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1 Abstract11

Plant population ecologists regularly study soil seed banks with seed bag burial and seed addi-12

tion experiments. These experiments contribute crucial data to demographic models, but we lack13

standard methods to analyze them. Here, we propose statistical models to estimate seed mortality14

and germination with observations from these experiments. We develop these models following15

principles of event history analysis, and analyze their identifiability and statistical properties by16

algebraic methods and simulation. We demonstrate that seed bag burial, but not seed addition ex-17

periments, can be used to make inferences about age-dependent mortality and germination. When18

mortality and germination do not change with seed age, both experiments produce unbiased esti-19

mates but seed bag burial experiments are more precise. However, seed mortality and germination20

estimates may be inaccurate when the statistical model that is fit makes incorrect assumptions about21

the age-dependence of mortality and germination. The statistical models and simulations that we22

present can be adopted and modified by plant population ecologists to strengthen inferences about23

seed mortality and germination in the soil seed bank.24

Keywords: seed banks, demography, parameter estimation, identifiability, uncertainty25

2 Introduction26

Soil seed banks are a crucial part of plant life-history strategies that depend on long-lived stages27

to persist in variable environments. At the population level, a persistent soil seed bank can buffer28

populations from temporal variability in reproductive success (Evans et al., 2007), and produce29

age structure that increases generation time and affects the population growth rate (Kalisz and30

McPeek, 1992). However, it can be difficult to incorporate seed banks into empirical population31

models (Menges, 2000; Doak et al., 2002; Nguyen et al., 2019) because seed fates are partially32

or completely unobservable processes (Rees and Long, 1993). Individual seeds enter the seed33

bank from seed rain, and eventually leave through death or germination (Simpson et al., 1989).34

Seeds experience mortality by being consumed or destroyed by predators or pathogens, or through35

physiological death (Baker, 1989). In the field, seed mortality cannot be directly observed and,36

because seeds that germinate must have both survived and germinated, seed mortality complicates37
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inferences about germination.38

Population ecologists studying seed banks are often interested in understanding how seed mor-39

tality and germination influence population dynamics. Seed mortality and germination can be40

measured using experiments (e.g., Kalisz 1991) and natural variability in seed rain and seedling41

emergence (e.g., Evans et al. 2010). In particular, experiments are often used to study seed fates42

and estimate both seed mortality and germination for population models. Two kinds of experi-43

ments are most common. Briefly, seed bag burial experiments involve burying seeds in mesh bags44

and recovering them to count seeds that died or germinated. Seed addition experiments consist of45

adding seeds to plots and returning to census emerged seedlings. Ideally, these experiments would46

be used to obtain accurate estimates for age-dependent seed mortality and germination that are47

associated with quantified uncertainty (Doak et al., 2002). However, there is no standard statistical48

approach for estimating seed mortality and germination from field experiments, and even observa-49

tions from the same kind of experiment are often analyzed in disparate ways. For instance, three50

recent studies that used seed bag burial experiments each analyzed the observations differently: by51

regressing seeds in year t +1 on seeds in year t (Kurkjian et al., 2017), fitting an exponential curve52

(Lommen et al., 2018), or estimating the proportion of surviving seeds (Tanner et al., 2021).53

Decisions about how to estimate seed mortality and germination influence whether and how the54

seed bank is represented in structured population models. Because the seed bank cannot be directly55

observed, these choices are often made with limited information. Recent reviews indicate that over56

a third of published plant population matrix models exclude seed banks without justification (Doak57

et al., 2002; Nguyen et al., 2019). Omitting the seed bank or inaccurately estimating seed mortality58

or germination can bias estimates for population growth rate, particularly when aboveground rates59

exhibit high levels of temporal variability (Doak et al., 2002; Nguyen et al., 2019). Age-dependent60

seed mortality and germination contribute to population age structure, so the decision to represent61

the seed bank as unstructured or age-structured can also affect population growth rates (Kalisz,62

1991; Rees and Long, 1993; Doak et al., 2002). In addition, the precision of vital rate estimates,63

including seed rates, influences uncertainty in estimates of population dynamics (e.g., Paniw et al.64
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2017; Nguyen et al. 2019). Seeds are hard to study and relatively little is often known about them,65

so authors may omit uncertainty in their estimates of seed related rates and in turn underestimate66

uncertainty in population growth rate and extinction probability.67

Although existing studies address issues related to how seed banks are represented in structured68

population models, there is no work that examines statistical models for observations from the69

experiments that are commonly used to study seed banks. We identify three key unanswered70

questions about seed bag burial and seed addition experiments: (i) When can each experiment be71

used to obtain estimates for constant versus age-dependent seed mortality and germination? (ii)72

What is the accuracy and precision of estimates from each experiment? (iii) How are estimates73

affected by misrepresenting the age-dependence of seed mortality and germination in statistical74

models? We answer these questions by describing statistical models for observations from seed bag75

burial and seed addition experiments and addressing model identifiability, the statistical properties76

of estimates for seed mortality and germination, and the consequences of model misspecification.77

In seed bag burial and seed addition experiments, observations of surviving seeds and seedlings78

reflect seed fates. We define likelihoods that link these observations to estimates of seed mortality79

and germination, and analyze the identifiability of the models under different assumptions about80

the age-dependence of mortality and germination. Informally, a statistical model is identifiable if81

it is possible to estimate the parameters in the model from a given set of data. For the models82

that we analyze, the crux of the issue is that the seed bank experiments produce different observa-83

tions—seeds and seedlings for seed bag burial experiments, but only seedlings for seed addition84

experiments. To determine if each experiment generates observations that can be used to esti-85

mate seed mortality and germination, we analyze the identifiability of statistical models. Once86

we determine which statistical models are identifiable for particular experimental observations, we87

compare the accuracy and precision of seed mortality and germination estimates from seed bag88

burial and seed addition experiments. Finally, we ‘stress-test’ the models by assessing the conse-89

quences of fitting misspecified models. In current practice, studies may fit models that simplify the90

age-dependence of mortality or germination by assuming constant mortality or germination (e.g.,91
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Leimu and Lehtilä 2006; Burns et al. 2013). In this case, researchers may want to be parsimonious92

and reduce the number of parameters in a statistical model. Alternatively, studies may fit models93

with as many age-dependent parameters as observations permit (e.g. Eckhart et al. 2011; Bricker94

and Maron 2012). In this case, researchers may want to parameterize an age-structured seed bank95

for a population model, or may simply want to be cautious and avoid over-simplifying the age96

structure of the seed bank. These constraints are typically applied without evaluating alternative97

model structures, and we investigate how such assumptions influence the accuracy and precision98

of estimates of mortality and germination.99

3 Developing the statistical models100

In the following sections, we characterize seed bag burial and seed addition experiments, and101

the observations they produce, by way of idealized examples (Fig. 1). We apply the principles102

of event history analysis to develop a deterministic model for seed mortality and germination that103

describes seed fates in seed bank experiments. We then link the observations and deterministic104

processes with probability statements to define a statistical model for observations from each ex-105

periment. Throughout, we present general versions of the model to accommodate mortality and106

germination rates that depend on seed age. At select points, we use the specific case in which107

mortality and germination rates do not depend on seed age to interpret the general model.108

