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Ecology and the Evolution of Sex Chromosomes

Abstract

This article reviews and discusses ecological factors that affect sex chromosome evolution. Sex

chromosomes are common features of animal genomes, and are often the location where

master sex determination genes are found. Many important aspects of sex chromosome

evolution are thought to be driven by sex-specific selection pressures, such as sexual

antagonism and sexual selection. Sex-specific selection affects both the formation of sex

chromosomes from autosomes and differences in the evolutionary trajectories between sex

chromosomes and autosomes. Most population genetic models are agnostic as to whether the

sex-specific selection pressures arise from intrinsic features of organismal biology or extrinsic

factors that depend on environment. Here, I review the evidence that extrinsic, or ecological,

factors are important determinants of sex-specific selection pressures that shape sex

chromosome evolution.
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Introduction
Sex chromosomes are a common feature of eukaryotic genomes, especially in animal

species where sex is determined by genetics (Bachtrog et al., 2014). When sex is determined

by heritable genetic variation, a master sex determining gene that initiates either male or female

development can be found on a sex chromosome (Beukeboom & Perrin, 2014). Most research

on the evolution of sex chromosomes is focused on two key areas (Abbott et al., 2017). First,

there is a large body of work on how sex chromosomes arise from autosomes (e.g., van Doorn,

2014; Pennell et al., 2015; Vicoso & Bachtrog, 2015). Second, there is a comparable amount of

research on the unique evolutionary trajectories of sex chromosomes, which frequently differ

from the autosomes (e.g., Bachtrog, 2013; Meisel & Connallon, 2013).

Many of the unique evolutionary dynamics of sex chromosomes have been hypothesized

to result from their sex-limited or sex-biased mode of inheritance (Charlesworth & Charlesworth,

1980; Rice, 1987; Bachtrog, 2006; van Doorn & Kirkpatrick, 2007). Biased transmission via

males or females can allow for selection pressures in one sex to be the predominant selective

force shaping sex chromosome evolution (Rice, 1984; Charlesworth et al., 1987). These

sex-specific effects can be especially important if they are sexually antagonistic, i.e., in opposite

directions in males and females (van Doorn & Kirkpatrick, 2007, 2010; Blackmon & Brandvain,

2017; Rowe et al., 2018).

Here, I describe how the sex-specific selection pressures that drive sex chromosome

evolution can arise from ecological factors that males and females encounter in their natural

environments. Most population genetic models of sex chromosome formation and subsequent

evolution are agnostic as to whether selection pressures are intrinsic to the organisms or come

from extrinsic (i.e., ecological) factors. Intrinsic factors include fixed aspects of cellular or

physiological features that differ between the sexes. Extrinsic or ecological factors, in

comparison, include differences between the sexes in how they use their natural environment

(Shine, 1989), as well as variation in the environment across the species range (Delcourt et al.,

2009; Delph et al., 2011). There are important aspects of ecological selection pressures that

should be considered when studying sex chromosome evolution, which I highlight and explain

below.

Sex-Specific Selection and the Evolution of Sex Chromosomes
Sex-specific selection pressures are thought to be important for the formation of new sex

chromosomes and the subsequent evolution of sex chromosomes. Sex-specific selection can

involve selection operating in only one sex or in different directions in males and females. The
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same general concepts apply to the two major types of sex chromosome systems found

animals. In XY systems, such as in mammals and Drosophila (Graves, 1995; Salz & Erickson,

2010), males are heterogametic (XY) and females are homogametic (XX). In ZW systems, such

as in Lepidoptera and birds (Sahara et al., 2012; Zhou et al., 2014), females are heterogametic

(ZW) and males are homogametic (ZZ). The relevant sex-specific selection pressures are often

reversed depending on whether a species has an XY or ZW system, and there are some

important differences between XY and ZW systems that are beyond the scope of this review

(Mank et al., 2014). Nonetheless, many of the same principles apply to both XY and ZW

systems.

Figure 1. Example of sexually antagonistic phenotypic
variation. The fitness of males (blue) and females (red) are
shown for a continuum of phenotypic values. Phenotypes that
maximize female fitness are deleterious to males, and
phenotypes that maximize male fitness are costly to females.

Sexual antagonism is a specific type of sex-specific selection that is important for sex

chromosome evolution. Sexually antagonistic selection, or inter-sexual conflict, refers to the

phenomenon whereby males and females have different fitness optima for alleles or traits

(Figure 1), and it is conventionally divided into two categories (Arnqvist & Rowe, 2013; Schenkel

et al., 2018). First, intralocus sexual antagonism arises when males and females differ in which

allele (at a single locus) maximizes fitness (Lande, 1980; Bonduriansky & Chenoweth, 2009).

