshape2 v1.4.4 (Wickham, 2007), stringr v1.4.0 240 

(Wickham, 2010), tidyr v1.1.3 (Wickham, 2017), and tidyverse v1.3.1.9 (Wickham et al., 241 

2019). For phylogenetic data formatting, analysis, and plotting we used R v4.1.0 (R 242 

Core Team, 2021) with the following packages: ape v5.5 (Paradis and Schliep, 2019), 243 

geiger v2.0.7 (Pennell et al., 2014), phytools v0.7.8, (Revell, 2012), and tidyverse 244 

v1.3.1.9, (Wickham et al., 2019).  245 

 246 

RESULTS 247 

Trends in publishing 248 
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 249 

Research topics.– 250 

We identified 13,208 articles published from 2016 through 2020 that included at least 251 

one of our amphibian-specific search terms in their abstracts. Overall, amphibian 252 

publications increased by 15% from 2016 to 2020, which equals the 15% increase in 253 

total publications (no search filters) during that time period (Fig. 1a; Table S1). The 254 

majority of amphibian publications were in five subfields: development (1,865), 255 

conservation (1,757), genetics OR genomics (1,506), behavior (1,023), and 256 

phylogenetics (999). Relatively few amphibian publications mentioned phylogenomics 257 

(32), microbiome (83), or eDNA (86; Fig. 1b; Table S1). Almost all subject areas 258 

increased in amphibian publications, with the exception of fossil publications (30 in 2016 259 

and 29 in 2020), cell and molecular publications (41 in 2016 and 40 in 2020), and 260 

behavior publications (205 in 2016 and 203 in 2020). The fastest growing subject areas, 261 

microbiome, phylogenomics, eDNA, morphology, and diet all showed a 50% or greater 262 

increase in amphibian publications from 2016 through 2020 (Fig. 1a; Table S1).  263 

 264 

Of the 13,208 total amphibian publications from 2016 through 2020, 629 (5%) 265 

mentioned Xenopus laevis, Xenopus tropicalis, OR Ambystoma mexicanum in their 266 

abstracts. These model amphibian publications were not evenly distributed among 267 

research areas, making up a substantial proportion of cell AND molecular (23%), 268 

development (13%), genomic(s) (10%), and physiology (9%) publications, but only 5% 269 

or less of all other research areas (Fig. S1). 270 

 271 

Journals.– 272 

The peer-reviewed journals with the largest number of amphibian publications from 273 

2016 through 2020 were PLOS One (317), Scientific Reports (247), Zootaxa (186), 274 

PeerJ (174), and Ecology and Evolution (172; Table S2). Although our literature search 275 

recovered amphibian publications in 23 languages, the vast majority (98%) of 276 

amphibian publications recognized in our search were written in English (Table S3).  277 

 278 
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In the last five years, two herpetological journals acquired new names: Revista 279 

Latinoamericana de Herpetología in 2017 (formerly Revista Mexicana de Herpetología), 280 

and Ichthyology and Herpetology (formerly Copeia) in 2021. The latter is published by 281 

the American Society of Ichthyologists and Herpetologists, which acknowledged the 282 

racist views of eponymous herpetologist Edward Drinker Cope and whose Board of 283 

Governors approved the name change in July 2020. Thus, the title change reflects the 284 

wider movement towards making the discipline more inclusive (Cahan, 2020). 285 

 286 

Advances in amphibian conservation research 287 

 288 

Factors driving decline in the largest number of amphibian species.- 289 

Based on our review of AmphibiaWeb data, the principal driver of amphibian declines is 290 

habitat alteration and loss (Fig. 2). The drivers subsumed in our habitat alteration and 291 

loss category threaten at least 46.6% of amphibian species with accounts on 292 

AmphibiaWeb. Furthermore, pooling the habitat alteration and loss category with 293 

resource exploitation, roads and urban development, and intentional changes to 294 

hydrology categories—which all encompass the repercussions of physical changes to 295 

amphibian habitat—the percentage of affected species increases to 51.2%. 296 

 297 

Though habitat loss and degradation are undebatable drivers of amphibian declines, it 298 

is important that we interpret these data (Fig. 2) with the caveat that certain drivers are 299 

easier to measure than others, and that some drivers have only recently been studied. 300 

For example, habitat loss can be described based on observational data alone, while 301 

the low percentage of amphibian species for which genetic degradation is a 302 

documented driver of decline (50 species) can partly be attributed to the requirement of 303 

molecular work and knowledge of the species’ evolutionary history for its ascertainment, 304 

which requires tools that have only recently been developed and democratized. 305 

Likewise, we know that climate change and disease threaten a large proportion of 306 

extant amphibian diversity (Warren et al., 2013; Olson et al., 2021), but these drivers 307 

have only been focal points in amphibian conservation over the past two to three 308 
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decades. Meanwhile, pollutants are better documented as a driver of decline, but have 309 

been a focus for at least sixty years (225 amphibian species being documented as 310 

declining due to pollutants versus 170 species for climatic factors and 149 for disease 311 

and immune functioning; Fig. 2).   312 

 313 

Factors largely associated with endangered or extinct amphibian species.- 314 

 315 

When prioritizing which drivers of amphibian decline should receive limited conservation 316 

attention and resources, we should consider not only the raw count of amphibian 317 

species affected by a driver, but also which threats drive the most severe declines or 318 

tend to impact already vulnerable species. For example, while habitat alteration and 319 

loss may be the most common threat, the threat categories most closely associated with 320 

endangered or extinct species are disease and weakened immune functioning (59.11% 321 

of EN, CR, EX/EW species) and genetic degradation (56%). Thus, these two types of 322 

threats may tend to drive sudden and dramatic declines, particularly for endangered 323 

species that are also facing other stressors (Knapp et al., 2016; Fisher and Garner, 324 

2020). The overrepresentation of highly endangered or extinct species in certain threat 325 

categories makes them clear strategic targets for conservation programs.  326 

 327 

Trends and updates in amphibian diversity and systematics 328 

 329 

Amphibian diversity.– 330 

From 2016 to 2020, 780 new species of amphibians were described (Fig. 3), a higher 331 

number than in the previous five years (732 species between 2011 and 2015). Most 332 

(705) of the new species described in the last five years were from the largest 333 

amphibian order, Anura; salamanders gained 66 species and caecilians gained 9. Six 334 

new genera of frogs were described based entirely on newly discovered species: 335 

Astrobatrachus (Vijayakumar et al., 2019, also representing the new subfamily 336 

Astrobatrachinae); Blythophryne (Chandramouli et al., 2016); Mini (Scherz et al., 2019; 337 

Fig. 3f); Siamophryne (Suwannapoom et al., 2018); Sigalegalephrynus (Smart et al., 338 

2017); and Vietnamophryne (Poyarkov et al., 2018).  339 

https://paperpile.com/c/8OFL1l/jauwL+xfmpr
https://paperpile.com/c/8OFL1l/jauwL+xfmpr
https://paperpile.com/c/8OFL1l/Uprvi
https://paperpile.com/c/8OFL1l/xgXAs
https://paperpile.com/c/8OFL1l/VkDRL
https://paperpile.com/c/8OFL1l/ksAyq
https://paperpile.com/c/8OFL1l/vPqxh
https://paperpile.com/c/8OFL1l/vPqxh
https://paperpile.com/c/8OFL1l/bLnXo
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 340 

At a regional level, most new species added from2016 to2020 are from Latin America 341 

(40.8%), Asia (37.2%) and Africa (12.0%; Fig. 4a). Less than 10% of the new species 342 

were from the other regions: Oceania-Australia, North America and Europe. All regions 343 

had more described species between 2016–2020 than during 2011–2015, except for 344 

Oceania-Australia (22 fewer species). The countries with the most new species added 345 

from2016 to2020 were China (100 species), Brazil (95 species), Ecuador (67 species), 346 

Madagascar (56 species), and Peru (56 species). Regions with a high density of new 347 

species described are southern Andes of Ecuador, northern Madagascar, and southern 348 

China (Fig. 4A). If the global trend continues as in the last decade (10–11% species 349 

increase every five years), we can expect to reach 9,000 amphibian species by the end 350 

of 2024.  351 

 352 

Remarkably, the yearly rates of increase in the numbers of anurans, caudatans, and 353 

gymnophionans are quite consistent (Fig. 4bc). The steeper increase in anuran species 354 

indicates that we are still very much in the age of discovery for amphibian diversity. It 355 

remains unclear how much of this pattern is tied to the recognition of cryptic species 356 

based on molecular studies. We suggest that much of the substantial cryptic diversity 357 

remains unaccounted for taxonomically as many taxa are given informal identifiers such 358 

as “Hyla species 1” in published papers and on GenBank, but many GenBank 359 

accessions are not updated when the species is formally named. This phenomenon is 360 

captured by Fig. 4d, which illustrates the growing number of GenBank sequences 361 

representing unspecified amphibian species. New species were described in the 362 

majority of amphibian families, and Strabomantidae and Microhylidae had the absolute 363 

greatest number of new species (Fig. 5).  364 

 365 

Amphibian systematics.– 366 

In contrast with the first 15 years of the new millennium, during which dramatic changes 367 

occurred in both our understanding of the higher-level phylogeny of amphibians and in 368 

the corresponding taxonomy, the past five years have seen much less flux. This stability 369 

has been maintained despite the transition from Sanger-sequencing-based multilocus 370 
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phylogenetic approaches and mitogenomic analyses to phylogenomic analyses based 371 

on new datasets of hundreds to thousands of sequenced loci (e.g., Lemmon and 372 

Lemmon, 2012; Portik et al., 2016; Hutter et al., 2021). There is complete agreement 373 

among recent phylogenomic studies regarding the family-level relationships of 374 

salamanders (Shen et al., 2013; Hime et al., 2021) and caecilians; among the recent 375 

major studies, only Hime et al. (2021)  included caecilians, but their findings are in 376 

agreement with prior understanding of caecilian relationships based on Sanger data, 377 

such as Kamei et al. (2012). Even among the anurans, the various major studies have 378 

found nearly complete agreement except within Hyloidea, where some weakly 379 

supported arrangements are resolved differently across studies (e.g., Feng et al., 2017; 380 

Streicher et al., 2018; Hime et al., 2021). Even the major relationships among the 19 381 

families that comprise Ranoidea have been largely stable in recent treatments. There is 382 

now remarkable agreement and taxonomic stability in terms of the higher level 383 

phylogenetic relationships among and within all three amphibian orders. 384 

 385 

The most significant changes in our understanding of the deep relationships of 386 

amphibians comes from phylogenomic analyses of neobatrachians. Within ranoid frogs, 387 

phylogenomic analyses support a sister relationship between the Afrobatrachia 388 

(Arthroleptidae, Brevicipitidae, Hemisotidae, Hyperoliidae) and Natatanura (Feng et al., 389 

2017; Hime et al., 2021) in contrast to previous analyses that found a sister relationship 390 

between Microhylidae and Afrobatrachia. Within the Natatanura, these same analyses 391 

resolve a clade of the six families endemic to continental Africa (Conrauidae, 392 

Odontobatrachidae, Petropedetidae, Phrynobatrachidae, Ptychadenidae, 393 

Pyxicephalidae). This is the sister-group of all other nataturans (Feng et al., 2017; Yuan 394 

et al., 2018; Hime et al., 2021). Yuan et al. (2018) provided strong support for 395 

Ranixalidae + Nyctibatrachidae; this clade is the sister-group of other natatanurans 396 

excluding the clade of six endemic African families. No phylogenomic analyses have 397 

simultaneously included the Micrixalidae, Nyctibatrachidae, and Ranixalidae—all 398 

endemic to India. However, other analyses that combine available loci with 399 

phylogenomic datasets found a close relationship between Micrixalidae and Ranixalidae 400 

(Feng et al., 2017), suggesting that these three families might together form a clade.  401 

https://paperpile.com/c/8OFL1l/PFKQv+Ka4bH+kR4Tg
https://paperpile.com/c/8OFL1l/PFKQv+Ka4bH+kR4Tg
https://paperpile.com/c/8OFL1l/Pxak1+wySm0
https://paperpile.com/c/8OFL1l/wySm0
https://paperpile.com/c/8OFL1l/AxB8L
https://paperpile.com/c/8OFL1l/RHRKy+Ud9Yz+wySm0
https://paperpile.com/c/8OFL1l/RHRKy+Ud9Yz+wySm0
https://paperpile.com/c/8OFL1l/RHRKy+wySm0
https://paperpile.com/c/8OFL1l/RHRKy+wySm0
https://paperpile.com/c/8OFL1l/RHRKy+dpCZv+wySm0
https://paperpile.com/c/8OFL1l/RHRKy+dpCZv+wySm0
https://paperpile.com/c/8OFL1l/dpCZv
https://paperpile.com/c/8OFL1l/RHRKy
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 402 

Phylogenomic analyses also are beginning to make sense of the diverse hyloid 403 

radiation. Rhinodermatidae is strongly supported as the sister to all other South 404 

American hyloids, followed by a clade of four families (Alsodidae, Batrachylidae, 405 

Cycloramphidae, Hylodidae) referred to as the Neoaustrana (Feng et al., 2017; 406 

Streicher et al., 2018; Hime et al., 2021). This is followed by the Telmatobiidae and then 407 

by a strongly supported clade of three families (Ceratophryidae, Hemiphractidae, 408 

Hylidae) referred to as the Amazorana (Feng et al., 2017; Streicher et al., 2018). All 409 

remaining hyloids form a well supported clade, though recent studies differ in the 410 

relationships among these taxa. 411 

 412 

A review of community resources 413 

 414 

Genomes.– 415 

A total of 28 amphibian genomes with representatives from 14 different families have 416 

been sequenced as of July 2021 (Figs. 5 and 6). Of these, 13 are assembled to 417 

chromosome-level (scaffold N50 = 0.42 ± 0.29 Gb; mean ± standard deviation), eight 418 

are scaffolded (scaffold N50 = 0.24 ± 0.24 Mb), and six are contigs (contig N50 = 880 ± 419 

610 bp) (Table S4). The first genome sequenced was that of Xenopus tropicalis in 2010 420 

