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1 Abstract11

Plant population ecologists regularly study soil seed banks with seed bag burial and seed addi-12

tion experiments. These experiments contribute crucial data to demographic models, but we lack13

standard methods to analyze them. Here, we propose statistical models to estimate seed mortality14

and germination with observations from these experiments. We develop these models following15

principles of event history analysis, and analyze their identifiability and statistical properties by16

algebraic methods and simulation. We demonstrate that seed bag burial, but not seed addition ex-17

periments, can be used to make inferences about age-dependent mortality and germination. When18

mortality and germination do not change with seed age, both experiments produce unbiased esti-19

mates but seed bag burial experiments are more precise. However, seed mortality and germination20

estimates may be inaccurate when the statistical model that is fit makes incorrect assumptions about21

the age-dependence of mortality and germination. The statistical models and simulations that we22

present can be adopted and modified by plant population ecologists to strengthen inferences about23

seed mortality and germination in the soil seed bank.24

Keywords: seed banks, demography, parameter estimation, identifiability, uncertainty25

2 Introduction26

Soil seed banks are a crucial part of plant life-history strategies that depend on long-lived stages27

to persist in variable environments. At the population level, a persistent soil seed bank can buffer28

populations from temporal variability in reproductive success (Evans et al., 2007), and produce29

age structure that increases generation time and affects the population growth rate (Kalisz and30

McPeek, 1992). However, it can be difficult to incorporate seed banks into empirical population31

models (Menges, 2000; Doak et al., 2002; Nguyen et al., 2019) because seed fates are partially32

or completely unobservable processes (Rees and Long, 1993). Individual seeds enter the seed33

bank from seed rain, and eventually leave through death or germination (Simpson et al., 1989).34

Seeds experience mortality by being consumed or destroyed by predators or pathogens, or through35

physiological death (Baker, 1989). In the field, seed mortality cannot be directly observed and,36

because seeds that germinate must have both survived and germinated, seed mortality complicates37
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inferences about germination.38

Population ecologists measure seed mortality and germination with a range of methods includ-39

ing experiments (e.g. Kalisz 1991) and natural variability in seed rain and seedling emergence (e.g.40

Evans et al. 2010). Seed bag burial and seed addition experiments are particularly common: in a41

literature synthesis, we identified 69 studies from 1991-present that use them to parameterize ma-42

trix or integral projection models (Appendix: Literature synthesis). Ideally, these experiments43

would be used to obtain accurate estimates for age-dependent seed mortality and germination that44

are associated with quantified uncertainty (Doak et al., 2002). But it often remains unclear how to45

translate observations from these experiments into parameter estimates with the desired qualities.46

Even observations from the same type of experiment are often analyzed in disparate ways. For47

instance, three recent studies that used seed bag burial experiments each analyzed the observations48

differently: by regressing seeds in year t + 1 on seeds in year t (Kurkjian et al., 2017), fitting an49

exponential curve (Lommen et al., 2018), or estimating the proportion of surviving seeds (Tanner50

et al., 2021).51

In addition to deciding how to estimate seed mortality and germination, population ecologists52

also have to choose how to represent the seed bank in population models. Because the seed bank53

cannot be directly observed, these choices are often made with limited information. Studies have54

evaluated the consequences of incorrectly omitting the seed bank, not including age structure, and55

obtaining inaccurate or imprecise estimates for seed mortality or germination. Omitting or inac-56

curately estimating seed mortality or germination can bias estimates for population growth rate,57

particularly when aboveground rates exhibit high levels of temporal variability (Doak et al., 2002;58

Nguyen et al., 2019). Age-dependent seed mortality and germination contribute to population age59

structure, so the decision to represent the seed bank as unstructured or age-structured can affect60

population growth rates (Kalisz, 1991; Rees and Long, 1993; Doak et al., 2002). In addition, the61

precision of vital rate estimates, including seed rates, also affects uncertainty in estimates of popu-62

lation dynamics (e.g. Paniw et al. 2017; Nguyen et al. 2019). Seeds are hard to study and relatively63

little is often known about them, so authors may omit uncertainty in their estimates of seed related64
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rates and in turn underestimate uncertainty in population growth rate and extinction probability.65

Challenges associated with estimating seed rates likely contributes to over a third of published66

matrix models excluding seed banks without justification (Doak et al., 2002; Nguyen et al., 2019).67