Intralocus conflicts can be especially pronounced in adults (Chippindale et al., 2001), where

males and females are likely to have different phenotypic optima (Figure 1). Second, intergenic

sexual conflicts occur when an allele of one gene expressed in one sex has antagonistic effects

on at least one allele in at least one another gene that is expressed in the other sex (Rice &

Holland, 1997). Intergenic conflicts may be an important aspect of sexual selection, where

alleles could increase mating success in one sex at a cost to the other (Arnqvist & Rowe, 1995).

Both intralocus and intergenic sexual antagonism can be important for the evolution of sex

chromosomes.

Sex-specific selection pressures are thought to contribute to the formation of new sex

chromosomes (van Doorn, 2014). These large-scale chromosomal changes generally occur via

two different mechanisms (Figure 2). First, a fusion between an autosome and one of the sex
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chromosomes will create a neo-sex chromosome (Steinemann, 1982; Castillo et al., 2010;

Pennell et al., 2015). Y-autosome fusions, in particular, are expected to be favored to invade a

population if the autosome carries a male-beneficial allele (Charlesworth & Charlesworth, 1980),

or female-beneficial allele for a W-autosome fusion. This is because sex-limited inheritance of a

sex-beneficial allele can resolve a sexual conflict if the allele is deleterious when expressed in

the other sex (Figure 2).

Figure 2. Sex chromosome transformations can occur via multiple evolutionary pathways. In the
examples shown here, the ancestral karyotype has a sex chromosome pair along with three autosomal
pairs of chromosomes (top left). In the ancestral karyotype, male-beneficial sexually antagonistic alleles

(green stars) are found on some autosomes, and a female-beneficial sexually antagonistic allele is found
on another autosome. Neo-sex chromosomes can be created when an autosome (red) fuses to the Y
chromosome (top right). An autosome can be converted into a proto- X/Y or Z/W chromosome when it

acquires a new master sex deterrmining locus (bottom), with the ancestral sex chromosome reverting to
an autosome. The creation of neo- and proto-sex chromosomes can resolve a sexual conflict by allowing

a sexually antagonistic allele to be inherited only by the sex in which it is beneficial.

A second type of large-scale change involves a chromosomes transitioning from

sex-linked to autosomal and vice versa, in a process I will refer to as sex chromosome turnover

(Figure 2). For example, in a species with an XY system, an autosome can become a

proto-X/proto-Y chromosome pair with the acquisition of a male-determining locus; the ancestral
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X and/or Y chromosome can subsequently revert to an autosome (Carvalho & Clark, 2005;

Larracuente et al., 2010; Vicoso & Bachtrog, 2013). Alternatively, an XY system can evolve into

a ZW system if an autosome acquires a female-determining allele, and the ancestral X and/or Y

chromosome can revert to an autosome. An existing ZW system can similarly transition to a

different ZW system or evolve into an XY system. In all scenarios, sexually antagonistic

selection is thought to increase the probability of a sex chromosome turnover because Y- or

Z-linkage of a sexually antagonistic allele can resolve the inter-sexual conflict (van Doorn &

Kirkpatrick, 2007, 2010). An example of this phenomenon has been documented in cichlid fish,

where different pigmentations and patterns are favored in males and females, and W-linkage of

the female-beneficial allele resolved the inter-sexual conflict (Roberts et al., 2009). This is one

of the examples of an ecological selection pressure that I describe in more detail below.

Sex-specific selection pressures are also thought to explain differences in the

evolutionary dynamics of sex chromosomes relative to autosomes. For example, Y (or W)

chromosomes have male- (female-) limited inheritance and little to no recombination along most

or all of their length (Charlesworth, 1991; Rice, 1996a). These factors favor the fixation of male-

(female-) beneficial alleles on the Y (W) chromosome, and promote the degeneration of the Y

(W) chromosome via a combination of Muller’s ratchet and genetic hitchhiking (Charlesworth &

Charlesworth, 2000; Charlesworth et al., 2005; Bachtrog, 2013). Experiments in Drosophila

have demonstrated that male-limited inheritance allows male-beneficial, female-detrimental

sexually antagonistic alleles to accumulate (Rice, 1996b, 1998; Prasad et al., 2007; Zhou &

Bachtrog, 2012). However, the extent to which the male-beneficial effects depend on ecological

contexts is not always considered. I discuss this in further detail below.