(Hellsten et al., 2010), and it remained the sole amphibian genome until Nanorana 421 

parkeri became available in 2015 (Sun et al., 2015). Since then, sequencing of 422 

amphibian (mostly anuran) genomes has slowly but steadily increased (Fig. 6). The 423 

largest amphibian genome sequenced to date is Ambystoma maculatum, with an 424 

estimated diploid genome size of ~34 Gb (Nowoshilow et al., 2018). Not surprisingly, all 425 

but one (Nanorana parkeri) of the chromosome-scale genomes used a combination of 426 

sequencing technologies, while those that remain as scaffolds or contigs were built 427 

using only the Illumina system short-read technologies (Table S4). 428 

 429 

NCBI Sequence Read Archive.– 430 

The amount of next-generation sequencing data deposited into the NCBI Sequence 431 

Read Archive (SRA) since its origin in 2008 (Leinonen et al., 2011) has been steadily 432 

https://paperpile.com/c/8OFL1l/RHRKy+Ud9Yz+wySm0
https://paperpile.com/c/8OFL1l/RHRKy+Ud9Yz+wySm0
https://paperpile.com/c/8OFL1l/RHRKy+Ud9Yz
https://paperpile.com/c/8OFL1l/F1Y7J
https://paperpile.com/c/8OFL1l/I7sBs
https://paperpile.com/c/8OFL1l/XaHR1
https://paperpile.com/c/8OFL1l/Um6Bq
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increasing for both model and non-model amphibian species (Fig. 7a). In 2019, the 433 

amount of data available for non-model anurans surpassed that of model anurans (i.e., 434 

Xenopus laevis, X. tropicalis). The cumulative number of SRA studies (Fig. 7b) and 435 

cumulative number of species (Fig. 7c) increased in parallel over time. By the end of 436 

2020, nearly 1000 species of amphibians (815 of which are anurans) had sequences 437 

deposited in the SRA (Fig. 5; Fig. 7c; note that these numbers are inflated because they 438 

include unspecified, subspecies, and hybrid samples; see Fig 4d).  439 

 440 

NCBI GenBank Nucleotide database.– 441 

Although the NCBI GenBank database was established in 1982 (Choudhuri, 2014), very 442 

few amphibian species were represented in the database until 2000 (Fig. 8). Early 443 

amphibian data were almost exclusively from Xenopus (Fig. 8, solid line, green circles). 444 

Since then, the number of represented species in NCBI databases has increased 445 

dramatically, to 6,203 (of a total of 8,268 known species) in 2020 (Fig. 8). However, 446 

despite this linear increase in representation, non-model species were not represented 447 

by large numbers of sequences until 2016; even today, most existing amphibian 448 

sequences in GenBank are from Xenopus (Fig. 8). 449 

 450 

While the number of mtDNA sequences for anurans has risen gradually over time, the 451 

number for salamanders and caecilians has remained relatively flat (Fig. 8 mtDNA 452 

panel). In contrast, the number of nDNA and mRNA sequences added to GenBank has 453 

been stochastic and likely reflects specific large-scale sequencing projects (Fig. 8). For 454 

example, in 2012, >100,000 nDNA sequences of Xenopus tropicalis and X.  laevis were 455 

deposited as part of new genome data that were beginning to be published at that time 456 

(Hellsten et al., 2010); many of these sequences were generated from Bacterial Artificial 457 

Chromosomes (BAC). Earlier BAC-generated sequences from X. tropicalis are 458 

responsible for the peak in 2003 of nDNA sequences (Wells et al., 2011). The notable 459 

increase in model-anuran mRNA from 2000 to 2007 is largely from the NCBI full-length 460 

cDNA project, which added Xenopus to its list of focal species in 2002 (Klein et al., 461 

2002; Gerhard et al., 2004). Additional notable contributors to increases in nDNA 462 

include whole-genome shotgun sequences from X. laevis (Session et al., 2016) and 463 

https://paperpile.com/c/8OFL1l/h9xee
https://paperpile.com/c/8OFL1l/F1Y7J
https://paperpile.com/c/8OFL1l/ch30h
https://paperpile.com/c/8OFL1l/bOXez+YBzZS
https://paperpile.com/c/8OFL1l/bOXez+YBzZS
https://paperpile.com/c/8OFL1l/hSVOc
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Nanorana parkeri (Sun et al., 2015), as well as other large-scale sequencing projects 464 

(e.g., Ultra Conserved Element sequences from Kaloula, Alexander et al., 2017; Fig. 8). 465 

In addition, several notable increases in non-model mRNA and nDNA sequence 466 

deposition likely are related to other new genomes (e.g., Rana catesbeiana in 2017 467 

[Hammond et al., 2017]; Microcaecilia unicolor in 2019 and Geotrypetes seraphini in 468 

2020, both from the Vertebrate Genomes Project, 469 

https://vertebrategenomesproject.org/; Koepfli et al. 2015) and transcriptomes (e.g., 470 

Bombina variegata variegata in 2016, R. catesbeiana in 2017; both in Transcriptome 471 

Shotgun Assembly [TSA] formats, which are primarily built from short-read technology 472 

[Suzuki et al., 2016; Nürnberger et al., 2016]).  473 

 474 

Acoustic data.– 475 

We identified eight major repositories that collectively contain 156,514 amphibian 476 

recordings (Table 1): Macaulay Library, Fonozoo, La Sonothèque, AmphibiaWeb, 477 

Fonoteca Neotropical Jacques Vielliard, Anfibios del Ecuador BIOWEB, Australian 478 

Museum FrogID Project, and Chinese National Specimen Resource Sharing Platform. 479 

Collectively, these call repositories contain calls for 1,985 unique species from 45 480 

anuran families and four salamander families. The anuran families Pipidae (41 species), 481 

Mantellidae (232 species), Myobatrachidae (133 species), Scaphiopodidae (seven 482 

species), and Rhinophrynidae (one species) each have calls recorded for more than 483 

50% of the family’s species (Fig. 5). Fonozoo contains the highest number of species 484 

represented, although FrogID contains the greatest number of recordings (Table 1). Of 485 

note among these databases are the Fonoteca Neotropical Jacques Vielliard (FNJV), 486 

which is the largest public and institutional online audiovisual repository in Latin 487 

America, and the Australian Museum FrogID Project, which is Australia's first national 488 

community-science frog identification initiative. 489 

 490 

CT-scan data.– 491 

Since 2016, CT-scan datasets for 1,947 amphibian specimens, including image stacks 492 

and 3D mesh files, have been shared via MorphoSource (www.morphosource.org). 493 

These include 1,530 anuran specimens representing 976 species (in 402 genera; 88% 494 

https://paperpile.com/c/8OFL1l/I7sBs
https://paperpile.com/c/8OFL1l/bBCw1
https://paperpile.com/c/8OFL1l/Z7Vms
https://paperpile.com/c/8OFL1l/Z7Vms
https://vertebrategenomesproject.org/
https://paperpile.com/c/8OFL1l/BJJp
https://paperpile.com/c/8OFL1l/kqZsp+MBYZg
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of genera), 362 caudatan specimens representing 184 species (in 66 genera; 97%), and 495 

55 gymnophionan specimens representing 40 species (in 32 genera; 97%; Fig. 5). 496 

Many of these data were generated as part of the NSF openVertebrate (oVert) 497 

Thematic Collections Network. In addition, there are a few CT-scans of extinct crown-498 

group amphibians, such as 26 fossils of Beelzebufo deposited in 2015. MorphoSource 499 

also now houses most, if not all, of the CT-scan media from the Digital Morphology 500 

project (DigiMorph; www.digimorph.org). DigiMorph began in the early 2000s and still 501 

has CT-scan media available from 25 anuran species (in 21 genera), 28 caudate 502 

species (in 16 genera; plus one extinct salamander), and seven caecilian species (in 503 

seven genera). 504 

 505 

Phenome10K also hosts 3D mesh files of amphibian skulls associated with several 506 

recent publications (Marshall et al., 2019; Fabre et al., 2020; Bardua et al., 2021). As of 507 

October 2021, the website (www.phenome10k.org) makes available 3D mesh files of 508 

skulls for 105 anuran species (in 94 genera), 104 caudate species (in 51 genera), and 509 

seven gymnophionan species (in seven genera). In many cases, the image stacks for 510 

these specimens also are available on MorphoSource. 511 

 512 

Other trait databases.–  513 

From 2016 through 2020, two large amphibian trait databases were published: 514 

AmphiBIO (Oliveira et al., 2017) and a Colombian anuran database (Mendoza-Henao et 515 

al., 2019). AmphiBIO (Oliveira et al., 2017), the largest species-level amphibian trait 516 

database that can be readily downloaded, contains 6,776 species and a broad range of 517 

ecological and life-history traits (e.g., microhabitat, diet, activity time, clutch size), but 518 

the matrix completeness is only 21%. Although the Colombian anuran database is much 519 

more complete, it contains morphological data from fewer species (239), which 520 

represent 38% of Colombian anuran diversity. Of note, the Colombian anuran database 521 

includes individual-level data for 4,623 museum specimens, with a range of 1 to 118 522 

individuals (median = 8) measured per species. Three other existing databases were 523 

identified: one includes conservation, ecological, and life-history traits of 86 European 524 

species (Trochet et al., 2014); another, the Anuran Traits of the United States (ATraiU, 525 

http://www.digimorph.org/
https://paperpile.com/c/8OFL1l/opoiA+Xn7h3+7RE98
https://paperpile.com/c/8OFL1l/5BPEQ
https://paperpile.com/c/8OFL1l/3msdY
https://paperpile.com/c/8OFL1l/3msdY
https://paperpile.com/c/8OFL1l/5BPEQ
https://paperpile.com/c/8OFL1l/36w5u
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Moore et al., 2021), contains ecological, morphological, and life history data of 106 526 

anuran species, representing 91% of frog species in the USA (AmphibiaWeb, 2021). 527 

Finally, NSF-funded VertNet (http://vertnet.org/) aggregates individual-level amphibian 528 

trait data from records published by museum collections (e.g., body length, mass) that 529 

are tied to the location where individuals were collected and sometimes other traits 530 

(e.g., lifestage, sex). At the conclusion of 2020, VertNet had 1,261 individual records of 531 

amphibian body lengths (covering 897 species) and 455 individual records of amphibian 532 

body mass (covering 337 species). 533 

 534 

Online portals for amphibians: AmphibiaWeb.–  535 

In 2020, AmphibiaWeb celebrated its 20th anniversary, marking its commitment to its 536 

original vision—that “a healthy future for all life on Earth must include thriving 537 

amphibians, and the means to conserving amphibians is to enable and facilitate better 538 

research and education with an accessible, consolidated, and curated information 539 

system for all amphibian species” (AmphibiaWeb, 2021: 540 

https://amphibiaweb.org/about/index.html). Many of the core activities of AmphibiaWeb 541 

remain the same in the last two decades—a web page for every amphibian species with 542 

literature-based accounts and spatial data. Photos for species are provided through 543 

CalPhotos, a service also administered by UC Berkeley and used by other natural 544 

history projects (e.g., ReptileDatabase, etc). Much of AmphibiaWeb’s data (e.g., species 545 

accounts, type localities, range maps and traits) have been used in research studies 546 

(reviewed in Uetz et al., 2021), including this article.  547 

 548 

Usage of AmphibiaWeb (tracked by Google Analytics) continues to be strong, averaging 549 

28,000 users per month (between June and November 2021) from 215 countries or 550 

sovereignties. Of the over 35% of users who shared demographic data, users trended 551 

female (54.5%) and young (33% 18–24 years old, 27% 25–34 years old). The site 552 

averaged 1.74 million page views per year in the last five years, with a high of 2.5 553 

million page views during the pandemic of 2020 (page views are a measure of the 554 

number of times a page has been visited even in a single session of a single user). 555 

 556 

https://paperpile.com/c/8OFL1l/OnHfl
https://paperpile.com/c/8OFL1l/p5Gip
https://paperpile.com/c/8OFL1l/p5Gip
https://paperpile.com/c/8OFL1l/p5Gip
https://paperpile.com/c/8OFL1l/p5Gip
https://amphibiaweb.org/about/index.html
https://paperpile.com/c/8OFL1l/9wahQ
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Over the last five years, the AmphibiaWeb team has added 277 species accounts, a set 557 

of family-richness maps, and improved methods to access data and materials including 558 

a searchable public repository (https://github.com/AmphibiaWeb/aw-assets). It now 559 

hosts over 3,500 species accounts with over 42,200 photos embedded from CalPhotos, 560 

representing 4,766 species.  Newly added educational materials range from a primer on 561 

why phylogeny, taxonomy, and nomenclature are useful in the study of amphibians to 562 

Spanish and English educational materials aimed for K–12 students. Recent outreach 563 

initiatives have been the art contest with original AmphibiaWeb designs 564 

(“#ArtYourAmphibian”) and a quarterly newsletter.  565 

 566 

Online portals for amphibians: Anfibios del Ecuador-BIOWEB.– 567 

With 656 amphibian species (as of November 2021), Ecuador is the third most species 568 

rich country in the world. In 2018, the zoology museum of the Catholic University of 569 

Ecuador (QCAZ) launched the website Anfibios del Ecuador 570 

(https://bioweb.bio/faunaweb/amphibiaweb) to give access to comprehensive 571 

information about all amphibian species of Ecuador, which represent nearly 8% of the 572 

amphibian species worldwide. Anfibios del Ecuador was inspired by AmphibiaWeb and 573 

has a similar scope but at a country level. Anfibios del Ecuador replaced the previous 574 

portal “AmphibiaWebEcuador,” which operated between 2010 and 2017. The website is 575 

currently part of a larger Ecuadorian biodiversity database called BIOWEB. 576 

 577 

Anfibios del Ecuador provides detailed species accounts, which include an extensive 578 

photo gallery with 206,785 images. Species phenotypic variation is well documented 579 

with an average number of photographs per species of 323 (maximum 8746 for 580 

Pristimantis achatinus) and a median of 144. Species distribution is documented with a 581 

database of over 50,000 geographic records from the literature and the specimen 582 

database of the QCAZ museum. Those records are used to build species distribution 583 

models under current and future environmental conditions using the MAXENT algorithm 584 