Seed bag burial or seed addition experiments are frequently used to study seed banks in the68

field. But population ecologists lack a comprehensive statistical approach to using these exper-69

iments for inferences about seed mortality and germination. We identify three key unanswered70

questions about seed bag burial and seed addition experiments: (i) When can each experiment be71

used to obtain estimates for constant versus age-dependent seed mortality and germination? (ii)72

What is the accuracy and precision of estimates from each experiment? (iii) How are estimates73

affected by simplifying the age-dependence of seed mortality and germination in statistical mod-74

els? We answer these questions by describing statistical models for observations from seed bag75

burial and seed addition experiments and addressing model identifiability, the statistical properties76

of estimates for seed mortality and germination, and the consequences of model misspecification.77

First, we describe seed bag burial and seed addition experiments in order to illustrate how ob-78

servations from these experiments reflect seed fates. We define likelihoods that link observations79

of surviving seeds and seedlings to estimates of seed mortality and germination. Second, we de-80

termine the identifiability of the models for each experiment under different assumptions about the81

age-dependence of mortality and germination. A statistical model is identifiable if it is possible to82

estimate the parameters in the model from a given set of data. Here, the crux of the issue is that83

the seed bank experiments produce different observations—seeds and seedlings for seed bag burial84

experiments, but only seedlings for seed addition experiments. The experiments generate inher-85

ently different information about seed mortality and germination. To determine if an experiment86

generates observations that can be used to estimate the desired parameters, we can analyze the87

identifiability of statistical models. In ecology, similar questions of identifiability arise when an-88

alyzing observations from presence-only versus presence-absence (Royle et al., 2012; Hastie and89

Fithian, 2013) or single-visit versus double-visit (Lele et al., 2012; Knape and Korner-Nievergelt,90

2015) sampling protocols (reviewed in Stoudt 2020). We place model identifiability upstream of91
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the statistical properties of parameter estimates because the latter issues are contingent on having92

reliable statistical models.93

Once we determine which statistical models are identifiable for particular experimental obser-94

vations, we can compare the accuracy and precision of seed mortality and germination estimates95

from seed bag burial and seed addition experiments. Finally, we assess the consequences of fitting96

a misspecified model. By this we mean fitting a model that constrains seed mortality or germina-97

tion to be constant when the observations are produced by age-dependent mortality or germination.98

In current practice, studies sometimes constrain mortality or germination to reduce the number of99

parameters in a model (e.g. Leimu and Lehtilä 2006; Burns et al. 2013). The constraint is typically100

applied without evaluating alternatives, but mortality and germination are likely to depend on seed101

age in many cases (Lonsdale, 1988; Rees and Long, 1993). But it is not clear if, and how, such102

constraints change the accuracy of estimates. We demonstrate that incorrect assumptions about the103

age-dependence of seed rates can produce biased estimates.104

3 Developing the statistical models105

In the following sections, we characterize seed bag burial and seed addition experiments, and106

the observations they produce, by way of hypothetical examples (Figure 1). We apply the princi-107

ples of event history analysis to develop a deterministic model for seed mortality and germination108

that describes seed fates in seed bank experiments. We then link the observations and determinis-109

tic processes with probability statements to define a statistical model for observations from each110

experiment. Throughout, we present general versions of the model to accommodate mortality and111

germination rates that depend on seed age. At select points, we use the specific case in which112

mortality and germination rates do not depend on seed age to interpret the general model.113

3.1 Observations114

We assume that we want to characterize seed mortality and germination for a plant species with115

a soil seed bank and discrete germination opportunities. For simplicity, we do not compare sites,116

treatments, or species. The seeds are too small to be followed individually, so we conduct experi-117

ments with unmarked cohorts of seeds. We consider two possibilities: seed bag burial experiments118
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(Figure 1A-B) and seed addition experiments (Figure 1C-D).119

In seed bag burial experiments, we add seeds and soil to mesh bags before burying them in120

the field (0 months in Fig. 1A). Researchers bury seeds in various enclosures (e.g. cages in Kalisz121

1991, or mesh bags in Quintana-Ascencio et al. 1998) but to be concise we always refer to bags.122