The sexually asymmetrical inheritance of X and Z chromosomes may also favor the

accumulation of alleles with sex-specific fitness effects. X chromosomes are carried by females

2/3 of the time and are haploid in males, while Z chromosomes are preferentially transmitted by

males and haploid in females. These factors may favor the invasion of recessive male-beneficial

or dominant female-beneficial X-linked mutations, and vice versa for Z chromosomes (Rice,

1984; Charlesworth et al., 1987; Orr & Betancourt, 2001). Other factors may further affect the

maintenance sexually antagonstic polymorphisms or fixation of sexually antagonistic alleles on

X or Z chromosomes (Patten & Haig, 2009; Fry, 2010; Ruzicka & Connallon, 2020). For

example, there is some evidence that the Drosophila X chromosome is enriched for alleles with

sexually antagonistic fitness effects (Gibson et al., 2002; Innocenti & Morrow, 2010). Moreover,

there is evidence that X-linked (or Z-linked) genes evolve faster than autosomal genes, possibly

because selection in males (females) drives the fixation of recessive beneficial alleles (Meisel &
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Connallon, 2013). Below, I discuss how these evolutionary dynamics of sex chromosomes could

be affected by ecological factors.

The Ecology of Sex-Specific Selection and Sexual Antagonism
Before discussing how ecological factors affect the evolution of sex chromosomes, I will

review some of the evidence that sex-specific selection pressures can depend on the

environment that organisms experience. This is important to consider in light of ecological

factors that affect sex chromosome evolution because so many aspects of sex chromosome

evolution depend on sex-specific selection pressures (see above). I will focus on both sexually

antagonistic and sexually selected traits. Sexual selection involves a specific class of

sex-specific or sexually dimorphic traits that are involved in the competitive access to mates

(Jones, 2016).

Sex-specific selection pressures can arise from differences in how males and females

use their environment (including niche partitioning or different dietary strategies), which could be

a selective force in favor of sexual dimorphism (Slatkin, 1984; Shine, 1989). For example,

Selander (1966) observed sexual dimorphism in size and foraging behavior in two woodpecker

species, suggesting sex differences in niche utilization. Similarly, in carpet pythons (Morelia

spilota), females have larger heads and consume larger prey than males (Pearson et al., 2002).

Sex differences in niche utilization could potentially arise from sex differences in parental care,

which could limit the foraging or hunting capacity of one sex (Kernaléguen et al., 2015).

Sex-specific selection pressures can also differ across ecological habitats within a

species’ range (Rhen & Crews, 2002; Connallon et al., 2018a). In the dioescious plant Silene

latifolia, for instance, intralocus sexual conflict for leaf area depends on water availability in the

environment (Delph et al., 2011). In Drosophila serrata, whether genetic variation has sexually

antagonistic fitness effects, and the extent of those effects, depends on the diet on which the

flies are raised (Delcourt et al., 2009; Punzalan et al., 2014). Theory also predicts that sexually

antagonistic selection should decrease in more extreme environments, variable conditions, or

near the limits of the species range (Lande, 1980; Connallon, 2015). This prediction is

supported by data from some natural and experimental populations (Berger et al., 2014; Holman

& Jacomb, 2017; De Lisle et al., 2018; Martinossi-Allibert et al., 2018). However, the clinal

distribution of traits in Drosophila melanogaster is concordant between males and females,

suggesting that sex-specific selection pressures do not differ across ecological habitats (Lasne

et al., 2018). Therefore, while sex-specific selection pressures frequently vary across habitats

and environments, the pattern is not universal.
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There are myriad consequences of geographical variation in sex-specific selection

pressures. For example, one meta-analysis across animals found that male body size varies

more across latitudes than female body size (Blanckenhorn et al., 2006). Another consequence

arises under scenarios of female demographic dominance, or the situation whereby population

size depends on female reproductive output. In those cases, sexually antagonistic selection

pressures that differ across populations can allow alleles that increase female fitness within

each population to become more common than expected without sexual asymmetries in

reproductive contributions (Harts et al., 2014). However, if selection pressures change over time

(e.g., environmental change, seasonal cycling), this can dampen the effect of sexual

antagonism by causing male and female selection pressures to be aligned (Connallon & Hall,

2016).

Pathogens are an especially intriguing ecological factor that could affect sex-specific

selection pressures. Exposure to pathogens depends on the ecological environment (Ostfeld et

al., 2010), and there are sex differences in immune responses to infections (Klein & Flanagan,

2016; Belmonte et al., 2019). These sex differences could be a cause of sexual conflict, or they

could be explained by the resolution of historical conflict. One specific cause of conflict may be

the effect of mating on the induction of the female immune system (Morrow & Innocenti, 2012),

which provides an interface between disease ecology and sexual selection (see below).