(Phillips et al., 2017).  585 

 586 

https://github.com/AmphibiaWeb/aw-assets
https://bioweb.bio/faunaweb/amphibiaweb
https://paperpile.com/c/8OFL1l/fUA2N
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The website also presents overviews of the biogeography, species richness, and the 587 

conservation status of the Ecuadorian amphibians. Overviews of the Natural Regions, 588 

geography and climate of Ecuador are also provided. Anfibios del Ecuador gives access 589 

to: (1) the database of the amphibian QCAZ collection, the largest for Ecuadorian 590 

amphibians (76,500 specimens), and (2) the QCAZ sound collection with 1,297 591 

recordings for 222 species (Table 1). 592 

 593 

Crucially, Anfibios del Ecuador is in Spanish and helps to provide scientific data in 594 

languages other than English. For most species, Anfibios del Ecuador presents the only 595 

comprehensive species accounts available online in Spanish. Since 2018, Anfibios del 596 

Ecuador has been connected with AmphibiaWeb through a web API that allows 597 

visualizing the Spanish-language species accounts and photographs from Anfibios del 598 

Ecuador within AmphibiaWeb. 599 

 600 

Anfibios del Ecuador has high visitor traffic (data from Google Analytics). Between June 601 

and November 2021, for example, it received approximately 16,000 monthly visitors 602 

from 106 countries or sovereignties. 51% of visitors shared demographic data, of which 603 

72% were women and 28% men. Younger age groups are the most frequent visitors: 604 

18–24 years old represented 37% of the visits, followed by 25–34 years (23%).  605 

 606 

Online portals for amphibians: AmphibiaChina.–  607 

In November of 2015, the Kunming Institute of Zoology, Chinese Academy of Sciences 608 

launched the website AmphibiaChina (www.amphibiachina.org) as an online database 609 

for Chinese amphibians (Che and Wang, 2016). China currently hosts 587 amphibian 610 

species (as of December 12, 2021) and many new species are being described each 611 

year. AmphibiaChina aims to provide a platform for sharing research progress and 612 

promoting accessibility to people and institutions (e.g., scientists, governmental 613 

agencies, and the public) who are interested in Chinese amphibians. Visitors to 614 

AmphibiaChina from 2016–2020 come from over 100 countries each year. 615 

 616 

https://paperpile.com/c/8OFL1l/A4lXP
https://paperpile.com/c/8OFL1l/A4lXP
https://paperpile.com/c/8OFL1l/A4lXP
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During the past five years, AmphibiaChina has undergone some structural changes, 617 

including a comprehensive update to version 2. AmphibiaChina has the following major 618 

sections: Classification, Species Identifications, Chinese Amphibian Tree of Life, News, 619 

and Photo Gallery. Users can navigate the Classification section using the hierarchical 620 

system of formal taxonomy or by geographic region (province). An up-to-date phylogeny 621 

of Chinese amphibians is provided. Comprehensive information on each species is 622 

available, and multiple species can be compared in a single page. The photograph 623 

gallery is extensive, with 9,042 images representing 433 species. AmphibiaChina also 624 

offers two online species identification tools: an amphibian image recognition module 625 

that uses deep learning and image processing techniques to automatically identify the 626 

species in user images, and a search engine which compares user-uploaded mtDNA 627 

sequences to a sequence database using BLAST. Since 2016, AmphibiaChina has 628 

linked reciprocally to accounts on AmphibiaWeb for species occurring in China. 629 

 630 

Online portals for amphibians: Amphibian Species of the World.–  631 

An online resource launched around the same time as AmphibiaWeb in 2000 that 632 

extended work first presented by Frost (1985), the Amphibian Species of the World 633 

database provides a critical bibliography of all amphibian taxonomy and species with 634 

reciprocal links to several of the other listed online resources here (Frost, 2021).  635 

 636 

Online portals for amphibians: IUCN Red List.–  637 

The International Union for Conservation of Nature (IUCN; https://www.iucnredlist.org) 638 

sets the most comprehensive global ranking and listing of conservation status for 639 

animal, plant, and fungi species including amphibians based on expert assessments. 640 

The Red List, as the compilation of conservation statuses is called, includes categories 641 

from Extinct and Critically Endangered to Least Concern. Species which lack enough 642 

information for a conservation status are listed as Data Deficient. Details on threats, 643 

trends in population, conservation actions, basically any information that helped 644 

determine the status are available on their website as are spatial range data. Many of 645 

these data are linked or incorporated in other portals listed here.  646 

 647 
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Online portals for amphibians: Amphibian Ark, Conservation Needs, and 648 

Conservation Evidence.–   649 

The Amphibian Ark organization was borne from the need to implement the IUCN 650 

Amphibian Conservation Action Plan (Gascon, 2007), specifically charged to focus on 651 

ex situ conservation, hence Amphibian Ark maintains and provides valuable husbandry 652 

and ex situ conservation publications on many amphibian species 653 

(https://www.amphibianark.org/husbandry-documents). Amphibian Ark and their 654 

partners also develop, manage and share Conservation Needs Assessments (CNA; 655 

https://www.conservationneeds.org) which integrate both in situ and ex situ 656 

conservation actions for species at either the regional or national level. Links to species-657 

specific CNAs are incorporated into AmphibiaWeb species pages as part of the 658 

Conservation Status table.  659 

 660 

Finally, more than 500 papers on conservation efforts with amphibians are collated in a 661 

Conservation Evidence database (https://www.conservationevidence.com), which has 662 

summary functions that allow users to review evidence for the most effective 663 

approaches to amphibian conservation. 664 

 665 

Online portals for amphibians: Amphibian Disease Portal.–   666 

Following the discovery of the pathogen Bsal in Europe (Martel et al., 2013), biologists 667 

in the USA, Mexico, and Canada formed the North American Bsal Task Force to 668 

address the potential for Bsal-caused chytridiomycosis outbreak in North America. 669 

AmphibiaWeb became the co-lead for the Data Management effort with the USDA 670 

Forest Service and launched an effort to to establish a new open-access repository and 671 

archive for both Bd and Bsal data (Koo et al., 2021) called the Amphibian Disease 672 

Portal (https://amphibiandisease.org). The portal addresses two urgent needs: 1) to 673 

create a sustainable, modernized repository to aggregate and rapidly share global data 674 

on the fungal pathogens of amphibians Bd and Bsal; and 2) to upgrade and migrate the 675 

discontinued Bd-Maps database (Olson et al., 2013) to a new repository. The 676 

Amphibian Disease Portal reciprocally links with AmphibiaWeb species pages to display 677 

species-specific Bd and Bsal data. Since its introduction in 2017, it now encompasses a 678 

https://paperpile.com/c/8OFL1l/1Q0V
https://www.conservationevidence.com/
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https://paperpile.com/c/8OFL1l/5QlSz
https://amphibiandisease.org/
https://paperpile.com/c/8OFL1l/0bYY1


23 
 

broad global and temporal coverage of Bd (Fig. 9) and Bsal data (for details, see Olson 679 

et al., 2021; Koo et al., 2021). The amphibian disease portal contains Bd samples from 680 

all but five amphibian families (missing are two frog, two caecilian, and one salamander 681 

family) and positive Bd samples from all but sixteen amphibian families (Fig. 5). 682 

Currently, the Disease Portal dashboard displays dynamic counts of sample data by 683 

country, species and diseases tested and provides species-specific pie charts and links 684 

to original, downloadable datasets.  685 

 686 

Discussion 687 

 688 

Current picture and future projections for amphibian biodiversity.– 689 

The pace of amphibian species descriptions continues unabated, with ~150 new 690 

species being described each year. However, our picture of amphibian diversity is 691 

changing in some predictable ways. The majority of new species are being described in 692 

Latin America (Vasconcelos et al., 2019) and Asia and specifically are concentrated in 693 

diverse families such as the Strabomantidae and Megophryidae. For example, the 694 

number of new species listed on AmphibiaChina increased from just four new species in 695 

2015 (Murphy, 2016), to 41 new species reported in 2020 (Chen et al., 2021). 696 

Furthermore, our understanding of the relationships among amphibian families remains 697 

largely stable, however there remain several diverse lineages, including both 698 

subfamilies and genera, for which thorough and synoptic revisionary phylogenetic 699 

studies are needed.  700 

 701 

On the other end of the spectrum from the description of previously unknown amphibian 702 

diversity, the study of amphibian declines has continued to be a central theme in 703 

amphibian biology. However, though the role of habitat loss and modification as 704 

principal drivers of amphibian declines is not a new finding (IUCN, 2021), relative to 705 

their importance these pivotal drivers have been deemphasized in amphibian 706 

conservation research (Green et al., 2020). Even still, over the last five years large-707 

scale meta-analyses have confirmed several basic expectations of the repercussions of 708 

habitat degradation for amphibians : (i) land use change decreases amphibian species 709 

https://paperpile.com/c/8OFL1l/5QlSz+DT20E
https://paperpile.com/c/8OFL1l/5QlSz+DT20E
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richness (Cordier et al., 2021), (ii) amphibian abundance declines towards the edge of 710 

fragmented habitat (Schneider-Maunoury et al., 2016), and (iii) habitat conversion tends 711 

to hurt specialist amphibians, driving the phylogenetic homogenization of communities 712 

(Thompson et al., 2016; Nowakowski et al., 2018a). Lamentably, the most amphibian-713 

rich communities undergo the most species loss and turnover after habitat modification, 714 

and communities fail to recover completely over time (Thompson and Donnelly, 2018; 715 

Goldspiel et al., 2019; Cordier et al., 2021). Models of the impact of habitat loss and a 716 

'middle of the road' climate and development scenario predict that 10% of known 717 

amphibians will be lost by 2070 (Powers and Jetz, 2019). We cannot prevent the loss of 718 

amphibian species to climate change altogether, but protecting areas from further land 719 

use change will be critical to mitigating further losses (Chen et al., 2017). 720 

Among diseases driving amphibian declines, a primary concern over the past five years 721 

has continued to be chytridiomycosis, the disease caused by the fungal pathogens 722 

Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). Some long-term 723 

monitoring projects of Bd-exposed amphibian species or communities are reaching their 724 

tenth or twentieth year, making large-scale meta-analyses possible. Bd has now been 725 

detected in 55% of amphibian species and 69% of countries sampled (Olson et al., 726 

2021), contributing to declines across many families (Scheele et al., 2019)—though 727 

disentangling the extent of its impact is still challenging (Lambert et al., 2020). In some 728 

sites, populations declined or were extirpated synchronously with Bd epizootics, and 729 

have not recovered under the burden of Bd and additional stressors (Adams et al., 730 

2017b; Bosch et al., 2021). Other populations may be recovering, despite the continued 731 

presence of Bd (Knapp et al., 2016; Seimon et al., 2017; Voyles et al., 2018). The 732 

broader impacts of amphibian declines on ecosystems are largely unknown, though 733 

steep amphibian declines in Panama appear to have induced a trophic cascade, driving 734 

declines in snake diversity and body condition (Zipkin et al., 2020). 735 

Species recovering after Bd-associated declines appear to have altered their response 736 

to Bd (Palomar et al., 2016; Knapp et al., 2016; Kosch et al., 2019), with instances of 737 

positive directional selection documented in the major histocompatibility complex (MHC) 738 

and other immunogenes (Savage and Zamudio, 2016; Kosch et al., 2016; Voyles et al., 739 
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2018), while species continuing to decline in the wild remain susceptible to Bd despite 740 

prolonged exposure (Catenazzi et al., 2017). Such continued declines might be 741 

particularly common in systems with additional stressors like climate change, pollution, 742 

and habitat fragmentation, which synergistically impair amphibians' capacity to respond 743 

to any individual stressor (Nowakowski et al., 2016; Scheele et al., 2016; Rollins-Smith, 744 

2017; Cohen et al., 2017, 2019; Adams et al., 2017a; Greenspan et al., 2017; McCoy 745 

and Peralta, 2018).  746 

Unlike Bd, which is no longer causing mass amphibian die-offs in most regions, Bsal 747 

continues to drive steep local declines and extirpations (Schmeller et al., 2020; Thein et 748 

al., 2020; Vences and Lötters, 2020). It has spread across Northern Europe, even in 749 

areas with low host densities, causing collapses in susceptible species (Spitzen-van der 750 

Sluijs et al., 2016; Schmidt et al., 2017; Stegen et al., 2017). Alarmingly, we do not yet 751 

have evidence for acquired immunity to Bsal, and Bsal pathogenicity has not attenuated 752 

over time (Stegen et al., 2017). Herpetologists continue to monitor for Bsal elsewhere in 753 

the world, as it could drive devastating biodiversity decline in places like North America, 754 

which contains half of global salamander diversity (Richgels et al., 2016; Iwanowicz et 755 

al., 2017; Parrott et al., 2017; Yap et al., 2017; Waddle et al., 2020). Continued 756 

widespread surveillance for Bd and Bsal, and platforms promoting the accessibility of 757 

these data (see Community resources section), will help us improve our capacity to 758 

mitigate the impacts of these pathogens through monitoring, policy, and management. 759 

 760 

Challenges and opportunities in amphibian research.– 761 

Large amphibian genome sizes remain one of the greatest challenges in amphibian 762 

research. The size and repetitive content of amphibian genomes has hindered whole-763 

genome sequencing efforts (Sun et al., 2020). For comparison, >500 fish genomes 764 

(Randhawa and Pawar, 2021; average size of 808 Mb) and >300 bird genomes have 765 

been sequenced (Feng et al., 2020; average size of 1.13 Gb, (Randhawa and Pawar, 766 

2021), yet only 28 amphibian genomes are available. The average sizes of sequenced 767 

amphibian genomes (excluding contig-level assemblies (4.03 Gb for Anura [N = 18], 768 