We make several choices about how to develop the statistical models that are influenced by how109

population ecologists use seed bag burial and seed addition experiments. In a literature synthesis,110

we identified 57 studies conducted from 1991-present that used a total of 69 experiments to pa-111

rameterize matrix or integral projection models (Appendix: Literature synthesis). We used these112

studies to inform how we constructed our idealized experiments, with the goal of representing the113

essential attributes of each kind of experiment. The majority of studies (94.7%) built population114

models with separate seed mortality and germination parameters, and we consider how to estimate115

both parameters as well. The majority of studies (84.2%) described discrete relationships between116

seed age and fate, which is also how we represent the relationship in the models we build.117
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3.1 Observations118

We assume that we want to characterize seed mortality and germination for a plant species with119

a soil seed bank and discrete germination opportunities. For simplicity, we do not compare sites,120

treatments, or species. The seeds are too small to be followed individually, so we conduct experi-121

ments with unmarked cohorts of seeds. We consider two possibilities: seed bag burial experiments122

(Fig. 1A-B) and seed addition experiments (Fig. 1C-D). We work with idealized versions of these123

experiments because our study develops and analyzes statistical models.124

In seed bag burial experiments, we add seeds and soil to mesh bags before burying them in125

the field (0 months in Fig. 1A). Researchers bury seeds in various enclosures (e.g., cages in Kalisz126

1991, or mesh bags in Quintana-Ascencio et al. 1998) but to be concise we always refer to bags.127

Bags are recovered from the field after a certain time. Here, we collect bags after germination128

so that we count intact, ungerminated seeds and germinants (filled circles in Fig. 1A). Sampling129

tends to be destructive, particularly if intact seeds are tested for viability using a method such as130

tetrazolium staining. As a result, these studies typically retrieve different subsets of bags for seed131

and germinant counts at different times (Fig. 1A).132

We identify each bag by an ID, index i, and the time that it was recovered, index j (columns133

1-2 in Fig. 1B). We also record time as a variable, ti j (column 3 in Fig. 1B). Each bag has three134

counts: the number of seeds added to the mesh bags at the start of the experiment, ni j, the number135

of intact, ungerminated seeds, and the number of germinants, yg,i j (columns 4-6 in Fig. 1B). Here,136

we assume that all intact seeds are viable (but we discuss combining field experiments and lab137

viability assays in Discussion: Extensions). Finally, we calculate the number of seeds surviving138

to sampling as the sum of intact, ungerminated seeds and germinants – we assume this is both139

the number of survivors, yi j, and the number of seeds surviving to just before germination, ng,i j140

(columns 7-8 in Fig. 1B).141

In seed addition experiments, we lightly bury or sprinkle seeds on the soil surface (0 months142

in Fig. 1C). Seeds are buried in plots where we do not expect a substantial seed bank, or in pots143

or trays with seed-free soil. We might also include control plots without seed addition to account144

6



for natural seed rain. We survey the plots for seedlings after germination (filled circles in Fig. 1C).145

Typically, it is not possible to recover intact seeds from the soil but because seedling counts are146

non-destructive, we can resurvey plots (Fig. 1C).147

We identify each plot by an ID, index i, and record the time it was surveyed, index j (columns148

1-2 in Fig. 1D). We also record time as a variable, ti j (column 3 in Fig. 1C). Each plot and survey149

time has two counts: the number of seeds added to the plot at the start of the experiment, ni j, and150

the number of seedlings, yg,i j (columns 4 & 6 in Fig. 1C).151

Studies that track natural variability in seed rain, ni j, and seedling emergence, yg,i j over time152

can also produce similar data as seed addition experiments (e.g., Kauffman and Maron 2006; El-153

derd and Miller 2016). Seed rain is comparable to the number of seeds added to an experimental154

plot, and seedling surveys are similar to counting seedlings in an experiment. Natural variability155

can complement or provide an alternative to experimental manipulations, especially for species156

with limited dispersal or discrete recruitment pulses in which it is possible to link seed rain and157

seedling emergence. In this manuscript, we describe our statistical framework with reference to158

experimental observations, but it could also be used to estimate seed mortality and germination159

from field observations.160

3.2 Deterministic model for seed fates161

The fate of seeds in the seed bank can be characterized using methods from event history anal-162

ysis (also called survival or failure time analysis; reviewed in Fox 2001; Landes et al. 2020). By163

focusing on a seed leaving the seed bank as the event of interest, we can characterize the distri-164

bution of times at which the event occurs using a set of key functions (Klein and Moeschberger,165

2003). A survival function describes the probability that a seed remains in the seed bank until time166

t. The survival function is the term for the probability of the event occurring after time t; the term167

applies whether or not the event of interest is death. A probability density function describes the168

probability that the seed leaves the seed bank at time t. Finally, a hazard function describes the169

tendency that a seed remaining in the seed bank at time t leaves the seed bank at the next instant170

in time. The probability density function defines the unconditional probability of events, while the171
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hazard function is associated with the conditional propensity for the event among individuals who172

have not yet experienced the event (Fox 2001, p. 245). We illustrate the relationship between these173

functions in Appendix: Hazards determine the age-structure of the seed bank.174

We use these principles to describe how seed loss from the seed bank (the event of interest)175

depends on mortality and germination. We define hazard functions for each fate. The hazard176

function for mortality, hm, is the risk that a seed remaining in the seed bank leaves the seed bank177

through mortality the next instant. The hazard function for germination, hg, is the risk that a seed178

remaining in the seed bank leaves the seed bank through germination the next instant. The hazards179

thus summarize the “instantaneous risk” (Landes et al., 2020) of mortality or germination. In this180

paper, we assume that mortality precedes germination, but the principles we describe are flexible181

and specific equations should be reformulated to correspond to the biology of the study system.182

We combine the mortality and germination hazards to describe a survival function for the ex-183

pected probability that seeds remain in the seed bank up to a given time:184

S(t) = ∏
t j≤t

(
1−hm(t j)

)
×
(
1−hg(t j)