Sexually selected traits can depend on condition—which can include diet, parasite

infection, and other ecologically-dependent factors—or vary across environments (Hamilton &

Zuk, 1982; Rowe & Houle, 1996; Bonduriansky, 2007; Hunt & Hosken, 2014; Miller & Svensson,

2014). For example, sexual selection on body size and color morphs vary across populations in

the damselfly Ischnura elegans (Gosden & Svensson, 2008). In addition, larval diet affects some

sexually selected traits in flies with extreme sexual dimorphisms (David et al., 2000; Cotton et

al., 2004; Bonduriansky & Rowe, 2005). The strength of sexual selection can further depend on

the environment—female diet affects copulation behavior in Gerris buenoi water striders, which

has implications for the mating advantage experienced by large males (Ortigosa & Rowe, 2002).

Genotype-by-environment (GxE) interactions could be especially important for sexual selection

(Ingleby et al., 2010). One such example comes from the lesser waxmoth, Achroia grisella,

where GxE interactions affect multiple male signal characters, as well as female choice for

those signals (Jia et al., 2000; Rodríguez & Greenfield, 2003; Danielson-François et al., 2006).

Interactions between sexually selected traits and environments can also have important

consequences for the evolution of secondary sexual characteristics. Population genetics theory

predicts that spatial variation in natural selection can promote runaway sexual selection on
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exagerated male traits in one part of the species’ range (Lande, 1982). Variation in selection

along a species’ range can even allow for the evolution of female preference that comes at a

cost, in the form of predation risk or lost time and energy (Day, 2000). Costly female choice can

further evolve if phenotypes depend on GxE interactions (Kokko & Heubel, 2008).

Sexual selection can also inhibit or promote local adaptation, depending on the extent of

migration across populations and strength of selection within populations (Servedio &

Boughman, 2017). A study comparing D. melanogaster adapted to cadmium- and

ethanol-containing diets found that whether sexual selection produces ecologically well-adapted

progeny can depend on the alleles segregating in the population (Long et al., 2012). Other work

in D. melanogaster has shown that sexual selection impedes adaptation (Hollis & Houle, 2011;

Arbuthnott & Rundle, 2012), possibly because sexual conflict interferes with natural selection

purging deleterious alleles. Together, all the work presented in this section demonstrates that

ecological factors affect sex-specific selection, and sex-specific selection affects adaptation to

specific environments.

The Ecology of Sex Chromosome Evolution
The formation of sex chromosomes from autosomes, along with the subsequent

evolutionary dynamics of sex chromosomes that differ from the autosomes, are greatly affected

by sex-specific selection. As described above, sex-specific selection pressures can differ across

environments, and those environmental effects can cause different responses to selection than

expected under uniform selection pressures. Combining these concepts, it is likely that sex

chromosome evolution is affected by sex-specific selection that depends on ecological factors.

Below, I review the evidence from both population genetic theory and studies of natural genetic

variation that sex chromosome evolution is affected by ecology.

Clinal sex chromosomes

Geographic clines, with a gradient in selection pressures along a species’ range (Huxley,

1938; Endler, 1977), are especially informative of sex-specific selection pressures that differ

across environments. As mentioned above, theory predicts that the evolution of sexually

selected traits can be affected by clinal variation in natural selection (Lande, 1982; Day, 2000).

Owen (1986) showed that sex-specific selection along a cline can create differences in the

frequencies of X-linked alleles between males and females. Lasne et al. (2017) further

demonstrated that X-linked genes could contribute more to local adaptation than autosomal

genes if migration is male-biased. Selection within local environments is also predicted to

increase the rate of fixation of chromosomal inversions on the X chromosome relative to the
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autosomes (Connallon et al., 2018b), a phenomenon that has been observed in Drosophila

(Bhutkar et al., 2008).

Despite the theoretical predictions described above, empirical tests of “large X” effects

on local adaptation have produced mixed results. Lasne et al. (2019) failed to find evidence that

the D. melanogaster X chromosome contributes to meaningful to clinal variation in multiple

traits, although they did not consider sex-specific effects. In contrast, wing melanization in the

butterfly Colias philodice eriphyle increases with elevation and depends largely on W-linked

genetic variation (Ellers & Boggs, 2002). Sexually dimorphic gene expression variation may be

an especially promising phenotype to study between sexes and across environments (Ingleby et

al., 2014). There is evidence that the expression levels of X-linked genes evolve faster than

autosomal genes (Brawand et al., 2011; Kayserili et al., 2012; Meisel et al., 2012). Across

populations of D. serrata, X-linked gene expression divergence in females is elevated, relative

to the autosomes (Allen et al., 2017). Further work is needed to evaluate if X or Z chromosomes

disproportionately contribute to local adaptation, and if those contributions depend on whether

the alleles under selection have sex-specific fitness effects.