33.99 Gb for Caudata [N = 1], 4.75 Gb for Gymnophiona [N = 3]) are below the average 769 

amphibian genome sizes (4.28 Gb for Anura, 35.95 Gb for Caudata, 6.44 Gb for 770 
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Gymnophiona, based on values reported in Liedtke et al., 2018. Nevertheless, the 771 

number of species represented in NCBI sequence databases continues to increase, as 772 

does the use of high-throughput technologies for non-model species. A concerted effort 773 

to review and update the taxonomic identities of GenBank sequences will become more 774 

and more necessary as the database continues to grow. 775 

 776 

We expect to see exponential growth in genomic data for amphibians in the coming 777 

years, especially as more reference genomes are made available. Moreover, we expect 778 

growth in the development of new tools for other emerging amphibian model species, 779 

such as medical applications arising from research on regeneration in Notophthalamus 780 

viridescens (Joven et al., 2019), freezing tolerance in Rana sylvatica (Joanisse and 781 

Storey, 1996; Gerber et al., 2016; Costanzo, 2019), and chytrid disease in Atelopus 782 

zeteki (McCaffery et al., 2015; Cohen et al., 2017; Byrne et al., 2021), along with even 783 

more innovative advances in existing model systems like the self-replicating biological 784 

robots created from Xenopus tissue (“xenobots”; Kriegman et al., 2021). These 785 

advances in genetic tools paired with more accessible and inexpensive sequencing 786 

technologies will accelerate research in areas currently underrepresented in amphibian 787 

publications, such as research focused on phylogenomics, microbiomes, and eDNA.   788 

 789 

Although there is a wealth of accessible amphibian data online (Fig. 5), we still lack 790 

basic natural history and phenotypic data for a large portion of amphibian genera and 791 

families. For example, although most anuran families have calls recorded, certain 792 

families that contain species thought or known to call (Ceuthomantidae, Ranixalidae, 793 

Odontobatrachidae, Conrauidae, Petropedetidae, Brevicipitidae, and Heleophrynidae) 794 

have no call records in the databases examined here and many other families 795 

(Arthroleptidae, Craugastoridae, Megophryidae, Micrixalidae, Phrynobatrachidae, 796 

Pyxicephalidae, and Telmatobiidae) have calls recorded for fewer than 10% of species. 797 

Interviews conducted at two herpetology conferences found that nearly 80% of 798 

herpetologists did not catalog collected sound data because they did not have the time 799 

or expertise, or felt that the efforts were unnecessary (Dena et al., 2020). Additionally, 800 

although all amphibian families (except Chikilidae) have publicly available CT-scans for 801 
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at least one species, most families (41 of 74 total) have CT-scans available for fewer 802 

than one quarter of their family’s species. Ecological and natural history databases often 803 

lack information for many genera and families (e.g., ~80% missing data in AmphiBIO; 804 

Oliveira et al., 2017), and Paluh et al. (2021) recently found that 161 of 456 total frog 805 

genera lacked any dietary records from the wild. Furthermore, while data exist for Bd 806 

and Bsal for many amphibian families, much of those data are not yet in a centralized 807 

database like the Amphibian Disease Portal. These data deficits and the lack of 808 

integration among databases make comparative work and synthetic studies difficult, 809 

putting amphibian research at a disadvantage compared to other tetrapod clades with 810 

more complete databases (e.g., EltonTraits for birds and mammals; Wilman et al., 811 

2014). Increasing natural history studies, and storing natural history data in publicly 812 

accessible, easy-to-download databases are necessary aids to amphibian research and 813 

conservation. In addition, it is crucially important to link data and specimens across 814 

repositories so that researchers and policy-makers can integrate and track different data 815 

types (e.g., DNA sequences, CT-scans, audio recordings, pathogen data) for the same 816 

individual or population.  817 

 818 

Publication biases highlight obstacles to research progress.– 819 

Inequality in the demography of amphibian research can sideline diverse and locally 820 

relevant viewpoints that would otherwise aid in tackling amphibian research challenges. 821 

Numerous studies published from2016 to 2020 have shown that, as in other STEM 822 

(science, technology, engineering, and mathematics) disciplines (Huang et al., 2020; 823 

Urbina-Blanco et al., 2020; Maas et al., 2021), female authors are still under-824 

represented in peer-reviewed publications of amphibian biology (Rock et al., 2021). 825 

Nevertheless, the proportion of female authors in herpetological research has increased 826 

over time, from 8% in 1973–1982, 15% in 1983–1993 (Wilson, 1998) to 31% in 2010–827 

2015 and 33% in 2016–2019 (Rock et al., 2021), at a remarkably constant rate 828 

(although we note that these two studies considered different datasets and journals).  829 

 830 

Several factors likely underlie these patterns of underrepresentation of female authors. 831 

Within herpetology, papers with male first or last authors are less likely to have female 832 
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co-authors than papers with female first or last authors (Salerno et al., 2019; Rock et al., 833 

2021; Grosso et al., 2021). The trend of increasing numbers of women leaving 834 

academia as their career progresses (the “leaky pipeline”) might partially explain the 835 

discrepancy in the relatively faster growing proportion of female first versus last authors 836 

found by Rock and colleagues (2021). A low proportion of senior female academics 837 

affects many aspects of publishing in herpetology through gender inequity of editorial 838 

boards, leadership positions, and committees of professional societies (Liévano-Latorre 839 

et al., 2020; Chuliver et al., 2021; Grosso et al., 2021). Although we lack a concrete 840 

understanding of the primary barriers to authorship inequality in amphibian research 841 

specifically, many are likely consistent with barriers and bias found in other STEM 842 

disciplines, such as male homophily (Helmer et al., 2017; Salerno et al., 2019; Rock et 843 

al., 2021; Grosso et al., 2021), attrition of women and underrepresented groups 844 

(Chuliver et al., 2021; Rock et al., 2021), bias in peer review (Silbiger and Stubler, 845 

2019), and the culture of the geographic location of the authors (Fox et al., 2018; Huang 846 

et al., 2020; Maas et al., 2021). In addition, region-specific gaps in amphibian data (e.g., 847 

trait data) indicate geographic bias in amphibian research, further accentuating the 848 

importance of increased support for amphibian research and equitable collaborations 849 

worldwide.  850 

 851 

Double-blind reviews are a potential solution to minimize bias during the reviewing 852 

process (Tomkins et al., 2017) and some herpetological journals are currently 853 

transitioning to double-blind reviews: e.g., Revista Latinoamericana de Herpetología 854 

and Herpetological Conservation and Biology, The Herpetological Journal (UK), 855 

Ichthyology & Herpetology. Amphibian research would benefit from further analyses of 856 

amphibian-specific publishing inequalities for identities beyond gender and 857 

assessments of whether changing publishing practices can affect change.  858 

Using centralized portals for amphibian biology to translate research into policy 859 

and management.– 860 

Amphibian conservation biology is a crisis discipline: the urgency of amphibian declines 861 

means that difficult decisions must be made even in cases with deep uncertainty. We no 862 
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longer speculate on the prospect of a sixth mass extinction but rather document its 863 

progress (Wake and Vredenburg, 2008; Ceballos et al., 2015). One of the motivations 864 

for this review is to help consolidate major findings, trends, and public databases that 865 

can have immediate impact on policy and management. We urge for increased adoption 866 

of adaptive management practices by relevant agencies, non-governmental 867 

organizations (NGOs), and research units, where decisions are made under best 868 

current information, closely monitored, and then actions are updated accordingly 869 

(Meredith et al., 2016; Berger et al., 2016; Grant et al., 2016; Adams et al., 2018). Here, 870 

we highlight public databases for molecular (NCBI), acoustic (Table 1), phenotypic and 871 

natural history data (Trochet et al., 2014; Oliveira et al., 2017; Mendoza-Henao et al., 872 

2019; Moore et al., 2021), as well as expert-curated reference databases 873 

(AmphibiaWeb, AmphibiaWebEcuador, AmphibiaChina, IUCN Red List, and 874 

Conservation Evidence), that can be vital tools in designing and updating adaptive 875 

management strategies by centralizing and collating information relevant to 876 

conservation-oriented policy and management from a diffuse literature. 877 

An example of an exciting new opportunity to deploy these public databases in the 878 

interests of more effective, scientifically-informed conservation is provided by global 879 

30x30 initiatives—commitments by governments to protect 30% of the Earth's land and 880 

oceans by 2030 (Kubiak, 2020; HAC, 2021). If new 30x30 protected areas are to serve 881 

amphibian conservation needs, sites with coverage of amphibian functional, 882 

phylogenetic, and taxonomic diversity should be selected, a process greatly facilitated 883 

by centralized databases. Additionally, sites that alleviate cataloged decline drivers 884 

(e.g., selecting sites that create climate corridors to protect species threatened by 885 

climate change) could be a focus (Gonçalves et al., 2016; Subba et al., 2018; Zellmer et 886 

al., 2020). In cases where Bd has been detected, in situ mitigation has had such limited 887 

success that the most robust strategy for improving amphibian outcomes may be to 888 

address other synchronous stressors (Knapp et al., 2016; Fisher and Garner, 2020). For 889 

example, restoring or creating water features, promoting the development of 890 

microhabitat to buffer amphibians against climate change, removing invasive species, 891 

managing pollution from activities like mining, and addressing barriers to amphibian 892 

movement are all methods that can promote amphibian population health (Reeves et 893 
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al., 2016; Nowakowski et al., 2016, 2018b; Hamer, 2016; Laufer and Gobel, 2017; 894 

Arntzen et al., 2017; Magnus and Rannap, 2019; Goldspiel et al., 2019; Mayani-Parás 895 

et al., 2019; Simpkins et al., 2021). 896 

Conclusion.– 897 

The wealth of amphibian data offers both opportunities and challenges in the coming 898 

years. New species continue to accumulate at a steady rate and genomic data is 899 

exponentially increasing. Conservation continues to be a major focus in amphibian 900 

research and the most recent findings highlight both the role of adaptive management 901 

and the importance of managing multiple stressors. To facilitate research and 902 

conservation, we urge scientists to continue building and contributing to centralized 903 

public databases capable of informing conservation decision-making. We aim to provide 904 

a timely overview of research trends and major databases with the idea that the 905 

resources and gaps highlighted here will spark and facilitate basic and applied 906 

amphibian research. Finally, the overview of literature and data resources presented 907 

herein provides a framework that can be adapted for other organism clades and 908 

revisited over time to highlight major advances and identify opportunities for research 909 

growth.  910 
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Figure Legends 
 
Figure 1. Trends in amphibian research from 2016 through 2020 by (a) proportion 

change in publication number and (b) absolute number of publications in each biological 

subfield. The additional categories of “amphibian” and “background” in panel A refer to 

the proportional change of all amphibian publications and all publications (not 

amphibian-specific) from 2016 to 2020.  

 

Figure 2. The number of species in each Order threatened by different drivers of 

amphibian decline, where each species can be represented by multiple drivers. IUCN 

conservation status categories are: extinct or extinct in the wild (EX/EW), critically 

endangered (CR), endangered (EN), vulnerable (VU), near threatened (NT), least 

concern (LC), and data deficient (DD). Of species with accounts on AmphibiaWeb, 

53.3% (1261 of 2,364 species) have data on at least one factor driving their decline 

 

Figure 3. Images of several new species described in the last five years. (a) Ichthyophis 

benjii from Mizoram, India (Lalremsanga et al., 2021), photo by Hmar Tlawmte 

Lalremsanga; (b) Hydromantes samweli (Bingham et al., 2018), holotype from Shasta 

County, CA, USA, photo by Robert Hansen; (c) Nasutixalus medogensis (Jiang et al., 

2016), holotype from Medog, Tibet, China, photo by Ke Jiang ; (d) Rhinella 

lilyrodriguezae (Cusi et al., 2017), holotype from Cordillera Azul National Park, Perú, 

photo by Anton Sorokin; (e) Pristimantis verrucolatus (Páez and Ron, 2019), holotype 

from Azuay Province, Ecuador, photo by Santiago Ron; (f) Mini mum (Scherz et al., 

2019), holotype from Manombo Special Reserve, Madagascar, photo by Mark Scherz. 

 

Figure 4. Additions of amphibian species over time. (a) Geographic heat map and point cluster 

of new species described between 2016 and 2020. The countries with the highest numbers of 

new species in this time period are China (100 species), Brazil (95 species), Ecuador (67 

species), Madagascar (56 species), and Peru (56 species). Inset graphs indicate the 

cumulative number of new species described by region between 2007 and 2020; years 2016–

2020 are highlighted with the blue rectangle; y-axis scale indicated for Latin America is the 
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same for all insets. Total cumulative number of (b) species and (c) genera in AmphibiaWeb 

taxonomy database, split by order. (d) Cumulative numbers of formal and unspecified 

(informal) species names in the GenBank Taxonomy database. Examples of unspecified 

names are "Hyla cf arenicolor" or "Hyla sp. B". See supplemental data files for data used to 

generate this figure.  
 

Figure 5. Phylogenetic heat map showing the number and proportion of species within 

each family that were described in 2016–2020 and the proportion of species within each 

family that have accessible phenotypic, genetic, and disease data. Lighter to darker 

colored matrix cells represent lower to higher species-level representation for each 

family and white cells indicate that no species from the corresponding family have those 

data types available. From left to right in the matrix: 1) the proportion of new species 

added in 2016–2020, 2) the proportion of species with call data available in one of the 

seven databases listed in Table 1, 3) the proportion of species with microCT data 

available on morphosource.org or Phenome10K, 4) the proportion of species with 

sequenced genomes, 5) the proportion of species with sequences in NCBI GenBank 6) 

the proportion of species with sequences in the NCBI Sequence Read Archive 7) the 

proportion of species in the Amphibian Disease Portal that have been tested for Bd, 8) 

the proportion of species in that have positive tests for Bd documented in the Amphibian 

Disease Portal. Data used to generate this figure can be found in Table S5. 

 

Figure 6. (a) Cumulative number and (b) size of sequenced amphibian genomes by 

year. The blue box highlights the years 2016–2020. 

 

Figure 7. The (a) cumulative amount of data and (b) number of studies in the Sequence 

Read Archive, separated by model (Ambystoma mexicanum, Xenopus laevis, Xenopus 

tropicalis) and non-model (all other) species (c) total number of species represented in 

the Sequence Read Archive. Years missing data points indicate that no data were 

submitted that year for that order. 
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Figure 8. The cumulative number of mitochondrial DNA (mtDNA), nuclear DNA (nDNA), 

and messenger RNA (mRNA) sequences, as well as species, added to the GenBank 

Nucleotide database from 1982 to 2020, highlighting the last five years, 2016–2020, in 

blue. Some of the projects that contributed substantially to increase sequence numbers 

are highlighted on the figure; see text for references. Years missing data points indicate 

that no data were submitted that year for that order. 