)
. (1)185

186

Equation 1 is the product of discrete survival functions associated with mortality, Sm(t j)=∏t j≤t 1−187

hm(t j), and germination, Sg(t j) = ∏t j≤t 1−hg(t j). If the hazards are on an annual timescale, Sm is188

the cumulative product of the complement of the mortality probability, up to the number of years189

t j that seeds have been in the soil. Similarly, Sg is the cumulative product of the complement of190

the germination probability, up to the number of germination opportunities that seeds have experi-191

enced. In terms of the hazards, hm(1) is a seed’s propensity for mortality in the first year and hg(1)192

is the propensity for germination of a seed that does not die during the first year. The seeds that193

remain in the seed bank past one year do not die with propensity 1−hm(1) and do not germinate194

with propensity 1−hg(1).195

To use the survival function (Equation 1) in a statistical model, we specify the hazards in terms196

of probabilities. The mortality hazard, hm(t j), is the probability of mortality during each time in-197

terval j, pm, j. Specifically, it is the conditional probability of mortality for seeds that remain in198

the seed bank. We describe seeds remaining in the seed bank after the period in which they expe-199
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rience mortality, but before the germination opportunity. We assume that after this time interval,200

seeds have a discrete opportunity to germinate. The germination hazard, hg(t j), is the conditional201

probability of germination at each opportunity, pg, j, for a seed that remains in the seed bank up to202

just before germination.203

With these hazards, the mortality component is defined by ∏
J
j=1 1− pm, j. The germination204

component is defined by ∏
J
j=1(1− pg, j−1)

I( j>1), where I(x) is an indicator function equal to 1205

if the inequality is true, and 0 if it is not (Metcalf et al., 2009). We use the indicator function206

because at the first time j, seeds have not yet experienced a germination opportunity. After the first207

germination opportunity, the ‘germination history’ is defined by the product of past germination208

opportunities. The product of the mortality and germination components describe the probability209

that seeds remain in the seed bank after j time intervals (e.g., years) as210

f (pg,pm) =
J

∏
j=1

survival function
for mortality︷ ︸︸ ︷(
1− pm, j

)
×

germination history︷ ︸︸ ︷(
1− pg, j−1

)I( j>1) . (2)211

212

The choice of how to represent mortality and germination makes explicit our assumptions about213

how those processes operate. The most simple version of the model in Equation 2 is one in which214

the hazards are constant; neither mortality nor germination probability change with seed age. In215

this case, pm,1 = pm,2 = · · · = pg,J and pg,1 = pg,2 = · · · = pg,J . Mortality and germination are216

each described by a single parameter, pm and pg.217

3.3 Likelihood functions for observations from seed bag burial and seed addition experi-218

ments219

To estimate seed mortality and germination, we use probability statements to connect the ob-220

servations from field experiments to the deterministic models. We describe likelihood functions221

for observations from seed bag burial (Fig. 1A-B) and seed addition (Fig. 1C-D) experiments. To222

illustrate our approach, we assume that mortality and germination do not depend on seed age.223

The general structure of the likelihood remains similar when we relax the assumption of constant224

hazards for mortality or germination (Table 1).225

For the seed bag burial experiment, we construct one likelihood for the observations of ger-226
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minants and another likelihood for the observations of surviving seeds. First, we use the ob-227

servations of germinants to describe a model for the probability of germination, pg. We as-228

sume that the number of seeds that germinate, yg,i j, is a binomial sample from the number of229

seeds surviving to just before germination, ng,i j. Recall that the number of surviving seeds is the230

sum of germinants and ungerminated, intact seeds. We estimate the probability of germination,231

pg, for a seed that survives up to just before germination. The likelihood is then L(pg|yg) =232

∏
I
i=1

[
∏

Ji
j=1 binomial(yg,i j|ng,i j, pg)

]
.233

Next, we use the observations of surviving seeds to describe a survival function for the prod-234

uct of germination and mortality hazards. We assume that the number of seeds that survive to a235

given time is a binomial sample from the number of seeds that start the experiment in each bag:236

binomial
(
yi j|ni j, f (. . .)

)
. The number of surviving seeds is the sum of germinants and ungermi-237

nated, intact seeds. The deterministic model, f (. . .), is the product of the germination history and238

the survival function for mortality, and describes the probability of not germinating and not dying239

up to the time j. For the case in which mortality and germination do not depend on seed age,240

f (pm, pg) = ∏
j
k=1(1− pm)(1− pg)

I( j>1). The joint likelihood for observations of germinants and241

surviving seeds is242

f (pm, pg) =
j

∏
k=1

(1− pm)× (1− pg)
I( j>1)

L(pm, pg|yg,y) =
I

∏
i=1

[ Ji

∏
j=1

[
binomial(yg,i j|ng,i j, pg)binomial

(
yi j|ni j, f (pm, pg)

)]]
.

(3)243

244

In seed bag burial experiments, bags are destructively sampled so the indices for bag ID, i, and245

recovery time, j, are redundant (Fig. 1A). We write the likelihood function so that the index for246

the time the bag was recovered, j, is nested within the index for bag, i. We adopt this notation to247

avoid unobserved combinations of bag ID and recovery time (e.g., any bag i at a time j when the248

bag was not recovered). Using this notation also makes explicit the parallel with the likelihood for249

observations from seed addition experiments, for which there are multiple observation times j per250

bag i (Fig. 1B).251

For the seed addition experiment, we construct a likelihood for the observations of seedlings.252
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We assume that the number of seedlings is a binomial sample from the number of seeds that start253

the experiment: binomial
(
yg,i j|ni j, f (. . .)

)
. The number of seedlings is the product of mortality254

and germination. We describe the combination of those processes with a deterministic model,255

f (. . .), that modifies Equation 2 to include germination. Each observation takes place at the time256

of germination, rather than after, so that f (pm, pg) = pg×∏
j
k=1(1− pm)(1− pg)

I( j>1). To account257

for germination, the function now includes the probability of germination, pg, in addition to the258

survival function for mortality and the germination history. The likelihood for observations of259

seedlings is260

f (pm, pg) = pg ×
j

∏
k=1

(1− pm)× (1− pg)
I( j>1)

L(pm, pg|yg) =
I

∏
i=1

[ Ji

∏
j=1

[
binomial

(
yg,i j|ng,i j, f (pm, pg)

)]]
.