Thermal effects on sex chromosome evolution

Temperature is an intriguing ecological factor that could vary across populations or clines

and have sex-specific effects. Notably, sex is often determined by the incubation temperature of

eggs in species without sex chromosomes, including many reptiles and some other vertebrates

(Valenzuela & Lance, 2004). Temperature-dependent sex determination can be selectively

favored under certain thermal regimes (Charnov & Bull, 1977; Janzen & Phillips, 2006), but

temperature-dependent systems are also capable of evolving into systems with a heritable sex

determiner on a sex chromosome (Sarre et al., 2004). Evolutionary transitions from

temperature-dependent to heritable (i.e., genetic or sex chromosome) sex determination can be

favored if the thermal environment that determines each sex is not well-aligned with the

environment that maximixes the fitness of the sexes (Bulmer & Bull, 1982). However, sexual

development is maleable, and genetic sex determination systems can also be sensitive to

temperature in ways that over-ride the sex chromosome genotype (Sarre et al., 2004; Holleley

et al., 2015). This fluidity between genetic and temperature-dependent sex determination

provides a direct link between thermal ecology and sex chromosome evolution (Table 1).

Other examples demonstrate additional ways in which temperature-dependent selection

pressures can affect sex chromosome evolution (Table 1). For example, there is an enrichment

of X-linked alleles associated with divergence in cold tolerance and climatic variables across
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populations of Drosophila montana (Wiberg et al., 2021). In other Drosophila species, Y

chromosomes can harbor alleles with large fitness effects, despite having very few genes

(Chippindale & Rice, 2001; Carvalho et al., 2009). It is not yet determined whether the fitness

effects of these Y-linked alleles depend on ecological factors.

Table 1. Effect of temperature on sex chromosome evolution

Sex chromosome turnover
Temperature override of genetic sex determination in the Australian bearded dragon,
Pogona vitticeps (Holleley et al., 2015)

Sex chromosome evolution
Alleles associated with cold tolerance and climate are enriched on the Drosophila montana X
chromosome (Wiberg et al., 2021)
Temperature-dependent fitness effects maintain a cline of house fly proto-Y chromosome
(Delclos et al., 2021)

The best evidence for temperature-dependent fitness effects of Y chromosomes comes

from the house fly, Musca domestica (Table 1). House fly has a polygenic sex determination

system, and the male-determining gene is frequently found on one of two different proto-Y

chromosomes (Hamm et al., 2015; Sharma et al., 2017). One of these male-determining proto-Y

chromosomes is most common at northern latitudes, and the other is predominantly found at

southern latitudes (Denholm et al., 1986; Tomita & Wada, 1989; Hamm et al., 2005; Kozielska et

al., 2008). As predicted by their clinal distributions, the frequencies of these two proto-Y

chromosomes is associated with temperature variation across populations (Feldmeyer et al.,

2008). Moreover, the northern proto-Y chromosome confers greater cold tolerance and

preference for colder temperatures, while the southern proto-Y confers heat tolerance and

preference (Delclos et al., 2021). Transcriptome-wide gene expression analysis has identified

candidate genes whose temperature-dependent expression may be responsible for the

phenotypes under selection (Adhikari et al., 2021). These patterns suggest that the

polymorphism is maintained by temperature-dependent fitness effects of the proto-Y

chromosomes, but it is not yet resolved if these effects are sex-specific.

Pigmentation, predation, and sex chromosome evolution in fish

Pigmentation, specifically sexual dichromatism, is a phenotype with

environment-dependent fitness effects that contributes to sex chromosome evolution in teleost

fish. Many evolutionary transitions in sex chromosomes, as well as complex sex chromosome

systems, have been documented in teleosts (Mank & Avise, 2009; Sember et al., 2021).
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Intriguingly, sexually dimorphic pigmentation in fish is often controlled by genes on the sex

chromosomes (Kottler & Schartl, 2018). Pigmentation in fish is often used for signaling to

potential mates, but those same signals can attract predators (Reznick et al., 1996; Zuk &

Kolluru, 1998). Moreover, pigmentation patterns that provide camouflage from predators can

depend on specific aspects of the natural environment (Cott, 1940; Endler, 1978). All of this

taken together raises the possibility that sex-specific and environment-dependent selection on

pigmentation contributes to the evolution of sex chromosomes in teleosts. Below, I review one

clear example of sex chromosome turnover driven by intersexual conflict over signaling and

camouflage (Roberts et al., 2009). I also describe additional fish taxa where selection on sexual

dichromatism may drive sex chromosome turnover or the evolution of sex chromosomes

(Table 2).