Figure 9. Batrachochytrium dendrobatidis samples in the Amphibian Disease Portal. (a) 

A log-scale histogram of Bd swab counts, binned by the five-year time span in which the 

amphibian swabbed was captured. (b) A stacked histogram showing the proportional 

representation of swabs taken from different continents, binned by the same five-year 

blocks. Bsal data archived in the portal only includes sample data in the US (Waddle et 

al., 2020) and from the Bsal Consortium Germany (Vences and Lötters, 2020). 

 

Supplementary File information 
 

Figure S1. Number and proportion of amphibian publications within each research area 

that mention model organisms (Xenopus laevis, Xenopus tropicalis, OR Ambystoma 

mexicanum) in their abstract. 

 

Table S1. Literature search results  

Table S2. Number of publications by journal  

Table S3. Number of amphibian publications by language 

Table S4. Amphibian-Genomes - metadata for the 28 amphibian species with genomes 

published when this manuscript was prepared, including the 7 released as of July 2021 

Table S5. Family-level_PhylogeneticHeatMapData - data used to generate figure 5 

 

Supplementary Data files uploaded “not for review” 
 
Data files  

1. ncbi_nuccore-data.csv - metadata for all sequences deposited into the NCBI 
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Nucleotide Core between 1982 and 2020, downloaded on 27 June 2021 

2. ncbi_taxonomy-database.csv - NCBI taxonomy database, downloaded on 21 

June 2021 

3. sra_metadata-20210621.txt - metadata for all sequences deposited into the NCBI 

SRA between 2008 and 2020, downloaded on 21 June 2021 

4. GenBank-Amphib.tsv - raw and cumulative counts of specified and unspecified 

amphibian taxa represented by sequences in GenBank, downloaded on 28 

October 2021 

5. AWeb-taxonomy-archive-master_2012-2020.zip - monthly lists of amphibian 

species represented in AmphibiaWeb, spanning November 2012 until December 

2020, downloaded on 14 May 2021 

6. AmphibiaWeb_newspecies.csv - list of new species described by year of 

description, obtained from AmphibiaWeb 

7. orders_accounts.csv - data on AmphibiaWeb species accounts available 

8. Aweb-threats_2021-09-21.csv - data on factors driving amphibian declines as 

logged in AmphibiaWeb species accounts, downloaded on 21 September 2021 

9. Amphibian_disease_data_processed.csv - data from the Amphibian Disease 

Portal 

10. DiseaseData_ForPhylogeneticHeatMap.csv - count species sampled is the 

number of species sampled within each family, disease tested is always just 

"Bd", Bd tested is the number of Bd swabs taken for members of that family, Bd 

positive is the number of those tested Bd swabs that were Bd+ for that family 

11. SpeciesLevel_CallData.csv - number of calls for each amphibian species 

contained in each of the call databases in Table 1  

12. Morphosource_TaxonomyCTscans_2021126.csv - all Anura, Caudata, and 

Gymnophiona CT scans on morphosource.org 

13. Phenome10k_CTscans.csv - all Anura, Caudata, and Gymnophiona CT scans on 

Phenome10k.org 

 

 

R scripts 
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1. Figs1andS1_LiteratureSearchSummary.R R script to generate Figures 1 and S1 

2. Fig2_ConservationScripts.R Scripts in R to create figures for conservation and 

disease segments of manuscript 

3. Fig5_PhylogeneticHeatMapData.R R script to generate Figure 5 

4. Figs6-8_genetic-data.R R script to generate Figures 6-8 



Acknowledgements. We are grateful to current and past UC Berkeley AmphibiaWeb 
undergraduate apprentices who regularly compile amphibian species spatial data such 
as type localities and range maps for AmphibiaWeb and this study, especially Julia 
Chen, Julianne Oshiro, Alexandra Perkins, Elizabeth Pyle, Rigel Sison, and lead GIS 
assistant Zoe Yoo. We also thank AmphibiaWeb team members that read and provided 
comments on the manuscript, specifically Ann Chang. Rafael Márquez and Laura 
González Ortiz provided access to the database of recordings from Fonozoo; Mike 
Webster and Jay McGowan provided access to the database of the Macaulay Library. 
We thank Connor Tumelty for initial work compiling data on amphibian genomes. We 
thank NSF for funding several large-scale research initiatives that contributed much of 
the data cited herein, namely: openVertebrate (oVert) Thematic Collections Network 
(NSF DBI-1701714), MorphoSource (supported by NSF DBI-1902242), AmphibiaTree 
project (NSF DEB-0334952). We thank the USDA Forest Service for initial seed funding 
for the Amphibian Disease portal (Cooperative Agreement #15-CR-11261953-098 to 
MSK, UC Berkeley). MCW was supported by the Utah Agricultural Experiment Station 
(UTA01574). ES was supported by an NSF GRFP and the Charles W. Woodworth 
Fellowship through the Rausser College of Natural Resources, UC Berkeley. RDT was 
supported by start-up funds from UC Berkeley. Finally we dedicate this paper to David 
Wake, late founder of AmphibiaWeb and evolutionary biologist and herpetologist; 
discussions with David Wake often were as far-ranging, in-depth, and current on the 
state of the amphibia as one could want. 

Acknowledgments Click here to
access/download;Acknowledgments;Acknowledgements.docx

https://www.editorialmanager.com/asih/download.aspx?id=24867&guid=6e190230-68a9-4857-8a53-d9bcdfc8b3c3&scheme=1
https://www.editorialmanager.com/asih/download.aspx?id=24867&guid=6e190230-68a9-4857-8a53-d9bcdfc8b3c3&scheme=1


Table 1. The most comprehensive amphibian call databases available online. For geographic regions, Af = African, Au = 
Australians, Ne = Nearctic, Nt=neotropical, Or = Oriental, Pa= Paleartic. Unless otherwise noted, all recordings are 
available for download online. 
Database Maintained by No. 

specie
s 

No. 
calls 

Regions represented 
(% of calls) 

Accessibility for researchers 

Fonozoo Museo Nacional de 
Ciencias Naturales de 
Madrid, Spain 

886 9,794 Nt (49%), Af (29%), 
Pa (16%), Or (4%), 
Ne (1%); 63 countries 

1098 can be played online. Other 
recordings require an online form and 
in some cases author permission. 

Macaulay Library Cornell Lab of 
Ornithology 

788 11,46
0 

Nt (38%), Or (6%), Ne 
(52%); 73 countries 

Recordings are available for download 
online through a request form.  

Fonoteca 
Neotropical Jacques 
Vielliard 

Audiovisual 
Collection,Museu de 
Diversidade Biológica 

568 5,959 Nt (>99%), Pa (<1%), 
Af (<1%); 19 countries 

89% can be downloaded after curator 
authorization; 11% are available with 
author permission. 

AmphibiaWeb Museum of Vertebrate 
Zoology, UC Berkeley 

557 813 Af (34%), Nt (31%), 
Au (14%), Ne (11%), 
Or (8%), Pa (3%); 59 
countries 

Recordings are available for download 
online.  

Anfibios del 
Ecuador BIOWEB 

QCAZ Museum of 
Pontificia Universidad 
Católica del Ecuador 

222 1297 Nt (100%); nearly all 
from Ecuador 

Recordings are available for direct 
download online.  

FrogID Australian Museum  182 126,1
69 

Au (100%); all from 
Australia 

Recordings are available for direct 
download online.  

La Sonothèque Muséum National 
d’Histoire Naturelle 

61 953 Pa (75%), Nt (21%), 
Ne (2%), Af (1%); 14 
countries 

Recordings are available for direct 
download online. 

Chinese National 
Specimen Resource 
Sharing Platform 

Chinese National 
Specimen Information 
Infrastructure 

35 69 Or (100%); all from 
China 

Recordings are not available for 
download.  
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Rhinatrematidae (2/14)
Ichthyophiidae (0/57)

Scolecomorphidae (0/6)
Chikilidae (0/4)

Herpelidae (1/10)
Caeciliidae (2/43)

Typhlonectidae (0/14)
Indotyphlidae (2/24)
Siphonopidae (2/28)
Dermophiidae (0/15)

Hynobiidae (17/86)
Cryptobranchidae (0/4)

Sirenidae (1/5)
Salamandridae (11/127)
Dicamptodontidae (0/4)
Ambystomatidae (0/32)

Proteidae (2/8)
Rhyacotritonidae (0/4)

Plethodontidae (35/492)
Amphiumidae (0/3)

Ascaphidae (0/2)
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Pyxicephalidae (9/87)
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TableS1 - Literature Search Results 

Search term Category 
20
16 

20
17 

20
18 

20
19 

20
20 

2016-
2020_Tota
l_ViaSearc
h_ 

Totals_Including 
"Xenopus laevis" OR 
"Xenopus tropicalis" OR 
"Ambystoma 
mexicanum" 

percent_
change 

percent_
model 

"phylogenomic" OR 
"phylogenomics" 

phylogen
omic(s) 4 7 5 7 9 32 0 225 0 

"fossil" or "fossils" fossil(s) 51 40 41 37 48 217 1 
94.1176
4706 

0.46082
9493 

"ecology" ecology 97 
11

2 
10

2 
11

1 
13

8 560 3 
142.268
0412 

0.53571
4286 

"microbiome" 
microbio
me 7 17 8 26 25 83 1 

357.142
8571 

1.20481
9277 

"phylogenetic" OR 
"phylogenetics" 

phylogen
etic(s) 

17
0 

18
5 

19
3 

21
2 

23
9 999 17 

140.588
2353 

1.70170
1702 

"climate" climate 
13

0 
13

2 
12

8 
17

8 
16

2 730 13 
124.615
3846 

1.78082
1918 

"conservation" 
conserva
tion 

30
6 

32
5 

31
3 

40
0 

41
3 1757 34 

134.967
3203 

1.93511
6676 

"diet" diet 64 71 58 81 96 370 8 150 
2.16216
2162 

"trait" or "traits" trait(s) 
14

9 
17

1 
14

5 
19

7 
17

6 838 19 
118.120
8054 

2.26730
3103 

"behavior" OR 
"behaviour" behavior 

20
5 

22
6 

18
6 

20
3 

20
3 1023 30 

99.0243
9024 

2.93255
132 

"eDNA" eDNA 11 17 16 23 19 86 3 
172.727
2727 

3.48837
2093 

"genetic" OR 
"genetics" 

genetic(s
) 

23
3 

24
6 

25
4 

29
8 

28
1 1312 62 

120.600
8584 

4.72560
9756 

Amphibian_Base 
Amphibia
n_Base 

24
68 

25
98 

25
92 

27
01 

28
49 13208 629 

115.437
6013 

4.76226
5294 

"morphology" 
morpholo
gy 

11
4 

11
3 

12
1 

14
5 

17
2 665 36 

150.877
193 

5.41353
3835 

"genetic" OR 
"genetics" OR 
"genomic" OR 
"genomics" 

genetic(s
) OR 
genomic(
s) 

26
7 

27
6 

29
9 

34
3 

32
1 1506 84 

120.224
7191 

5.57768
9243 
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"physiology" 
physiolog
y 34 39 42 46 46 207 18 

135.294
1176 

8.69565
2174 

"genomic" OR 
"genomics" 

genomic(
s) 55 58 62 75 67 317 32 

121.818
1818 

10.0946
3722 

"development" 
develop
ment 

34
7 

37
3 

36
3 

38
3 

39
9 1865 238 

114.985
5908 

12.7613
941 

"cell" AND 
"molecular" 

cell AND 
molecula
r 41 43 32 49 40 205 48 

97.5609
7561 

23.4146
3415 

background pub rate 

backgrou
nd pub 
rate 

27
12
54

8 

28
25
89

9 

28
95
83

5 

31
30
32

1 

31
22
76

5 14687368 1713 
115.122
9398 

0.01166
3084 

 