(4)261

262

4 Methods263

We now conduct a comprehensive analysis of statistical models for seed bag burial and seed264

addition experiments. First, we determine whether the models can be used to estimate different265

combinations of constant (C) or age-dependent (A) seed mortality and germination. Population266

models that incorporate a seed bank typically parameterize seed mortality and germination with267

one of the following combinations of mortality/germination: C/C (e.g., Kurkjian et al. 2017), A/C268

(e.g., Yates and Ladd 2010), C/A (e.g., Elderd and Miller 2016), and A/A (e.g., Kalisz 1991). We269

thus analyze models for the following cases:270

1. Constant mortality/constant germination (C/C): Mortality, pm, and germination, pg, hazards271

are the same for all seed ages.272

2. Age-dependent mortality/constant germination (A/C): The mortality hazard is a function of273

seed age, pm, j, while the germination hazard is the same for all seed ages, pg.274

3. Constant mortality/age-dependent germination (C/A): The mortality hazard is the same for275

all seed ages, pm, while the germination hazard is a function of seed age, pg, j.276

4. Age-dependent mortality/age-dependent germination (A/A): Both mortality, pm, j, and ger-277

mination, pg, j, hazards are functions of seed age.278
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For each of these four cases, we study the identifiability of models for seed bag burial and seed ad-279

dition experiments to determine when each can be used to estimate seed mortality and germination.280

To directly compare the statistical properties of estimates for seed mortality and germination from281

seed bag burial and seed addition experiments, we fit a model with constant mortality and constant282

germination (C/C) to observations from a seed bank with constant mortality and constant germina-283

tion (C/C). Finally, we study the consequences of model misspecification on parameter estimates.284

We stress-test the models with two cases in which the true age structure of the seed bank and the285

age-dependence of parameters in the statistical model are mismatched. First, we fit a model with286

age-dependent mortality and constant germination (A/C) to observations from a seed bank with287

constant mortality and germination (C/C). Second, we we fit a model with constant mortality and288

constant germination (C/C) to observations from a seed bank with age-dependent mortality and289

constant germination (A/C).290

4.1 Identifiability analysis by the symbolic method291

To determine when seed bag burial and seed addition experiments can be used to estimate con-292

stant or age-dependent seed mortality and germination, we analyze the identifiability of statistical293

models for the experiments. We study if parameters can be estimated in terms of the structure of294

the likelihood (‘intrinsic identifiability’) (Cole 2020). Intrinsic identifiability refers to cases where295

parameters in a model can be uniquely estimated. For example, models will not be identifiable if296

different combinations of mortality and germination have the same likelihood for a set of observa-297

tions. If the model is not identifiable, there are no unique maximum likelihood estimates regardless298

of the quantity of data that is available.299

To analyze the identifiability of statistical models for different combinations of experiment,300

hazard, and length of the experiment, we use an algebraic approach called the symbolic method301

(Catchpole and Morgan 1997; Cole et al. 2010; Cole 2020). With this method, we focus on general302

issues of experimental design and model structure rather than on specific datasets. We determine303

the intrinsic identifiability of statistical models for all combinations of experiment (seed bag burial304

vs. seed addition), hazards (C/C, A/C, C/A, A/A), and length of experiment (1, 2 or 3 years). All305
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the likelihoods that we analyze are shown in Table 1. To apply the symbolic method, we summarize306

each model by a vector that completely determines the model (an ‘exhaustive summary’). The307

exhaustive summary is simply the likelihood associated with each observation. The exhaustive308

summary is subsequently differentiated with respect to all of the constituent parameters to form309

a ‘derivative matrix’ (the transpose of the Jacobian). The model is identifiable if the rank of the310

derivative matrix is equal to the number of parameters in the model; the model is not identifiable if311

the rank of the derivative matrix is less than the number of parameters. We implement these steps312

using the computer algebra software Maxima (Maxima, 2014); for detailed methods and scripts,313

see Appendix: Identifiability analysis.314

4.2 Simulation experiments315

To compare the statistical properties of seed bag burial and seed addition experiments, and316

study the effect of model misspecification, we conduct numerical experiments in which we fit317

models to simulated data. To simulate data with the structure of seed bag burial and seed addition318

experiments (Fig. 1), we use the likelihoods corresponding to those observations (Table 1). In319

practice, we use mortality and germination hazards to calculate the expected probability of a seed320

remaining in the soil at the end of each year, and its subsequent probability of germinating. We use321

the expected probability of remaining in the soil to draw a binomial sample of seeds from the initial322

number of seeds in the bag. We use the probability of germination to draw a binomial sample of323

germinants from the seeds remaining in the bag. To simulate data with the structure of the seed324

addition experiment, we retain only the observations of seedlings.325

Both maximum likelihood and Bayesian methods would be appropriate to fit the models asso-326

ciated with seed bag burial and seed addition experiments. We chose to fit Bayesian models to the327

simulated observations because we can readily estimate the parameters in the joint likelihood. All328

parameters in our models are probabilities with support [0,1] on which we place beta(1,1) priors;329

this is equivalent to a uniform prior. Fig. S4 shows the directed acyclic graphs corresponding to330

the joint and posterior distributions for the models. Parameters and details of simulations are given331

in the sections that follow. We wrote simulations and analyzed model output in R version 3.6.2 (R332
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Core Team, 2019). We wrote all models and sampled posterior distributions using JAGS 4.10 with333

rjags (Plummer et al., 2019). For each fit, we ran 3 chains with 3,000 iterations for adaptation,334

5,000 for burn-in, and 5,000 for sampling. For computational efficiency, we thinned the chains335

and kept every 10th iteration. We used the MCMCvis package to work with model output, check336

chains for convergence, and recover posterior distributions (Youngflesh et al., 2021).337

4.2.1 Statistical properties of seed bag burial and seed addition experiments338

To compare the statistical properties of estimates from identifiable models, we used a simula-339

tion experiment in which we fit a model with constant mortality and constant germination (C/C)340

to observations from a seed bank with constant mortality and constant germination (C/C). We gen-341

erated data from a 3-year experiment with n = (5,10,15,20,25,30) bags or plots each year. Each342

bag or plot started the experiment with 100 seeds. For each number of bags or plots, we simulated343

250 replicate datasets for four combinations of ‘true’ mortality and germination: low mortality/low344

germination (0.1,0.1), low mortality/high germination (0.1,0.5), high mortality/low germination345

(0.5,0.1), and high mortality/high germination (0.5,0.5). We fit each simulated dataset with two346

models; one for a seed bag burial experiment and one for a seed addition experiment.347

To quantify the bias of estimates, we calculated the difference between the posterior modes348

and ‘true’ parameters for the probability of mortality or germination. Estimates are unbiased when349

the difference is 0. To quantify the uncertainty of parameter estimates, we calculated the width350

of the 95% credible interval. For each set of ‘true’ parameters and number of bags or plots, we351

estimated the mean difference and width, and quantified 95% confidence intervals for each with352

a t distribution (Pappalardo et al., 2020). To estimate the coverage of the 95% credible intervals,353

we calculated the proportion of credible intervals that contain the ‘true’ parameter value. Ideally,354

a 95% credible interval would contain the ‘true’ parameter value 95% of the time. We obtained355

confidence intervals for coverage with the Wilson method in the binom package (Pappalardo et al.,356

2020), and calculated root mean squared error as a measure of the combined effect of bias and357

uncertainty.358
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4.2.2 Consequences of model misspecification359

To study the consequences of model misspecification, we studied two cases with a mismatch360

between the true age structure of the seed bank and the age-dependence of the statistical model.361

For these analyses, we were interested in the interaction between the data-generating process and362

the statistical model. We thus use simulations with a large number of bags or plots (n = 30).363