Bags are recovered from the field after a certain time. Here, we collect bags after germination123

so that we count intact, ungerminated seeds and germinants (filled circles in Fig. 1A). Sampling124

tends to be destructive, particularly if intact seeds are tested for viability using a method such as125

tetrazolium staining. As a result, these studies typically retrieve different subsets of bags for seed126

and germinant counts at different times (Fig. 1A).127

We identify each bag by an ID, index i, and the time that it was recovered, index j (columns128

1-2 in Fig. 1B). We also record time as a variable, ti j (column 3 in Fig. 1B). Each bag has three129

counts: the number of seeds added to the mesh bags at the start of the experiment, ni j, the number130

of intact, ungerminated seeds, and the number of germinants, yg,i j (columns 4-6 in Fig. 1B). Here,131

we assume that all intact seeds are viable (but we discuss combining field experiments and lab132

viability assays in Discussion: Extensions). Finally, we calculate the number of seeds surviving133

to sampling as the sum of intact, ungerminated seeds and germinants – we assume this is both134

the number of survivors, yi j, and the number of seeds surviving to just before germination, ng,i j135

(columns 7-8 in Fig. 1B).136

In seed addition experiments, we lightly bury or sprinkle seeds on the soil surface (0 months137

in Fig. 1C). Seeds are buried in plots where we do not expect a substantial seed bank, or in pots138

or trays with seed-free soil. We might also include control plots without seed addition to account139

for natural seed rain. We survey the plots for seedlings after germination (filled circles in Fig. 1C).140

Typically, it is not possible to recover intact seeds from the soil but because seedling counts are141

non-destructive, we can resurvey plots (Fig. 1C).142

We identify each plot by an ID, index i, and record the time it was surveyed, index j (columns143

1-2 in Fig. 1D). We also record time as a variable, ti j (column 3 in Fig. 1C). Each plot and survey144

time has two counts: the number of seeds added to the plot at the start of the experiment, ni j, and145
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the number of seedlings, yg,i j (columns 4 & 6 in Fig. 1C).146

3.2 Deterministic model for seed fates147

The fate of seeds in the seed bank can be characterized using methods from event history anal-148

ysis (also called survival or failure time analysis; reviewed in Fox 2001; Landes et al. 2020). By149

focusing on a seed leaving the seed bank as the event of interest, we can characterize the distri-150

bution of times at which the event occurs using a set of key functions (Klein and Moeschberger,151

2003). A survival function describes the probability that a seed remains in the seed bank until time152

t. The survival function is the term for the probability of the event occurring after time t; the term153

applies whether or not the event of interest is death. A probability density function describes the154

probability that the seed leaves the seed bank at time t. Finally, a hazard function describes the155

tendency that a seed remaining in the seed bank at time t leaves the seed bank at the next instant156

in time. The probability density function defines the unconditional probability of events, while the157

hazard function is associated with the conditional propensity for the event among individuals who158

have not yet experienced the event (Fox 2001, p. 245). We illustrate the relationship between these159

functions in Appendix: Hazards determine the age-structure of the seed bank.160

We use these principles to describe how seed loss from the seed bank (the event of interest)161

depends on mortality and germination. We define hazard functions for each fate. The hazard162

function for mortality, hm, is the risk that a seed remaining in the seed bank leaves the seed bank163

through mortality the next instant. The hazard function for germination, hg, is the risk that a seed164

remaining in the seed bank leaves the seed bank through germination the next instant. The hazards165

thus summarize the “instantaneous risk” (Landes et al., 2020) of mortality or germination. In this166

paper, we assume that mortality precedes germination, but the principles we describe are flexible167

and specific equations should be reformulated to correspond to the biology of the study system.168

We combine the mortality and germination hazards to describe a survival function for the ex-169

pected probability that seeds remain in the seed bank up to a given time:170

S(t) = ’
t jt

�
1�hm(t j)

�
⇥
�
1�hg(t j)