TableS2 - Amphibian Publications By Journal 

2016  2020  2016-2020  

Journal Number Journal Number Journal Number 

PLOS ONE 84 SCIENTIFIC REPORTS 55 PLOS ONE 317 

SCIENTIFIC REPORTS 47 ZOOTAXA 46 SCIENTIFIC REPORTS 247 

MITOCHONDRIAL 
DNA PART A 40 PLOS ONE 45 ZOOTAXA 186 

COPEIA 39 
ECOLOGY AND 
EVOLUTION 38 PEERJ 174 

JOURNAL OF 
HERPETOLOGY 34 PEERJ 32 

ECOLOGY AND 
EVOLUTION 172 

ZOOTAXA 30 
AMPHIBIAN REPTILE 
CONSERVATION 26 

HERPETOLOGICAL 
CONSERVATION AND 
BIOLOGY 126 

AMPHIBIA REPTILIA 23 HERPETOLOGICA 25 
JOURNAL OF 
HERPETOLOGY 117 

ASIAN 
HERPETOLOGICAL 
RESEARCH 21 ZOOKEYS 25 COPEIA 105 

ECOLOGY AND 
EVOLUTION 21 

ASIAN 
HERPETOLOGICAL 
RESEARCH 23 AMPHIBIA REPTILIA 104 

PEERJ 21 

JOURNAL OF 
EXPERIMENTAL 
BIOLOGY 23 

JOURNAL OF 
EXPERIMENTAL 
BIOLOGY 98 

HERPETOLOGICAL 
CONSERVATION AND 
BIOLOGY 18 

JOURNAL OF 
HERPETOLOGY 23 

MOLECULAR 
ECOLOGY 92 

AQUATIC 
TOXICOLOGY 17 

MOLECULAR 
ECOLOGY 23 

BIOLOGICAL 
CONSERVATION 86 

BIOLOGICAL 
CONSERVATION 17 AMPHIBIA REPTILIA 21 HERPETOLOGICA 81 

JOURNAL OF 
EXPERIMENTAL 
BIOLOGY 17 

BIOLOGICAL 
CONSERVATION 20 

HERPETOLOGICAL 
JOURNAL 80 

BEHAVIORAL 
ECOLOGY AND 15 

HERPETOLOGICAL 
CONSERVATION AND 20 

ASIAN 
HERPETOLOGICAL 78 
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SOCIOBIOLOGY BIOLOGY RESEARCH 

ECOSPHERE 15 COPEIA 19 ZOOKEYS 78 

BIOLOGY LETTERS 14 
GLOBAL ECOLOGY 
AND CONSERVATION 18 SALAMANDRA 73 

HERPETOLOGICAL 
JOURNAL 14 SALAMANDRA 18 

BIOLOGICAL 
JOURNAL OF THE 
LINNEAN SOCIETY 72 

MOLECULAR 
ECOLOGY 14 

GENERAL AND 
COMPARATIVE 
ENDOCRINOLOGY 16 

PROCEEDINGS OF 
THE ROYAL SOCIETY 
B BIOLOGICAL 
SCIENCES 72 

ACTA 
HERPETOLOGICA 13 

BIOLOGICAL 
JOURNAL OF THE 
LINNEAN SOCIETY 15 

GENERAL AND 
COMPARATIVE 
ENDOCRINOLOGY 71 

ANIMAL BEHAVIOUR 13 EVOLUTION 15 

MOLECULAR 
PHYLOGENETICS AND 
EVOLUTION 68 

BIOLOGICAL 
JOURNAL OF THE 
LINNEAN SOCIETY 13 ANIMALS 14 

PROCEEDINGS OF 
THE NATIONAL 
ACADEMY OF 
SCIENCES OF THE 
UNITED STATES OF 
AMERICA 67 

CONSERVATION 
BIOLOGY 13 DIVERSITY BASEL 14 

DISEASES OF 
AQUATIC ORGANISMS 66 

ENVIRONMENTAL 
SCIENCE AND 
POLLUTION 
RESEARCH 13 

ENVIRONMENTAL 
POLLUTION 14 

RUSSIAN JOURNAL 
OF HERPETOLOGY 65 

GENERAL AND 
COMPARATIVE 
ENDOCRINOLOGY 13 

HERPETOLOGICAL 
JOURNAL 14 

JOURNAL OF 
BIOGEOGRAPHY 64 

HERPETOLOGICA 13 
JOURNAL OF ANIMAL 
ECOLOGY 14 

ENVIRONMENTAL 
TOXICOLOGY AND 
CHEMISTRY 61 

RUSSIAN JOURNAL 
OF HERPETOLOGY 13 

MOLECULAR 
PHYLOGENETICS 
AND EVOLUTION 14 

SCIENCE OF THE 
TOTAL ENVIRONMENT 58 

SALAMANDRA 13 
ENVIRONMENTAL 
SCIENCE AND 13 

JOURNAL OF 
ZOOLOGY 57 



POLLUTION 
RESEARCH 

CHEMOSPHERE 12 
JOURNAL OF 
NATURAL HISTORY 13 

AMPHIBIAN REPTILE 
CONSERVATION 54 

DISEASES OF 
AQUATIC 
ORGANISMS 12 

RUSSIAN JOURNAL 
OF HERPETOLOGY 13 

ENVIRONMENTAL 
SCIENCE AND 
POLLUTION 
RESEARCH 54 

JOURNAL OF 
BIOGEOGRAPHY 12 CHEMOSPHERE 12 ECOSPHERE 53 

JOURNAL OF 
MORPHOLOGY 12 

DEVELOPMENTAL 
DYNAMICS 12 EVOLUTION 53 

JOURNAL OF 
ZOOLOGY 12 

ECOLOGICAL 
INDICATORS 12 

JOURNAL OF 
MORPHOLOGY 53 

PROCEEDINGS OF 
THE NATIONAL 
ACADEMY OF 
SCIENCES OF THE 
UNITED STATES OF 
AMERICA 12 

INTERNATIONAL 
JOURNAL OF 
MOLECULAR 
SCIENCES 12 

MITOCHONDRIAL DNA 
PART A 53 

PROCEEDINGS OF 
THE ROYAL SOCIETY 
B BIOLOGICAL 
SCIENCES 12 

JOURNAL OF 
EXPERIMENTAL 
ZOOLOGY PART A 
ECOLOGICAL AND 
INTEGRATIVE 
PHYSIOLOGY 12 

MITOCHONDRIAL DNA 
PART B RESOURCES 53 

CURRENT 
HERPETOLOGY 11 

JOURNAL OF 
HELMINTHOLOGY 12 

BIOLOGICAL 
INVASIONS 52 

METHODS IN 
MOLECULAR 
BIOLOGY 11 

MITOCHONDRIAL 
DNA PART B 
RESOURCES 12 

ECOTOXICOLOGY 
AND 
ENVIRONMENTAL 
SAFETY 50 

MITOCHONDRIAL 
DNA PART B 
RESOURCES 11 ACTA ZOOLOGICA 11 

FRONTIERS IN 
MICROBIOLOGY 50 

ZOOKEYS 11 ANTIBIOTICS BASEL 11 
AQUATIC 
TOXICOLOGY 49 

SOUTH AMERICAN 
JOURNAL OF 
HERPETOLOGY 10 

CANADIAN JOURNAL 
OF ZOOLOGY 11 

BEHAVIORAL 
ECOLOGY AND 
SOCIOBIOLOGY 49 



ANATOMICAL 
RECORD ADVANCES 
IN INTEGRATIVE 
ANATOMY AND 
EVOLUTIONARY 
BIOLOGY 9 

CONSERVATION 
BIOLOGY 11 CHEMOSPHERE 48 

BEHAVIORAL 
ECOLOGY 9 

FRESHWATER 
BIOLOGY 11 

JOURNAL OF 
NATURAL HISTORY 48 

ECOHEALTH 9 
GLOBAL ECOLOGY 
AND BIOGEOGRAPHY 11 

SOUTH AMERICAN 
JOURNAL OF 
HERPETOLOGY 48 

ENVIRONMENTAL 
TOXICOLOGY AND 
CHEMISTRY 9 

JOURNAL OF 
BIOGEOGRAPHY 11 

ACTA 
HERPETOLOGICA 47 

EVOLUTION 9 

PROCEEDINGS OF 
THE NATIONAL 
ACADEMY OF 
SCIENCES OF THE 
UNITED STATES OF 
AMERICA 11 

DEVELOPMENTAL 
BIOLOGY 46 

MOLECULAR 
PHYLOGENETICS 
AND EVOLUTION 9 

PROCEEDINGS OF 
THE ROYAL SOCIETY 
B BIOLOGICAL 
SCIENCES 11 OECOLOGIA 46 

OECOLOGIA 9 

SCIENCE OF THE 
TOTAL 
ENVIRONMENT 11 

ENVIRONMENTAL 
POLLUTION 45 

SCIENCE OF THE 
TOTAL 
ENVIRONMENT 9 BIOTROPICA 10 

CANADIAN JOURNAL 
OF ZOOLOGY 44 

AMERICAN 
NATURALIST 8 BMC GENOMICS 10 

CONSERVATION 
BIOLOGY 44 

CANADIAN JOURNAL 
OF ZOOLOGY 8 

CONSERVATION 
SCIENCE AND 
PRACTICE 10 

FRESHWATER 
BIOLOGY 44 

ECOLOGY 8 
FRONTIERS IN 
MICROBIOLOGY 10 

CURRENT 
HERPETOLOGY 43 

FOREST ECOLOGY 
AND MANAGEMENT 8 HERPETOZOA 10 

METHODS IN 
MOLECULAR 
BIOLOGY 42 

HYDROBIOLOGIA 8 
JOURNAL OF 
MORPHOLOGY 10 

GLOBAL ECOLOGY 
AND CONSERVATION 41 



JOURNAL OF 
EVOLUTIONARY 
BIOCHEMISTRY AND 
PHYSIOLOGY 8 OECOLOGIA 10 HERPETOZOA 39 

JOURNAL OF 
EXPERIMENTAL 
ZOOLOGY PART A 
ECOLOGICAL AND 
INTEGRATIVE 
PHYSIOLOGY 8 

SOUTH AMERICAN 
JOURNAL OF 
HERPETOLOGY 10 HYDROBIOLOGIA 39 

JOURNAL OF 
WILDLIFE DISEASES 8 

ENVIRONMENTAL 
TOXICOLOGY AND 
CHEMISTRY 9 

JOURNAL OF 
EXPERIMENTAL 
ZOOLOGY PART A 
ECOLOGICAL AND 
INTEGRATIVE 
PHYSIOLOGY 39 

MOLECULAR 
ECOLOGY 
RESOURCES 8 

INTEGRATIVE AND 
COMPARATIVE 
BIOLOGY 9 

NATURE 
COMMUNICATIONS 39 

WETLANDS 8 
INTEGRATIVE 
ZOOLOGY 9 

DEVELOPMENTAL 
AND COMPARATIVE 
IMMUNOLOGY 37 

AGRICULTURE 
ECOSYSTEMS 
ENVIRONMENT 7 

JOURNAL OF 
ZOOLOGY 9 

JOURNAL OF 
THERMAL BIOLOGY 37 

BIOLOGY OPEN 7 TOXINS 9 AUSTRAL ECOLOGY 36 

BMC EVOLUTIONARY 
BIOLOGY 7 

ACTA 
HERPETOLOGICA 8 BIOLOGY LETTERS 36 

BMC GENOMICS 7 

BEHAVIORAL 
ECOLOGY AND 
SOCIOBIOLOGY 8 

COMPARATIVE 
BIOCHEMISTRY AND 
PHYSIOLOGY A 
MOLECULAR 
INTEGRATIVE 
PHYSIOLOGY 36 

COMPARATIVE 
BIOCHEMISTRY AND 
PHYSIOLOGY A 
MOLECULAR 
INTEGRATIVE 
PHYSIOLOGY 7 

BIOCHEMICAL AND 
BIOPHYSICAL 
RESEARCH 
COMMUNICATIONS 8 

GLOBAL ECOLOGY 
AND BIOGEOGRAPHY 36 

COMPARATIVE 
BIOCHEMISTRY AND 7 

BIODIVERSITY AND 
CONSERVATION 8 

JOURNAL OF ANIMAL 
ECOLOGY 36 



PHYSIOLOGY B 
BIOCHEMISTRY 
MOLECULAR 
BIOLOGY 

ECOTOXICOLOGY 
AND 
ENVIRONMENTAL 
SAFETY 7 

BIOLOGICAL 
INVASIONS 8 

BEHAVIORAL 
ECOLOGY 35 

EVOLUTIONARY 
ECOLOGY 7 

DISEASES OF 
AQUATIC 
ORGANISMS 8 BMC GENOMICS 35 

INTERNATIONAL 
JOURNAL OF 
DEVELOPMENTAL 
BIOLOGY 7 

DIVERSITY AND 
DISTRIBUTIONS 8 

DIVERSITY AND 
DISTRIBUTIONS 35 

JOVE JOURNAL OF 
VISUALIZED 
EXPERIMENTS 7 FACETS 8 

AMERICAN 
NATURALIST 34 

NORTH WESTERN 
JOURNAL OF 
ZOOLOGY 7 

GLOBAL CHANGE 
BIOLOGY 8 ANIMAL BEHAVIOUR 34 

PROCEEDINGS OF 
SPIE 7 

JOURNAL FOR 
NATURE 
CONSERVATION 8 

INTEGRATIVE AND 
COMPARATIVE 
BIOLOGY 34 

REVISTA MEXICANA 
DE BIODIVERSIDAD 7 

JOURNAL OF 
THERMAL BIOLOGY 8 PHYLLOMEDUSA 34 

ROYAL SOCIETY 
OPEN SCIENCE 7 

JOURNAL OF 
WILDLIFE DISEASES 8 

BIODIVERSITY AND 
CONSERVATION 33 

ZOOLOGICAL 
SCIENCE 7 PHYLLOMEDUSA 8 ACTA ZOOLOGICA 32 

ACTA ZOOLOGICA 6 

SEMINARS IN CELL 
DEVELOPMENTAL 
BIOLOGY 8 

ECOLOGICAL 
INDICATORS 32 

AMERICAN MIDLAND 
NATURALIST 6 TOXICON 8 

NORTH WESTERN 
JOURNAL OF 
ZOOLOGY 32 

AUSTRAL ECOLOGY 6 
VERTEBRATE 
ZOOLOGY 8 

SOUTHEASTERN 
NATURALIST 32 

BIOCHEMICAL AND 
BIOPHYSICAL 
RESEARCH 6 

BIOACOUSTICS THE 
INTERNATIONAL 
JOURNAL OF ANIMAL 7 

ZOOLOGICAL 
SCIENCE 32 



COMMUNICATIONS SOUND AND ITS 
RECORDING 

BIODIVERSITY AND 
CONSERVATION 6 BIOTA NEOTROPICA 7 BIOTROPICA 31 

ECOTOXICOLOGY 6 
CURRENT 
HERPETOLOGY 7 

BMC EVOLUTIONARY 
BIOLOGY 31 

ENVIRONMENTAL 
POLLUTION 6 

ECOTOXICOLOGY 
AND 
ENVIRONMENTAL 
SAFETY 7 ECOGRAPHY 31 

ETHOLOGY 6 ELIFE 7 

INTERNATIONAL 
JOURNAL OF 
MOLECULAR 
SCIENCES 31 

JOURNAL OF 
COMPARATIVE 
NEUROLOGY 6 

FOREST ECOLOGY 
AND MANAGEMENT 7 

JOURNAL OF 
EVOLUTIONARY 
BIOLOGY 31 

JOURNAL OF 
NATURAL HISTORY 6 HEREDITY 7 MOLECULES 31 

JOURNAL OF 
THERMAL BIOLOGY 6 

INTERNATIONAL 
JOURNAL FOR 
PARASITOLOGY 
PARASITES AND 
WILDLIFE 7 

ROYAL SOCIETY 
OPEN SCIENCE 31 

JOURNAL OF 
WILDLIFE 
MANAGEMENT 6 MOLECULES 7 

ZOOLOGISCHER 
ANZEIGER 31 

JOURNAL OF ZOO 
AND WILDLIFE 
MEDICINE 6 

NATURE 
COMMUNICATIONS 7 

CONSERVATION 
GENETICS 30 

LECTURE NOTES IN 
COMPUTER SCIENCE 6 

PARASITOLOGY 
RESEARCH 7 ETHOLOGY 30 

PALAEOBIODIVERSIT
Y AND 
PALAEOENVIRONME
NTS 6 

SPECTROSCOPY AND 
SPECTRAL ANALYSIS 7 

ANATOMICAL 
RECORD ADVANCES 
IN INTEGRATIVE 
ANATOMY AND 
EVOLUTIONARY 
BIOLOGY 29 

SOUTHEASTERN 
NATURALIST 6 WETLANDS 7 

DEVELOPMENTAL 
DYNAMICS 29 



TOXICON 6 

ZOOLOGICAL 
JOURNAL OF THE 
LINNEAN SOCIETY 7 ECOLOGY 29 

ZOOLOGY 6 

ACTA OECOLOGICA 
INTERNATIONAL 
JOURNAL OF 
ECOLOGY 6 