First, we fit a model with age-dependent mortality and constant germination (A/C) to observa-364

tions from a seed bank with constant mortality and constant germination (C/C). In this analysis, we365

examined the effect of fitting a model that has more parameters than the process that generated the366

observations (i.e., the model is overspecified). We used the observations that we simulated from367

a seed bank with constant mortality and germination in the previous section. We then fit a model368

with age-dependent mortality and constant germination, the A/C model, to these observations. The369

model has four parameters: one mortality parameter each for one-, two-, and three-year old seeds,370

pm,1, pm,2, and pm,3, and one parameter for germination, pg. For all parameters, we quantified371

bias, uncertainty, coverage, and root mean squared error.372

Second, we fit a model with constant mortality and constant germination (C/C) to observations373

from a seed bank with age-dependent mortality and constant germination (A/C). In this analysis,374

we studied the effect of fitting a model that has fewer parameters than the process that generated the375

data (i.e., the model is underspecified). We generated data from a 3-year experiment with n = 30376

bags or plots each year, and each bag or plot started the experiment with 100 seeds. The ‘true’377

probability of mortality increased over time, so that pm,1 = 0.1, pm,2 = 0.2, and pm,3 = 0.3. The378

germination rate in all years was constant. To examine the influence of germination on statistical379

properties, we varied pg from 0.1 to 0.5 across simulations. For each true germination probability,380

we simulated 250 replicate datasets. As before, we fit two models to each simulated dataset; one381

for a seed bag burial experiment and one for a seed addition experiment. Even though we only382

estimated one parameter for the probability of mortality, we compared properties of the estimate383

to the age-dependent probability of mortality in each of the three years. For all parameters, we384

quantified bias, uncertainty, coverage, and root mean squared error.385
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5 Results386

5.1 Identifiability analysis by the symbolic method387

All models for observations from seed bag burial experiments exhibit a deficiency of 0, indi-388

cating that the models are identifiable (Table 2). In all cases we consider, the models for seed bag389

burial experiments can be used to estimate parameters for seed mortality and germination. Mod-390

els for observations from seed addition experiments only show a deficiency of 0 when mortality391

and germination rates are assumed to be constant, and when more than one year of observations392

is available (Table 2). In all other cases, models have a deficiency greater than 0, indicating that393

the models are not identifiable. Identifiability is directly related to the structure of a model’s like-394

lihood (Table 1). Models for a seed bag burial experiment contain the product of likelihoods for395

observations of intact seeds and germinants, each of which provides separate information on seed396

mortality and germination (Fig. S4A). However, models for a seed addition experiment only con-397

sist of a single likelihood for observations of seedlings, in which seed mortality and germination398

always appear as a product (Fig. S4B). In this case, the model is identifiable only when there are399

as many, or more, years of seedling observations as there are parameters in the model.400

5.2 Statistical properties of seed bag burial and seed addition experiments401

The C/C models fit to observations from the seed bag burial and seed addition experiments are402

identifiable when there is more than one year of data (Table 2); here, we analyze simulated data403

for 3-year experiments. Both experiments produce unbiased estimates of mortality (Fig. 2A-D)404

and germination (Fig. 2I-L) with large numbers of bags or plots. With small numbers of bags405

or plots, seed addition experiments are more likely to produce biased estimates for mortality (e.g.,406

Fig. 2A, C). Estimates from seed addition experiments display greater uncertainty in all simulations407

(Fig. 2E-H, M-P). The difference in uncertainty of estimates between experiments depends on the408

true probability of mortality and germination. Seed mortality estimates show seven to nine times409

more uncertainty for seed addition experiments when germination is low, but roughly twice as410

much uncertainty when germination is high (Fig. 2E-H). Germination estimates from seed addition411

experiments displayed a similar pattern, though the overall difference in uncertainty was smaller.412
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Estimates from seed addition experiments are 2.3 times as uncertain when when mortality is low,413

and 1.8 times as uncertain when germination is high. Fig. 2M-P).414

For both experiments, coverage is ∼95% (Fig. S8A-D, I-L), and root-mean squared error de-415

creases with the number of bags or plots (Fig. S8E-H, M-P). For seed addition experiments, esti-416

mates of seed mortality show the greatest error when germination is low (Fig. S8E, G). The joint417

posterior distribution for mortality and germination is more positively correlated when germina-418

tion is low; put another way, the model structure makes it challenging to determine whether small419

numbers of observed seedlings are due to low germination or high mortality.420

5.3 Consequences of model misspecification421

Fitting the A/C model to observations from a seed bank with constant morality and germina-422

tion has a strong influence on parameter estimates for seed addition experiments. In particular,423

estimates of first year seed mortality from seed addition experiments are biased and associated424

with high uncertainty when the true probability of germination is low, and when both true prob-425

abilities of mortality and germination are high (Fig. S9A-H). In addition, parameter estimates for426

seed mortality in subsequent years also exhibit higher uncertainty (Fig. S9E-H). In contrast, param-427

eter estimates for seed bag burial experiments are unbiased (Fig. S9A-D). However, uncertainty of428

second and third year mortality estimates is greater when the mismatched A/C model, rather than429

the correct C/C model, is fit to the data (compare filled points in Fig. 2E-H and Fig. S9E-H). In-430

creased bias and uncertainty are especially pronounced in seed addition experiments because the431

likelihood produces strong positive correlations in the joint posterior distribution of first year seed432

mortality and germination (Fig. S6L). Especially for low germination rates, this correlation can433

introduce bias and uncertainty into parameter estimates. For seed bag burial experiments, corre-434

lations between second and third year seed mortality (Fig. S6I) similarly contribute to increased435

uncertainty in those estimates.436

We fit the C/C model to observations from simulations in which the probability of seed mortal-437

ity increases over time (pm,1 = 0.1, pm,2 = 0.2, pm,3 = 0.3), for a range of true germination prob-438

abilities. Note that when we analyze this case, we are comparing a single estimated parameter to439
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three true mortality parameters. For both seed bag burial and seed addition experiments, seed age440

and the true probability of germination interact to determine the direction and magnitude of bias441

in mortality (Fig. 3A-C). Both experiments progress from overestimating to underestimating mor-442

tality. When the true probability of germination is low, mortality is overestimated more strongly443

(greater positive bias) for young than old seeds, but mortality is underestimated to a lesser extent444

(less negative bias) for old seeds. In the first year, seed bag burial experiments exhibit less bias445

than seed addition experiments; this pattern reverses by the third year. The relationship between446

true germination probability and parameter uncertainty is the same across all mortality parame-447

ters (Fig. 3E-G). Uncertainty decreases with germination rate for seed addition experiments, but448

increases slightly with germination rate for seed bag burial experiments. For most of the scenarios449

we considered, low accuracy of parameter estimates translates into low coverage (Fig. 3I-K). The450

single exception is that year two mortality exhibited nominal coverage (roughly 95%) at intermedi-451

ate germination rates. The root-mean squared error (RMSE) for mortality is largely determined by452

the bias of estimates; estimates with a smaller absolute bias also show smaller RMSE (Fig. 3M-O).453