Table 2. Effect of pigmentation, sexual selection, and predator avoidance on sex chromosome evolution

Sex chromosome turnover
Lake Malawi cichlid W chromosome with a female-determining locus linked to an allele that
improves female camouflage but negatively affects male courtship display (Roberts et al.,
2009)

Sex chromosome evolution
Guppy Y chromosome affects pigmentation phenotype under sexually selection but also
associated with predation risk (Gordon et al., 2012, 2017)
Swordtail fish Y-linked allele affects sexually selected pigmentation (Kingston et al., 2003)

Y-linked allele in a mosquitofish with temperature-dependent effects on melanization that is
involved in mate signaling and predator avoidance (Angus, 1989; Horth, 2004, 2006; Horth
et al., 2013)

The clearest example of intralocus sexual conflict driving a sex chromosome turnover

comes from cichlid fish in Lake Malawi (Roberts et al., 2009). In these fish, bright pigmentation

is favored in males because it increases mate recognition (Van Oppen et al., 1998), but a

different coloration allows females to camouflage against the rock substrate of the lakes they

inhabit. This creates a conflict between natural selection in females (for predation avoidance)

and sexual selection in males. This conflict was resolved when a female-determining allele

arose that is genetically linked to the allele that determines the female-preferred color pattern

(Figure 2). This is a clear example of an ecological selection pressure (camouflage for predator

avoidance) driving the evolutionary turnover of a sex chromosome system (Table 2).

There has been extensive sex chromosome turnover during the evolution of cichlids from

Lake Malawi, Lake Tanganyika, and other East African lakes (Gammerdinger & Kocher, 2018; El
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Taher et al., 2021). Closely related cichlid species often differ in which chromosome is

sex-linked, and some species have polygenic sex determination systems with multiple

sex-linked chromosomes (Ser et al., 2010; Roberts et al., 2016; Böhne et al., 2019). Cichlid fish

are also one of the best examples of an adaptive radiation that involved a high rate of speciation

giving rise to many new species in a short period of time, possibly as a result of niche

specialization for a diversity of ecological habitats (Ronco et al., 2021). Sex chromosomes are

thought to have a large effect on speciation because they may be more likely to harbor loci for

reproductive isolation (Payseur et al., 2018), providing a link between sex chromosome turnover

and speciation in cichlid fish (El Taher et al., 2021). Moreover, alleles responsible for color

variation in cichlids tend to be sex-linked (Lande et al., 2001), suggesting that sexual conflicts

over camouflage and mate attraction at pigmentation loci could be partially responsible for both

sex chromosome turnover and speciation in cichlid fish. This is notable because it ties together

ecological factors that promote speciation with ecological factors that drive sex chromosome

turnover.

When sex chromosome turnovers are common, the same chromosome is likely to

become sex-linked in multiple evolutionary lineages. There has indeed been repeated

recruitment of the same chromosome to be an X-Y or Z-W chromosome across cichlids, with

rates of sex chromosome re-use exceeding random expectations (Gammerdinger & Kocher,

2018; Böhne et al., 2019; El Taher et al., 2021; Feller et al., 2021). There are at least two

explanations for the same chromosome repeatedly being recruited to be a sex chromosome in

multiple evolutionary lineages (O’Meally et al., 2012; Furman & Evans, 2016). First, some

chromosomes may possess genes that are able to mutate into sex determiners, such as Sox9

in Oryzias rice fishes (Takehana et al., 2007, 2014; Myosho et al., 2015). Alternatively, some

chromosomes may be more likely to harbor sexuallly antagonistic alleles whose conficts can be

resolved by Y- or W-linkage, e.g., genes involved in pigmentation that have dual roles in

camouflage and mate attraction (Roberts et al., 2009). Additional work to distinguish between

these hypotheses would be informative of the role that ecology plays in sex chromosome

turnover.

Connections between sex chromosomes, pigmentation, and predation have been

observed in other fish, including those in the family Poeciliidae (Table 2). The poeciliid fishes are

classic models for the evolution of sex chromosomes and sex determiantion (Volff & Schartl,

2001; Schultheis et al., 2009). Loci controlling color polymorphisms in Poecilia spp., including

the guppy, are often Y-linked (Winge, 1927; Lindholm & Breden, 2002; Lindholm et al., 2004;

Morris et al., 2018). In the guppy, P. reticulata, male mate choice depends on male color
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patterns (Houde, 1987). In addition, male guppies from high predation environments are less

colorful than those from locations with lower predation (Endler, 1980; Magurran, 2005), and the

extent of Y-linkage of color traits is greater in high predation than low predation environments