FOREST ECOLOGY 
AND MANAGEMENT 29 

ACTA ZOOLOGICA 
BULGARICA 5 

AQUATIC 
CONSERVATION 
MARINE AND 
FRESHWATER 
ECOSYSTEMS 6 

FRONTIERS IN 
ECOLOGY AND 
EVOLUTION 29 

AIP CONFERENCE 
PROCEEDINGS 5 

ARCHIVES OF 
ENVIRONMENTAL 
CONTAMINATION 
AND TOXICOLOGY 6 TOXICON 29 

ANIMAL 
CONSERVATION 5 AUSTRAL ECOLOGY 6 

CONSERVATION 
PHYSIOLOGY 28 

AQUATIC 
CONSERVATION 
MARINE AND 
FRESHWATER 
ECOSYSTEMS 5 

BEHAVIORAL 
ECOLOGY 6 DIVERSITY BASEL 28 

BIOLOGICAL 
INVASIONS 5 BIOLOGY LETTERS 6 ECOHEALTH 28 

BIOTA NEOTROPICA 5 BIOMOLECULES 6 
JOURNAL OF 
WILDLIFE DISEASES 28 

BIOTROPICA 5 CELLS 6 
ANIMAL 
CONSERVATION 27 

COMPARATIVE 
PARASITOLOGY 5 

COMPARATIVE 
BIOCHEMISTRY AND 
PHYSIOLOGY A 
MOLECULAR 
INTEGRATIVE 
PHYSIOLOGY 6 

ECOLOGICAL 
APPLICATIONS 27 

CONSERVATION 
PHYSIOLOGY 5 

CONSERVATION 
PHYSIOLOGY 6 

MOLECULAR 
ECOLOGY 
RESOURCES 27 

 



TableS3 - Amphibian Publications By Language 

Language 
Pubs in 
2016 Language 

Pubs in 
2020 Language Pubs 2016-2020 

english 1,517 english 1,768 english 7,915 

spanish 17 russian 8 spanish 63 

russian 16 german 6 russian 57 

chinese 5 portuguese 4 chinese 40 

portuguese 3 spanish 4 german 22 

french 2 chinese 2 portuguese 13 

german 2 afrikaans 1 dutch/flemish 12 

polish 2 armenian 1 czech 5 

czech 1 dutch/flemish 1 turkish 5 

hungarian 1 hebrew 1 ukrainian 5 

slovenian 1 indonesian 1 hungarian 4 

turkish 1 malay 1 persian 4 

  persian 1 french 3 

  thai 1 hebrew 2 

    polish 2 

    slovak 2 

    slovenian 2 

    thai 2 

    afrikaans 1 

    armenian 1 

Supplemental Table 3



    indonesian 1 

    italian 1 

    malay 1 

    multiple languages 1 

 



TableS4-Amphibian-Genomes
Part 1

Order Family Species

Genome

Status

Scaffold

N50

Scaffold

N50 unit

Average

Genome

Size (Gb) Sequencing technologies

Anura

Bombinator

idae

Bombina

variegata Contig 2005 bp 9.236 Illumina

Anura Bufonidae Bufo bufo

Chromoso

mal 0.64 Gb 6.54 10x, Arima HiC, Bionano, PacBio

Anura Bufonidae

Bufo

gargarizans

Chromoso

mal 0.54 Gb 5.614

Illumina, PacBio, BioNano, 10x

Genomics, HiC

Anura Ranidae

Glandirana

rugosa Scaffolded 0.747 Mb 7.971 Illumina

Anura Hylidae

Dendropsophu

s ebraccatus

Chromoso

mal 0.609 Gb 2.52

10x, Arima HiC, Bionano,

Illumina, PacBio

Anura

Megophryid

ae

Leptobrachiu

m ailaonicum

Chromoso

mal 0.412 Gb 5.53 Illumina, PacBio, HiC

Anura

Megophryid

ae

Leptobrachiu

m leishanense

Chromoso

mal 0.39 Gb 3.56 HiC, Illumina, PacBio

Anura

Myobatrach

idae

Limnodynastes

dumerilii Scaffolded 0.286 Mb 3.179 Illumina

Anura Ranidae

Rana

catesbeiana Scaffolded 0.069 Mb 6.966 Illumina, 10X Chromium

Anura

Dicroglossid

ae

Nanorana

parkeri

Chromoso

mal 0.00105 Gb 2.3 Illumina

Anura

Dendrobati

dae

Oophaga

pumilio Scaffolded 0.116 Mb 4.586 Illumina, RNAseq

Anura

Myobatrach

idae

Platyplectrum

ornatum Scaffolded 0.027 Mb 0.929 Illumina, Oxford Nanopore

Anura

Pyxicephali

dae

Pyxicephalus

adspersus

Chromoso

mal 0.158 Gb 1.369 Illumina, HiC, Chicago

Anura Ranidae

Rana

temporaria

Chromoso

mal 0.481 Gb 4.169

PacBio, 10X Genomics

Chromium, BioNano, and Arima

Hi-C

Anura

Dendrobati

dae

Ranitomeya

imitator Scaffolded 0.397 Mb 6.8

10X Chromium, Oxford

Nanopore, PacBio

Anura Bufonidae

Rhinella

marina Scaffolded 0.168 Mb 4.681 PacBio, Illumina
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Anura

Scaphiopodi

dae

Scaphiopus

couchii Contig 362 bp 1.45 Illumina

Anura

Scaphiopodi

dae

Scaphiopus

holbrookii Contig 514 bp 1.353 Illumina

Anura

Scaphiopodi

dae

Spea

bombifrons Contig 522 bp 1.208 Illumina

Anura

Scaphiopodi

dae

Spea

multiplicata Scaffolded 0.071 Mb 1.07

Illumina, PacBio, Oxford

Nanopore

Anura Pipidae Xenopus laevis

Chromoso

mal 0.155 Gb 3.23

Illumina, PacBio (unclear if they

were both used in latest

assembly)

Anura Pipidae

Xenopus

tropicalis

Chromoso

mal 0.154 Gb 1.685 PacBio, Illumina

Caudata

Ambystoma

tidae

Ambystoma

mexicanum

Chromoso

mal 1.2 Gb 33.99

improvement of two previous

scaffolds (the first generated

with PacBio, Illumina, BioNano,

the second improved with

meiotic mapping and FISH)

using HiC

Caudata

Salamandri

dae

Pleurodeles

waltl Contig 1136 bp 21.89 Illumina

Gymnoph

iona

Dermophiid

ae

Geotrypetes

seraphini

Chromoso

mal 0.27 Gb 5.187

10x, Dovetail HiC, Bionano,

PacBio

Gymnoph

iona

Ichthyophii

dae

Ichthyophis

bannanicus Contig 740 bp 12.2 Illumina

Gymnoph

iona

Siphonopid

ae

Microcaecilia

unicolor

Chromoso

mal 0.376 Gb 4.69

10X, Arima HiC, BioNano,

Dovetail Genomics, PacBio

Gymnoph

iona

Rhinatrema

tidae

Rhinatrema

bivittatum

Chromoso

mal 0.487 Gb 4.374

10X, PacBio, Arima HiC,

BioNano

Part 2 (same table, additional columns)

Year of

latest

version

Citation/link, latest

version

Year of

first

version Citation/link, first version(s) Link to latest genome

-- -- 2021

Cizkova, D. and Nurnberger, B. Institute

of Vertebrate Biology, CAS, Kvetna 8, 603

65 Brno, Czech Republic

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_9053369

75.1



-- -- 2021

VGP

(https://vgp.github.io/genomeark/Bufo_

bufo/)

https://www.ncbi.nlm.nih.g

ov/assembly/GCF_90517176

5.1/

-- -- 2020

Lu et al. 2020

(https://onlinelibrary.wiley.com/doi/epdf

/10.1111/1755-0998.13319)

https://www.ncbi.nlm.nih.g

ov/genome/8043

-- -- 2021

Katsura et al. 2021

(https://www.life-science-alliance.org/co

ntent/4/5/e202000905)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_0184029

05.1/

-- -- 2020

VGP

(https://vgp.github.io/genomeark/Dendr

opsophus_ebraccatus/)

https://vgp.github.io/genom

eark/Dendropsophus_ebrac

catus/

-- -- 2019

Li et al. 2019

(https://academic.oup.com/gigascience/

article/8/9/giz114/5572531)

http://gigadb.org/dataset/1

00624

-- -- 2019

Li et al 2019

(https://www.nature.com/articles/s4146

7-019-13531-5)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_0096678

05.1/

-- -- 2020

Li et al. 2020

(https://gigabytejournal.com/articles/2)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_0110386

15.1/

2017 2017

Hammond et al. 2017

(https://www.nature.com/articles/s4146

7-017-01316-7;

https://www.ncbi.nlm.nih.gov/assembly/

GCA_002284835.1/)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_0022848

35.2/

-- -- 2015

Sun et al. 2015

(https://www.pnas.org/content/112/11/

E1257)

https://www.ncbi.nlm.nih.g

ov/assembly/GCF_00093562

5.1/

2021

Rodríguez et al. 2021

(https://bmcgenomics.

biomedcentral.com/art

icles/10.1186/s12864-

020-6719-5) 2018

Rogers et al. 2018

(https://academic.oup.com/mbe/article/

35/12/2913/5106668)

https://zenodo.org/record/3

696842;

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_0098010

35.1/

-- -- 2021

Lamichhaney et al. 2021

(https://www.pnas.org/content/118/11/

e2011649118)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_0166178

25.1/

-- -- 2018

Denton et al. bioRXiv

(https://www.biorxiv.org/content/10.110

1/329847v2)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_0047862

55.1/



-- -- 2021

Darwin Tree of Life

(https://portal.darwintreeoflife.org/data/

root/details/Rana%20temporaria)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_9051717

75.1

-- -- 2021

Stuckert et al. 2021

(https://onlinelibrary.wiley.com/doi/10.1

111/mec.16024)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_9053323

35.1/

-- -- 2018

Edwards et al. 2018

(https://academic.oup.com/gigascience/

article/7/9/giy095/5067871)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_9003032

85.1/

-- -- 2019

Seidl et al. 2019

(https://academic.oup.com/g3journal/art

icle/9/12/3909/6028079)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_0093644

35.1/

-- -- 2019

Seidl et al. 2019

(https://academic.oup.com/g3journal/art

icle/9/12/3909/6028079)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_0093644

55.1

-- -- 2019

Seidl et al. 2019

(https://academic.oup.com/g3journal/art

icle/9/12/3909/6028079)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_0093644

75.1

-- -- 2019

Seidl et al. 2019

(https://academic.oup.com/g3journal/art

icle/9/12/3909/6028079)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_0093644

15.1/

2021

https://www.ncbi.nlm.

nih.gov/assembly/GCF

_017654675.1/ 2016

Session et al. 2016

(https://www.nature.com/articles/nature

19840;

https://www.ncbi.nlm.nih.gov/assembly/

GCF_001663975.1/)

https://www.ncbi.nlm.nih.g

ov/assembly/GCF_01765467

5.1/

2019

Mitros et al. 2019

(https://www.scienced

irect.com/science/artic

le/pii/S001216061830

3890?via%3Dihub) 2010

Hellsten et al. 2010

(https://science.sciencemag.org/content

/328/5978/633)

https://www.ncbi.nlm.nih.g

ov/assembly/GCF_00000419

5.4

2021

Schloissnig et al. 2021

(https://www.pnas.org

/content/118/15/e201

7176118) 2018

Nowoshilow et al 2018

(doi:10.1038/nature25458), Smith et al.