The ‘true’ probability of germination does not depend on seed age in the simulation, but ger-454

mination estimates are slightly biased for both seed bag burial and seed addition experiments455

(Fig. 3D). For both experiments, the bias of germination estimates also increases with the true456

probability of germination. Although the absolute magnitude of bias is smaller than for mortality457

estimates, germination is overestimated from 6-19% across all scenarios. The greater uncertainty458

of germination estimates from seed addition experiments (Fig. 3H) translates into higher coverage459

(Fig. 3L). However, coverage for both experiments is far below the desired level of 95%. As with460

mortality, RMSE is largely a function of the bias of parameter estimates (Fig. 3P).461

6 Discussion462

We develop and analyze statistical models for observations from field experiments commonly463

used to study the soil seed bank. We present the first systematic evaluation and comparison of464

inferences made with statistical models for seed bag burial and seed addition experiments. We465

show that seed bag burial experiments can separately estimate mortality and germination even if466
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one, or both, are age-dependent. For seed addition experiments, we demonstrate that seed mortality467

and germination are only identifiable if both mortality and germination do not change with seed468

age and with more than one year of observations. In all other cases, it is impossible to separately469

estimate mortality and germination.470

To compare the statistical properties of estimates from seed bag burial and seed addition ex-471

periments, we focus on identifiable models with constant mortality and constant germination. We472

place model identifiability upstream of the statistical properties of parameter estimates because the473

latter issues are contingent on having reliable statistical models. Estimates from both experiments474

are unbiased as the number of bags or plots increases. However, estimates from seed bag burial475

experiments are more precise for all parameter combinations that we consider.476

In practice, researchers may fit models that describe seed mortality and germination with more477

or fewer parameters than necessary. We thus evaluate two scenarios in which we fit the wrong478

model to observations. In one case, we fit a model with age-dependent mortality and constant479

germination rates to observations produced by constant mortality and constant germination. Fitting480

the more complicated model makes the parameter estimates more sensitive to the structure of the481

model. The effect is strongest for seed addition experiments when germination rates are low, and482

introduces bias and uncertainty into estimates of mortality. In a second case, we fit a model with483

constant mortality and germination rates to observations produced by age-dependent mortality and484

constant germination. The bias of mortality estimates changes over time, and is exacerbated by485

increased precision at higher germination rates. Germination estimates are also biased, though to486

a lesser extent.487

6.1 Recommendations for practitioners488

We demonstrate how seed bag burial or seed addition experiments can be used to estimate489

seed mortality and germination. From a statistical perspective, seed bag burial experiments have490

several useful properties. When estimating constant mortality and germination, seed bag burial491

experiments will produce estimates that are more accurate and precise for a given number of bags492

or plots.493
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We suggest that the best way to adapt our general recommendations is to simulate data and494

fit models to those simulations. Practitioners likely know much about many of the key parts of495

a seed bank experiment. How many seeds could be collected and used for an experiment, how496

many replicates are logistically feasible, and for how long would the experiment run? With these497

pieces in hand, it is possible to use plausible values for seed mortality and germination rates to498

simulate observations. It will not be possible to know the ‘true’ values or their age-dependence, but499

simulations could explore likely scenarios (e.g., constant vs. increasing mortality). Fitting models500

to these simulations would make it possible to compare the statistical properties of estimates from501

seed bag burial versus seed addition experiments. To facilitate this process, we include the code for502

our study (https://doi.org/10.5281/zenodo.7317528); this includes R code to simulate observations,503

the JAGS code for the models, and the R code to fit the models to observations.504

Our analysis can also help guide parameter estimation if observations have already been col-505

lected. Lack of identifiability creates issues for both frequentist and Bayesian statistical methods,506

which we illustrate in detail in Appendix: Implications of identifiability for model fitting. No507

amount of clever modeling can estimate parameters when they are intrinsically not identifiable.508

Observations from seed bag burial experiments give you the flexibility to fit models with constant509

or age-dependent mortality and germination. With observations from seed addition experiments,510

only models with constant mortality and germination are identifiable. Our analysis of model mis-511

specification indicates that fitting a model with more age-dependence than necessary introduces512

noise into estimates from seed addition experiments but not seed bag burial experiments. In con-513

trast, fitting a model with constant mortality or germination to observations from an age-structured514

seed bank produces biased estimates for both types of experiments.515

Ultimately, the impact of bias or imprecision in estimates of seed mortality or germination on516

population growth rate depends on the sensitivity of population growth rate to those vital rates. The517

models and analyses we present will be most relevant to researchers working with plant popula-518

tions in which aboveground vital rates exhibit high temporal variability because these populations519

are likely sensitive to transitions in the seed bank (Doak et al., 2002; Nguyen et al., 2019). Consid-520
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ering the broader context of the plant life history can help population ecologists determine which521

fieldwork and modeling approaches are sufficiently accurate and precise for their study system.522

6.2 Extensions523

Existing studies have used simulations and post-hoc comparisons to explore the consequences524

of age structure in the seed bank, emphasize how estimates of seed rates interact with temporal525

variability in aboveground success, and describe the effect of underestimating parameter uncer-526

tainty (Doak et al., 2002; Paniw et al., 2017; Nguyen et al., 2019). However, these methods do not527

provide an intuitive way to use observations to test assumptions about seed bank structure and as-528

sociated parameter uncertainty. For example, the methods do not allow for model checks or model529

selection, both of which could be used to ask whether the fitted model is consistent with obser-530

vations. Because accuracy and precision of estimates for seed mortality and germination interact531

with information about other components of the life cycle, it seems crucial to evaluate the model532

used to estimate seed mortality or germination separately from the population model.533

Although estimates from seed addition experiments will be unbiased when mortality and ger-534

mination do not change with seed age, researchers will generally not know whether this is the case535

before conducting an experiment. In our simulations, we can assess the accuracy of parameter es-536

timates obtained with these models because we picked the values used to generate the data. While537

we lack this luxury for empirical datasets, it is possible that standard model checking (e.g., Conn538

et al. 2018) and model selection (e.g., Hooten and Hobbs 2015; Tredennick et al. 2021) methods539

could help determine whether the fitted model is consistent with the process that generated the540

data. For example, it may be possible to use model selection to determine whether a model with541

constant mortality and germination is a good fit to data from a seed addition experiment. However,542

further research is required to determine the effectiveness of such approaches.543

The relationship between seed age and fate can also be described with continuous functions544

such as exponential models (e.g., Lommen et al. 2018). Population ecologists have not typically545

used this approach to analyze observations from seed bank experiments (Appendix: Literature546

synthesis; 12.3% fit models with continuous functions). However, continuous descriptions of seed547
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fate could reduce the number of model parameters in cases where estimating the age-dependence of548

mortality or germination at many ages is of interest (Fox, 2001; Landes et al., 2020). Rees and Long549