(Gordon et al., 2012, 2017). There are also likely to be tradeoffs and complex interactions

between sexually selected traits, predator avoidance, and other ecologically relevant

phenotypes (Endler, 1995; Godin & McDonough, 2003), similar to the cichlid fish described

above. For example, frequency-dependent survival favors rare color morphs in P. reticulata,

possibly because predators are more likely to capture the more common morph as a result of

selective search strategies (Olendorf et al., 2006). Poecilia parae also has multiple male color

morphs that are determined by Y chromosome genetic variation (Sandkam et al., 2021). Rare

color morphs of P. parae are preferred by females (Lindholm et al., 2004), suggesting that the

polymorphism may be maintained because of trade-offs across alternative mating strategies

(Hurtado-Gonzales & Uy, 2009). These findings provide additional evidence that conflicts

involving pigmentation that attracts both mates and predators are likely to be mediated by

sex-linked alleles.

Xiphophorus is another genus of poeciliid fish that is a classic model for the evolution of

sex chromosomes and sexual conflict. For example, Xiphophorus maculatus has a polygenic

sex determination system that is thought to be maintained by sexually antagonstic selection

(Orzack et al., 1980). In addition, pigmentation patterns are frequently Y-linked in Xiphophorus

spp. (Zimmerer & Kallman, 1988), and the pigmentation affects both sexual selection and

predator avoidance (Table 2). In the pygmy swordtail, Xiphophorus pygmaeus, a polymorphic

Y-linked locus controls body color, with both blue and gold males found in natural populations

(Kallman, 1989; Baer et al., 1995). Females from populations with few predators prefer blue

males, but females from high predation risk populations have no color preference (Kingston et

al., 2003). This is consistent with sexual selection (female choice) being weaker in populations

with more risk of predators because of tradeoffs between sexual and natural selection (Zuk,

1992). The examples from Xiphophorus provide yet more evidence for a relationship between

sex chromosomes, sexual selection, and predation.

Sex-linkage of pigmentation alleles is oberved in other, non-poeciliid fish, as well. For

example, penetrance of a Y-linked melanism allele in the eastern mosquitofish, Gambusia

holbrooki, depends on temperature (Angus, 1989; Horth, 2006). Non-melanic mosquitofish

males are preferred by females, possibly because the melanism resembles a parasitic infection

(Horth et al., 2013). However, melanic males have an advantage in the presence in predators

(Horth, 2004), suggesting an environment-dependent selective advantage that could maintain
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genetic variation at this sexually selected Y-linked locus (Table 2). There is also a Y-linked color

allele in the Japanese rice fish, Oryzias latipes (Aida, 1921), a member of a genus with a high

rate of sex chromosome turnover (Takehana et al., 2014; Myosho et al., 2015). Future work

could test if there is a relationship between pigmentation, ecological factors (e.g., predation),

and sex chromosome turnover in rice fishes.

Body size and sex chromosome evolution

Body is size is another phenotype that can be affected by sex chromosome genotypes,

but it is not clear how selection on body size affects sex chromosome evolution. Sexual size

dimorphism is ubiquitous across animals, with size differences evolving under the influence of

sexual selection, ecological factors, and developmental constraints (Hedrick & Temeles, 1989;

Abouheif & Fairbairn, 1997; Blanckenhorn, 2005; Janicke & Fromonteil, 2021). The potential for

interplay between sexual selection and ecology is of particular relevance here.

Effects of sex chromosomes on sexual size dimorphisms have been documented in

multiple fish species. For example, differences in adult male size and age at sexual maturity in a

population of Xiphophorus nigrensis are controlled by genetic variation at a Y-linked locus

(Lampert et al., 2010). Females prefer large males, and small males often employ a “sneaker”

strategy to mate with females (Zimmerer & Kallman, 1989). While it is possible that large and

small males have equal fitness (Ryan et al., 1992), there may also be undescribed ecological

factors that favor one morph in specific environments. In one population of P. reticulata, GxE

interactions affect male body size (the environmental variable manipulated was food amount),

with some of the alleles for body size on the Y chromosome (Hughes et al., 2005). Lastly, alleles

associated with phenotypic and behavioral divergence, including body size, between sympatric

stickleback species in the Gasterosteus aculeatus complex are located on the ancestral- and

neo-sex chromosomes (Kitano et al., 2009; Yoshida et al., 2014). It remains to be determined if

these sex-linked body size alleles have context-dependent fitness effects across ecological

habitats.