2019

(https://genome.cshlp.org/content/29/2/

317.long)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_0029156

35.3

-- -- 2017

Elewa et al. 2017

(https://www.nature.com/articles/s4146

7-017-01964-9)

genome assembly available

upon request

2021 VGP 2019 VGP https://www.ncbi.nlm.nih.g



(https://vgp.github.io/

genomeark/Geotrypet

es_seraphini/)

(https://www.ncbi.nlm.nih.gov/assembly

/GCF_902459505.1)

ov/assembly/GCA_9024595

05.2

-- -- 2021

Wang et al. 2021

(https://www.sciencedirect.com/science/

article/pii/S1672022921000528?via%3Di

hub)

assembly unavailable but

reads are on NCBI

2021

VGP

(https://vgp.github.io/

genomeark/Microcaeci

lia_unicolor/) 2019

VGP

(https://www.ncbi.nlm.nih.gov/assembly

/GCF_901765095.1/)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_9017650

95.2

2021

VGP

(https://vgp.github.io/

genomeark/Rhinatrem

a_bivittatum/) 2019

VGP

(https://www.ncbi.nlm.nih.gov/assembly

/GCF_901001135.1/)

https://www.ncbi.nlm.nih.g

ov/assembly/GCA_9010011

35.2



TableS5 - Family-level Phylogenetic Heat Map Data

Family Order

Gen

era

Spe

cies

new_

speci

es

Prop

Sp_N

ew

Prop

Sp_

Calls

PropS

p_CTs

can

PropSp

_geno

mes

PropS

p_ncb

i

Prop

Sp_sr

a

PropSp_Di

seaseTest

ed

PropSp_D

iseasePos

itive

Hynobiid

ae

Caud

ata 9 86 17

0.19

7674

42 0

0.104

6511

6 0

0.918

6046

5

0.20

9302

33

0.232558

14

0.034883

72

Cryptobr

anchidae

Caud

ata 2 4 0 0 0 0.75 0 0.75 0.5 0.75 0.75

Salaman

dridae

Caud

ata 21 127 11

0.08

6614

17 0

0.275

5905

5

0.0078

7402

0.874

0157

5

0.40

9448

82

0.385826

77

0.165354

33

Dicampt

odontida

e

Caud

ata 1 4 0 0 0.25 0.5 0 1 0 0.5 0.25

Ambysto

matidae

Caud

ata 1 32 0 0

0.03

125

0.312

5

0.0312

5 0.875

0.59

375 0.6875 0.5625

Proteida

e

Caud

ata 2 8 2 0.25 0 0.5 0 0.75

0.12

5 0.5 0.5

Rhyacotr

itonidae

Caud

ata 1 4 0 0 0 0.75 0 1 0 0 0

Plethodo

ntidae

Caud

ata 28 492 35

0.07

1138

21

0.00

406

504

0.217

4796

7 0

0.839

4308

9

0.10

9756

1

0.290650

41

0.134146

34

Amphiu

midae

Caud

ata 1 3 0 0 0 1 0 1 0 1

0.666666

67

Sirenida

e

Caud

ata 2 5 1 0.2 0.2 1 0 1 0.2 0.8 0.6

Ascaphid

ae Anura 1 2 0 0 0 1 0 1 1 1 0

Leiopelm

atidae Anura 1 3 0 0 0 1 0 1

0.33

3333

33 1

0.333333

33
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Bombina

toridae Anura 2 10 0 0 0.3 0.6 0 1 0.4 0.5 0.4

Alytidae Anura 3 12 0 0

0.66

666

667

0.416

6666

7 0 1

0.41

6666

67

0.666666

67 0.5

Rhinophr

ynidae Anura 1 1 0 0 1 1 0 1 1 1 0

Pipidae Anura 4 41 0 0

0.60

975

61

0.878

0487

8

0.0487

8049

0.853

6585

4

0.36

5853

66

0.585365

85

0.487804

88

Calyptoc

ephalelli

dae Anura 2 5 0 0 0.2 0.4 0 0.6 0 0.4 0.4

Myobatr

achidae Anura 21 133 1

0.00

7518

8

0.77

443

609

0.165

4135

3 0

0.796

9924

8

0.16

5413

53

0.338345

86

0.187969

92

Rhinoder

matidae Anura 2 3 0 0

0.33

333

333

0.333

3333

3 0

0.666

6666

7

0.66

6666

67

0.666666

67

0.666666

67

Cyclora

mphidae Anura 3 37 0 0

0.54

054

054

0.081

0810

8 0

0.864

8648

6

0.05

4054

05

0.540540

54

0.324324

32

Hylodida

e Anura 4 47 1

0.02

1276

6

0.59

574

468

0.106

3829

8 0

0.638

2978

7

0.08

5106

38

0.617021

28

0.489361

7

Batrachy

lidae Anura 4 13 0 0

0.23

076

923

0.230

7692

3 0

0.615

3846

2

0.38

4615

38

0.615384

62

0.461538

46

Alsodida

e Anura 3 26 0 0

0.15

384

615

0.192

3076

9 0

0.923

0769

2

0.15

3846

15

0.576923

08

0.269230

77

Dendrob

atidae Anura 20 333 28

0.08

4084

0.24

924

0.084

0840

0.0030

03

0.627

6276

0.13

5135

0.210210

21

0.129129

13



08 925 8 3 14

Odontop

hrynidae Anura 3 52 2

0.03

8461

54

0.44

230

769

0.076

9230

8 0

0.538

4615

4

0.01

9230

77

0.192307

69

0.134615

38

Bufonida

e Anura 52 629 45

0.07

1542

13

0.22

257

552

0.192

3688

4

0.0031

7965

0.640

6995

2

0.08

4260

73

0.313195

55

0.151033

39

Leptodac

tylidae Anura 13 225 19

0.08

4444

44

0.69

777

778 0.08 0

0.853

3333

3

0.04

4444

44

0.373333

33

0.204444

44

Allophry

nidae Anura 1 3 0 0

0.66

666

667

0.333

3333

3 0 1

0.33

3333

33

0.333333

33 0

Centrole

nidae Anura 12 159 10

0.06

2893

08

0.29

559

748

0.069

1823

9 0

0.679

2452

8

0.03

7735

85

0.213836

48

0.113207

55

Ceuthom

antidae Anura 2 6 0 0 0

0.333

3333

3 0

0.166

6666

7 0 0 0

Eleuther

odactylid

ae Anura 4 232 17

0.07

3275

86

0.31

465

517

0.137

9310

3 0

0.788

7931

0.03

4482

76

0.284482

76

0.146551

72

Brachyce

phalidae Anura 2 76 12

0.15

7894

74

0.44

736

842

0.197

3684

2 0 0.75

0.17

1052

63

0.144736

84

0.105263

16

Craugast

oridae Anura 2 123 7

0.05

6910

57

0.08

130

081

0.113

8211

4 0

0.487

8048

8

0.04

0650

41

0.382113

82

0.276422

76

Strabom

antidae Anura 19 750 109

0.14

5333

33

0.16

8

0.026

6666

7 0 0.556

0.01

4666

67

0.181333

33

0.082666

67

Hemiphr

actidae Anura 6 120 12 0.1

0.24

166

0.291

6666 0 0.725

0.04

1666 0.2

0.166666

67



667 7 67

Ceratoph

ryidae Anura 3 12 0 0

0.58

333

333

0.666

6666

7 0

0.916

6666

7 0.25

0.583333

33

0.583333

33

Hylidae Anura 51

103

1 68

0.06

5955

38

0.50

339

476

0.098

9330

7

0.0009

6993

0.645

0048

5

0.09

2143

55

0.338506

3

0.223084

38

Telmato

biidae Anura 1 63 1

0.01

5873

02

0.06

349

206

0.079

3650

8 0

0.380

9523

8

0.03

1746

03

0.396825

4

0.333333

33

Nasikaba

trachida

e Anura 1 2 1 0.5 0.5 0.5 0 1 0 0 0

Soogloss

idae Anura 2 4 0 0 0.25 0.5 0 1 0 0.75 0

Microhyl

idae Anura 58 703 109

0.15

5049

79

0.20

625

889

0.126

6002

8 0

0.534

8506

4

0.06

9701

28

0.119487

91

0.035561

88

Dicroglos

sidae Anura 15 223 27

0.12

1076

23

0.11

210

762

0.098

6547

1

0.0044

843

0.690

5829

6

0.10

3139

01

0.192825

11

0.071748

88

Ranidae Anura 24 431 47

0.10

9048

72

0.18

793

503

0.074

2459

4

0.0023

2019

0.761

0208

8

0.22

9698

38

0.375870

07

0.211136

89

Mantelli

dae Anura 12 232 20

0.08

6206

9

0.60

775

862

0.094

8275

9 0

0.900

8620

7

0.06

0344

83

0.280172

41 0

Rhacoph

oridae Anura 21 443 41

0.09

2550

79

0.11

286

682

0.047

4040

6 0

0.697

5169

3

0.06

0948

08

0.117381

49

0.042889

39

Nyctibat

rachidae Anura 3 39 10

0.25

6410

26

0.20

512

821

0.102

5641 0

0.948

7179

5

0.07

6923

08

0.051282

05

0.051282

05



Ranixalid

ae Anura 2 19 7

0.36

8421

05 0

0.157

8947

4 0

0.684

2105

3

0.05

2631

58

0.315789

47

0.105263

16

Micrixali

dae Anura 1 24 0 0

0.04

166

667

0.083

3333

3 0

0.958

3333

3

0.04

1666

67

0.041666

67 0

Ceratoba

trachida

e Anura 4 102 6

0.05

8823

53

0.26

470

588

0.098

0392

2 0

0.647

0588

2

0.24

5098

04

0.137254

9

0.019607

84

Odontob

atrachid

ae Anura 1 5 0 0 0 0.2 0 1 0.2 0.2 0

Ptychade

nidae Anura 3 63 6

0.09

5238

1

0.11

111

111

0.111

1111

1 0

0.571

4285

7

0.07

9365

08

0.380952

38

0.142857

14

Phrynob

atrachid

ae Anura 1 97 7

0.07

2164

95

0.05

154

639

0.051

5463

9 0

0.680

4123

7

0.01

0309

28

0.391752

58

0.185567

01

Pyxiceph

alidae Anura 12 87 9

0.10

3448

28

0.03

448

276

0.172

4137

9

0.0114

9425

0.781

6092

0.06

8965

52

0.298850

57

0.183908

05

Conrauid

ae Anura 1 6 0 0 0

0.666

6666

7 0

0.666

6666

7

0.16

6666

67

0.833333

33

0.333333

33

Petroped

etidae Anura 3 13 0 0 0

0.230

7692

3 0

0.846

1538

5 0

0.692307

69

0.384615

38

Brevicipi

tidae Anura 5 36 3

0.08

3333

33 0

0.194

4444

4 0

0.888

8888

9

0.05

5555

56

0.166666

67

0.027777

78

Hemisoti

dae Anura 1 9 0 0

0.11

111

111

0.888

8888

9 0

0.444

4444

4

0.11

1111

11

0.333333

33 0



Arthrole

ptidae Anura 8 153 0 0

0.07

189

542

0.163

3986

9 0

0.679

7385

6

0.12

4183

01

0.581699

35

0.313725

49

Hyperolii

dae Anura 18 232 3

0.01

2931

03

0.20

689

655

0.142

2413

8 0

0.702

5862

1

0.48

7068

97

0.431034

48

0.258620

69

Heleoph

rynidae Anura 2 6 0 0 0

0.333

3333

3 0 0.5 0

0.833333

33

0.833333

33

Scaphiop

odidae Anura 2 7 0 0

0.85

714

286

0.285

7142

9 0 1

0.71

4285

71

1.142857

14

0.714285

71

Pelodyti

dae Anura 1 4 1 0.25 0.5 0.5 0 1 0.75 0.25 0

Pelobati

dae Anura 1 6 0 0 0.5

0.666

6666

7

0.6666

6667

0.833

3333

3

0.83

3333

33

0.666666

67 0.5

Megophr

yidae Anura 12 278 76

0.27

3381

29

0.07

553

957

0.061

1510

8

0.0071

9424

0.755

3956

8

0.06

8345

32

0.100719

42

0.010791

37

Rhinatre

matidae

Gymn

ophio

na 3 14 2

0.14

2857

14 0

0.142

8571

4

0.0714

2857 0.5

0.07

1428

57 0 0

Ichthyop

hiidae

Gymn

ophio

na 2 57 0 0 0

0.087

7193 0

0.280

7017

5

0.01

7543

86

0.070175

44 0

Scoleco

morphid

ae

Gymn

ophio

na 2 6 0 0 0 0.5 0

0.666

6666

7 0 0.5 0.5

Caeciliid

ae

Gymn

ophio

na 2 43 2

0.04

6511

63 0

0.046

5116

3 0

0.162

7907

0.02

3255

81

0.116279

07 0

TyphloneGymn 5 14 0 0 0 0.428 0 0.428 0.14 0.642857 0.285714



ctidae ophio

na

5714

3

5714

3

2857

14

14 29

Indotyph

lidae

Gymn

ophio

na 7 24 2

0.08

3333

33 0

0.333

3333

3 0

0.833

3333

3

0.04

1666

67 0.25

0.041666

67

Siphono

pidae

Gymn

ophio

na 5 28 2

0.07

1428

57 0

0.178

5714

3

0.0357

1429

0.392

8571

4

0.07

1428

57 0.25

0.107142

86

Dermop

hiidae

Gymn

ophio

na 4 15 0 0 0

0.266

6666

7

0.0666

6667

0.466

6666

7

0.13

3333

33

0.333333

33

0.133333

33

Chikilida

e

Gymn

ophio

na 1 4 0 0 0 0 0 0.25 0 0 0

Herpelid

ae

Gymn

ophio

na 2 10 1 0.1 0 0.2 0 0.7 0 0.2 0.2



Les amphibiens constituent un clade de plus de 8400 espèces qui offrent des possibilités et des défis de 

recherche uniques. Les amphibiens subissant un grave déclin au niveau mondial, nous postulons qu'il est 

impératif d'évaluer notre compréhension actuelle des amphibiens. En nous concentrant sur les années 

de 2016 à 2020, nous examinons les nouveaux acquis et les nouvelles perspectives de la recherche et de 

la systématique des amphibiens. De nouvelles espèces d'amphibiens continuent d'être décrites à un 

rythme de ~150 par an. Les études phylogénomiques sont en augmentation, alimentant un consensus 

croissant dans la phylogénie des amphibiens. Plus de 3000 espèces d'amphibiens sont désormais 

représentées par des descriptions ou par des données gérées par des experts au sein d’AmphibiaWeb, 

AmphibiaChina, BioWeb ou le portail sur les maladies des amphibiens. Néanmoins, de nombreuses 

espèces ne disposent pas de données de base sur leur histoire naturelle (concernant, par exemple, leur 

régime alimentaire, les mesures morphologiques et les vocalisations) et des lacunes importantes 

existent pour des clades entiers d'amphibiens. Les ressources génomiques semblent être à l'aube d'une 

expansion rapide, mais les grands génomes répétitifs des amphibiens posent encore des défis 

importants. La conservation reste un axe majeur de la recherche sur les amphibiens. Les menaces 

cataloguées sur AmphibiaWeb pour 1261 espèces soulignent la nécessité de faire face aux changements 

d'utilisation des terres et aux maladies en utilisant des stratégies de gestion adaptative. Afin de 

promouvoir davantage la recherche et la conservation des amphibiens, nous soulignons l'importance de 

l'intégration des bases de données et nous pensons que d'autres clades peu étudiés ou en danger 

pourraient bénéficier d'évaluations similaires des données existantes.   
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