(1993) studied seed bank dynamics by fitting continuous models for recruitment to observations550

of seedlings from a seed addition experiment. The authors used these models to demonstrate that551

recruitment is affected by the age-dependence of seed mortality and germination and that seed552

banks do not, as a rule, exhibit exponential decay (Rees and Long, 1993). However, they did not553

separately estimate seed mortality and germination, which are processes that population ecologists554

are often interested in obtaining separate information on (Appendix: Literature synthesis; 3.5%555

of studies built population models in which mortality and germination were combined).556

Our study focuses on statistical issues associated with estimating seed mortality and germi-557

nation from field experiments, and suggests that seed bag burial experiments present statistical558

advantages for jointly estimating seed mortality and germination. While we do not evaluate how559

experimental design affects observations from seed bag burial or seed addition experiments, it is560

crucial to collect observations that reflect natural levels of seed mortality and germination from561

the soil seed bank. For example, high seed densities in mesh bags may promote transmission of562

pathogenic fungi and increase seed mortality (Van Mourik et al., 2005), and seed burial depth can563

influence mortality and germination rates (Dille et al., 2017). However, researchers can aim to564

control how much burying seeds in bags alters natural biological processes. Fungal infection can565

be minimized by mixing seeds with sand or soil to reduce seed-to-seed contact and decrease seed566

densities (Van Mourik et al., 2005). Appropriate burial depths could be evaluated by conducting567

pilot experiments (Hernandez et al., 2020) or burying seeds at multiple depths (Philippi, 1993).568

Ultimately, how researchers choose to study the seed bank will likely depend on multiple fac-569

tors including issues related to experimental design, statistical properties of estimates, and the570

research question being addressed. A strategy for balancing these competing considerations may571

be to combine information from different types of experiments (e.g., Liu et al. 2005; Bricker and572

Maron 2012), or from experiments and field surveys (e.g., Garcı́a 2003; Adams et al. 2005). Ap-573

proaches that formally integrate data from multiple sources are an active area of research in ecol-574
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ogy (Zipkin et al., 2021), and applying these ideas to seed bank studies could help researchers575

effectively use existing datasets and optimize the collection of future data.576

6.3 Limitations577

Event history analysis is developed for and appropriately applied to individual data (Zens and578

Peart, 2003; Landes et al., 2020), and the models we describe would be completely appropriate if579

applied to observations of individual seeds. Yet seeds of many plant species are too small for indi-580

viduals to be tracked in the field. When examining aggregate data—from cohorts, or populations—581

heterogeneity between subpopulations and change in hazards over time can confound whether pat-582

terns are the result of changes to hazards or to population structure (Rees and Long, 1993; Zens583

and Peart, 2003). Our approach is not intended to assess changes to the hazards for individual584

seeds (unless individual-level data are available) but rather a framework for consistent inferences585

about seed mortality and germination.586

To focus on the commonalities between seed bag burial and seed addition experiments, we587

describe stereotyped versions of each. Not all experiments in the literature exactly follow the588

schematic we describe; some seed bag burial experiments count intact seeds and estimate germi-589

nation in another way (e.g., Lommen et al. 2018), or count only seeds at certain times, but both590

seeds and germinants at other times (e.g., Eckhart et al. 2011). Individual analyses will inevitably591

have to be tailored to specific data. We sought to explicitly describe the assumptions underlying592

our statistical models so that they could be readily modified. Investigators will naturally construct593

models that are appropriate to their system and aims.594

6.4 Conclusion595

Observations from seed bag burial and seed addition experiments are hard-won data, but statis-596

tical models for observations from these experiments have received little attention to-date. Study-597

ing these models can help plant population ecologists make the most of existing and future data598

by identifying potential models to fit, the statistical properties of parameter estimates, and poten-599

tial bias introduced by making assumptions about age-dependence of mortality and germination.600

Our analysis contributes to efforts to make richer inferences from the trove of demographic data601
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collected by plant population ecologists.602
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9 Tables726

Table 1: Likelihoods of models for observations from seed bag burial and seed addition experi-
ments.

Model
Mortality Germination Likelihood
SEED BAG BURIAL EXPERIMENT

C (pm) C (pg)
f (pm, pg) =

j

∏
k=1

(1− pm)× (1− pg)
I( j>1)

L(pm, pg|yg,y) =
I

∏
i=1

[ Ji

∏
j=1

[
binomial(yg,i j|ng,i j, pg)binomial

(
yi j|ni j, f (pm, pg)

)]]

A (pm, j) C (pg)
f (pm, j, pg) =

j

∏
k=1

(1− pm, j)× (1− pg)
I( j>1)

L(pm, pg|yg,y) =
I

∏
i=1

[ Ji

∏
j=1

[
binomial(yg,i j|ng,i j, pg)binomial

(
yi j|ni j, f (pm, j, pg)

)]]

C (pm) A (pg, j)
f (pm, pg, j) =

j

∏
k=1

(1− pm)× (1− pg, j)
I( j>1)

L(pm,pg|yg,y) =
I

∏
i=1

[ Ji

∏
j=1

[
binomial(yg,i j|ng,i j, pg, j)binomial

(
yi j|ni j, f (pm, pg, j)

)]]

A (pm, j) A (pg, j)
f (pm, j, pg, j) =

j

∏
k=1

(1− pm, j)× (1− pg, j)
I( j>1)

L(pm,pg|yg,y) =
I

∏
i=1

[ Ji

∏
j=1

[
binomial(yg,i j|ng,i j, pg, j)binomial

(
yi j|ni j, f (pm, j, pg, j)

)]]
SEED ADDITION EXPERIMENT

C (pm) C (pg)
f (pm, pg) = pg ×

j

∏
k=1

(1− pm)× (1− pg)
I( j>1)

L(pm, pg|yg) =
I

∏
i=1

[ Ji

∏
j=1

binomial
(
yg,i j|ng,i j, f (pm, pg)

)]

A (pm, j) C (pg)
f (pm, j, pg) = pg ×

j

∏
k=1

(1− pm, j)× (1− pg)
I( j>1)

L(pm, pg|yg) =
I

∏
i=1

[ Ji

∏
j=1

binomial
(
yg,i j|ng,i j, f (pm, j, pg)

)]

C (pm) A (pg, j)
f (pm, pg, j) = pg, j ×

j

∏
k=1

(1− pm)× (1− pg, j)
I( j>1)

L(pm,pg|yg) =
I

∏
i=1

[ Ji

∏
j=1

binomial
(
yg,i j|ng,i j, f (pm, pg, j)

)]

A (pm, j) A (pg, j)
f (pm, j, pg, j) = pg, j ×

j

∏
k=1

(1− pm, j)× (1− pg, j)
I( j>1)