Future Directions
There are numerous examples of ecological factors affecting sex chromosome evolution,

including temperature (Table 1) and predation (Table 2). In some cases, there are intersexual

conflicts between pigmentation patterns in males that attract mates and those that provide

females with camouflage. There is clear evidence that these conflicts can be resolved by a sex

chromosome turnover that limits inheritance of one allele to the sex in which it is beneficial

(Roberts et al., 2009). In other cases, temperature affects the sex determination pathway in a
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way that over-rides an existing genetic or chromosomal sex determination system (Holleley et

al., 2015). However, temperature can affect the evolution of sex chromosomes independently of

the sex determination pathway by, for example, maintaining polymorphisms in which different

sex chromosomes have temperature-dependent effects on fitness (Adhikari et al., 2021; Wiberg

et al., 2021). Each of these phenomena is illustrated by a small number of examples (Tables 1

and 2), and future work should examine the generalities of these patterns. Below, I describe

some model systems for examining specific ways in which ecological factors could affect sex

chromosome evolution.

Examining conflicts over pigmentation that attracts both mates and predators may be the

most promising way forward to investigate how ecological factors affect sex chromosome

evolution. Intersexual conflicts over pigmentation in cichlid fish is the best example of a

selection pressure driving sex chromosome turnover, and the poecillid fish Y chromosome

polymorphisms are a classic model for sexually selected pigmentation (Table 2). Continuing

work in both of these systems is likely to reveal more examples of sex-specific and ecologically

dependent selection pressures that shape sex chromosome evolution. Cichlids are an

especially promising system for future work because of the high rate of both sex chromosome

turnover and ecological adaptation that has happened in a very short period of time (El Taher et

al., 2021; Ronco et al., 2021)

Sexual dichromatism is extensive across animals, raising the possibility that conflicts

between sexual selection and predator avoidance may be important for sex chromosome

turnover more broadly. Of note here are the sexually dichromatic in fish beyond cichlids and

poeciliids (Miller et al., 2021), as well as the extensive sexual dichromatism in frogs (Bell &

Zamudio, 2012). Frogs, like fish, have experienced very high rates of sex chromosome turnover

during their evolution (Jeffries et al., 2018; Ma & Veltsos, 2021). However, unlike fish, no clear

links have been drawn between pigmentation, ecology, and sex chromosome evolution in frogs.

Frogs may therefore represent a promising, untapped system to investigate the ecology of sex

chromsoome evolution.

An additional area of investigation that should be explored is how sex-linked genetic

variation affects ecologically relevant phenotypes in an environment-dependent manner. Theory

predicts that sex-specific and/or local adaptation can disproportionately affect sex chromosome

evolution more than autosoms (Owen, 1986; Lasne et al., 2017; Connallon et al., 2018b).

However, empirical studies of natural populations have revealed mixed support for this predicted

result (Lasne et al., 2018, 2019; Wiberg et al., 2021). Of note are clines of proto-Y
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chromosomes in the house fly, which have significant effects on thermal phenotypes, although it

remains to be determined if the effects are sex-specific (Delclos et al., 2021).

One possible explanation for the mixed evidence for effects of sex chromosomes on

local adaptation is that sex-specific fitness effects were not always considered in previous

experiments. Specifically, GxE interactions that depend on sex (i.e., GxSxE effects) may be

important for sexual selection and the evolution of sexual dimorphism (Ingleby et al., 2010;

Delph et al., 2011). Given the importance of sex-specific selection on sex chromosome

evolution, it is likely worth considering sex-specific fitness effects in any study of the relationship

between sex chromosomes and local adaptation. However, it is also worth noting that not all

sexually selected traits depend on the environment (e.g., Arbuthnott & Rundle, 2014), and it is

not clear the extent to which sexual selection varies across environments. Future work could

compare the effect of environmental conditions on sexually selected traits that map to either the

sex chromosomes or autosomes to test of GxE interactions are more common for autosomal or

sex-linked sexually selected traits.

Conclusions
Sex chromosome evolution is greatly affected by sex-specific selection pressures, and

there is extensive evidence that sex-specific selection pressures often depend on ecological

factors. It therefore should not be surprising that there are multiple examples of ecological

effects on sex chromosome evolution (Tables 1 and 2). Nonetheless, these examples are

limited, and multiple open questions remain about how ecology affects sex chromosome

evolution. For example, do sex chromosomes play a disproportionate role in sex-specific or

sexually antagonistic ecological adaptation? In addition, while sexual conflict arising from

ecological factors can drive sex chromosome turnover (e.g., Roberts et al., 2009), it is not clear

if ecologically relevant selection pressures are a common factor in sex chromosome turnover.

These should be motivating questions for researchers interested in ecology and the evolution of

sex chromosomes going forward.
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