L(pm,pg|yg) =
I

∏
i=1

[ Ji

∏
j=1

binomial
(
yg,i j|ng,i j, f (pm, j, pg, j)

)]
1 In columns 1 and 2, C is a constant hazard and A is an age-dependent hazard.
2 In all likelihoods, I(x) is an indicator function equal to 1 if the inequality is true, and 0 if it is not. As discussed in

the main text, the indicator function identifies whether or not seeds have yet experienced a germination opportu-
nity; at the first time point j, they have not.
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Table 2: Analysis of intrinsic identifiability for models with different assumptions about whether
germination and mortality are constant or age-dependent. Each row corresponds to a model in
which the germination component is defined in column one and the mortality component is defined
in column two. For each model, the columns show the results of the intrinsic identifiability analysis
for 1, 2, or 3 years of observations. The analysis identifies the deficiency of the model for a given
set of assumptions about the germination and mortality components. The deficiency is calculated
as in Cole (2020): the number of parameters in the model minus the rank of the derivative matrix,
the latter calculated by the symbolic method. Models with a deficiency of 0 are identifiable; models
with a deficiency greater than 0 are not identifiable.

Model Deficiency
Mortality component Germination component 1 year 2 years 3 years
SEED BAG BURIAL EXPERIMENT

Constant (pm) Constant (pg) 0 0 0
Age-dependent (pm, j) Constant (pg) 0 0 0
Constant (pm) Age-dependent (pg, j) 0 0 0
Age-dependent (pm, j) Age-dependent (pg, j) 0 0 0

SEED ADDITION EXPERIMENT

Constant (pm) Constant (pg) 1 0 0
Age-dependent (pm, j) Constant (pg) 1 1 1
Constant (pm) Age-dependent (pg, j) 1 1 1
Age-dependent (pm, j) Age-dependent (pg, j) 1 2 3
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10 Figure captions728

Figure 1. (A) Schematic of a seed bag burial experiment. Each bag in the experiment is represented729

by a single line from when the bag is buried at month 0 to when the bag is dug up for sampling730

(filled circles). The data are organized with indices for bag and sampling time. (B) Data from the731

seed bag burial experiment. Each row corresponds to a bag and sampling time. (C) Schematic of732

a seed addition experiment. Each plot in the experiment is represented by a single line from when733

seeds are added to the plot at month 0 to when plots are censused for seedlings (filled circles). The734

data are organized with indices for plot and time. (D) Data from the seed addition experiment.735

Each row corresponds to a plot and sampling time.736

Figure 2. Results of simulation experiment in which we generated observations with constant737

mortality and germination, and fit a model with constant mortality and germination. (A-D) Bias for738

estimates of mortality, pm, for different combinations of true mortality and germination probability.739

(E-H) Width of the 95% credible interval for pm. (I-L) Bias for estimates of germination, pg, for740

different combinations of true mortality and germination probability. (M-P) Width of the 95%741

credible interval for pg. In all panels, error bars represent the 95% confidence interval based on a742

t distribution.743

Figure 3. Results of simulation experiment in which we generated observations with age-dependent744

mortality and germination, and fit a model with constant mortality and germination. The true prob-745

ability of mortality increases over time: pm,1 = 0.1, pm,2 = 0.2, and pm,3 = 0.3. From left to right,746

columns are analyses of mortality for ages 1, 2, and 3, and germination. Each panel shows the747

statistical properties for parameters from simulations with true probabilities of germination from748

0.1 to 0.5. The number of bags or plots is always n = 30. (A-D) Bias for estimates of mortality749

and germination. Error bars represent the 95% confidence interval based on a t distribution. (E-H)750

Width of the 95% credible interval for mortality and germination. Error bars represent the 95%751

confidence interval based on a t distribution. (I-L) Coverage for mortality and germination. Er-752

ror bars represent the 95% confidence interval calculated using the Wilson method for binomial753

proportions. (M-P) Root mean squared error for mortality and germination.754
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11 Figures755

A.

C.

Indices Variable Data (counts) Calculated (counts)

Bag Time
Time

(months)
Starting
seeds

Intact
seeds

Germinants Survivors
Surviving

seeds
i j tij nij — yg,ij yij ng,ij

12 1 12 100 27 27 54 54
21 1 12 100 25 29 54 54
30 1 12 100 21 22 43 43
33 2 24 100 2 4 6 6
45 2 24 100 8 9 17 17
46 2 24 100 1 4 5 5
61 3 36 100 0 1 1 1
69 3 36 100 1 2 3 3
79 3 36 100 2 2 4 4

B.

Indices Variable Data (counts)

Plot Time Time (months) Added seeds Seedlings
i j tij nij yg,ij

7 1 12 100 22
19 1 12 100 26
21 1 12 100 29
7 2 24 100 7

19 2 24 100 8
21 2 24 100 4
7 3 36 100 3

19 3 36 100 1
21 3 36 100 1

D.

Figure 1: (A) Schematic of a seed bag burial experiment. Each bag in the experiment is represented by a
single line from when the bag is buried at month 0 to when the bag is dug up for sampling (filled circles). The
data are organized with indices for bag and sampling time. (B) Data from the seed bag burial experiment.
Each row corresponds to a bag and sampling time. (C) Schematic of a seed addition experiment. Each plot
in the experiment is represented by a single line from when seeds are added to the plot at month 0 to when
plots are censused for seedlings (filled circles). The data are organized with indices for plot and time. (D)
Data from the seed addition experiment. Each row corresponds to a plot and sampling time.
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Figure 2: Results of simulation experiment in which we generated observations with constant mortality
and germination, and fit a model with constant mortality and constant germination parameters. (A-D) Bias
for estimates of mortality probability, pm, for different combinations of true mortality and germination
probability. (E-H) Width of the 95% credible interval for pm. (I-L) Bias for estimates of germination
probability, pg, for different combinations of true mortality and germination probability. (M-P) Width of
the 95% credible interval for pg. In all panels, error bars represent the 95% confidence interval based on a t
distribution.
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Figure 3: Results of simulation experiment in which we generated observations with age-dependent mor-
tality and germination, and fit a model with constant mortality and germination. The true probability of
mortality increases over time: pm,1 = 0.1, pm,2 = 0.2, and pm,3 = 0.3. From left to right, columns are
analyses of mortality for ages 1, 2, and 3, and germination. Each panel shows the statistical properties for
parameters from simulations with true probabilities of germination from 0.1 to 0.5. The number of bags
or plots is always n = 30. (A-D) Bias for estimates of mortality and germination. Error bars represent the
95% confidence interval based on a t distribution. (E-H) Width of the 95% credible interval for mortality
and germination. Error bars represent the 95% confidence interval based on a t distribution. (I-L) Coverage
for mortality and germination. Error bars represent the 95% confidence interval calculated using the Wilson
method for binomial proportions. (M-P) Root mean squared error for mortality and germination.
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