�
. (1)171

172

Equation 1 is the product of discrete survival functions associated with mortality, Sm(t j)=’t jt 1�173
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hm(t j), and germination, Sg(t j) = ’t jt 1�hg(t j). If the hazards are on an annual timescale, Sm is174

the cumulative product of the complement of the mortality probability, up to the number of years175

t j that seeds have been in the soil. Similarly, Sg is the cumulative product of the complement of176

the germination probability, up to the number of germination opportunities that seeds have experi-177

enced. In terms of the hazards, hm(1) is a seed’s propensity for mortality in the first year and hg(1)178

is the propensity for germination of a seed that does not die during the first year. The seeds that179

remain in the seed bank past one year do not die with propensity 1�hm(1) and do not germinate180

with propensity 1�hg(1).181

We refer to the case with discrete mortality hazards (Equation 1) as a ‘non-parametric model,’182

and to use it in a statistical model we specify the hazards in terms of probabilities. The mortality183

hazard, hm(t j), is the probability of mortality during each time interval j, pm, j. Specifically, it is184

the conditional probability of mortality for seeds that remain in the seed bank. We describe seeds185

remaining in the seed bank after the period in which they experience mortality, but before the186

germination opportunity. We assume that after this time interval, seeds have a discrete opportunity187

to germinate. The germination hazard, hg(t j), is the conditional probability of germination at each188

opportunity, pg, j, for a seed that remains in the seed bank up to just before germination.189

With these hazards, the mortality component is defined by ’J
j=1 1� pm, j. The germination190

component is defined by ’J
j=1(1� pg, j�1)I( j>1), where I(x) is an indicator function equal to 1191

if the inequality is true, and 0 if it is not (Metcalf et al., 2009). We use the indicator function192

because at the first time j, seeds have not yet experienced a germination opportunity. After the first193

germination opportunity, the ‘germination history’ is defined by the product of past germination194

opportunities. The product of the mortality and germination components describe the probability195

that seeds remain in the seed bank after j time intervals (e.g. years) as196

f (pg,pm) =
J

’
j=1

survival function
for mortalityz }| {�
1� pm, j

�
⇥

germination historyz }| {�
1� pg, j�1

�I( j>1) . (2)197

198

The choice of how to represent mortality and germination makes explicit our assumptions about199

how those processes operate. The most simple version of the model in Equation 2 is one in which200
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the hazards are constant; neither mortality nor germination probability change with seed age. In201

this case, pm,1 = pm,2 = · · · = pg,J and pg,1 = pg,2 = · · · = pg,J . Mortality and germination are202

each described by a single parameter, pm and pg.203

3.3 Likelihood functions for observations from seed bag burial and seed addition experi-204

ments205

To estimate seed mortality and germination, we use probability statements to connect the ob-206

servations from field experiments to the deterministic models. We describe likelihood functions207

for observations from seed bag burial (Figure 1A-B) and seed addition (Figure 1C-D) experiments.208

To illustrate our approach, we assume that mortality and germination do not depend on seed age.209

The general structure of the likelihood remains when we relax the assumption of constant hazards210

for mortality or germination (Table 1).211

For the seed bag burial experiment, we construct one likelihood for the observations of ger-212

minants and another likelihood for the observations of surviving seeds. First, we use the ob-213

servations of germinants to describe a model for the probability of germination, pg. We as-214

sume that the number of seeds that germinate, yg,i j, are a binomial sample from the number215

of seeds surviving to just before germination, ng,i j. Recall that the number of surviving seeds216

is the sum of germinants and ungerminated, intact seeds. We estimate the probability of ger-217

mination, pg, for a seed that survives up to just before germination. The likelihood is then218

L(pg|yg) = ’I
i=1 ’J

j=1 binomial(yg,i j|ng,i j, pg).219

Next, we use the observations of surviving seeds to describe a survival function for the prod-220

uct of germination and mortality hazards. We assume that the number of seeds that survive to a221

given time are a binomial sample from the number of seeds that start the experiment in each bag:222

binomial
�
yi j|ni j, f (. . .)

�
. The number of surviving seeds is the sum of germinants and ungermi-223

nated, intact seeds. The deterministic model, f (. . .), is the product of the germination history and224

the survival function for mortality, and describes the probability of not germinating and not dying225

up to the time j. For the case in which mortality and germination do not depend on seed age,226

f (pm, pg) = ’ j
k=1(1� pm)(1� pg)I( j>1). The joint likelihood for observations of germinants and227
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surviving seeds is228

f (pm, pg) =
j

’
k=1

(1� pm)⇥ (1� pg)
I( j>1)

L(pm, pg|yg,y) =
I

’
i=1

J

’
j=1

h
binomial(yg,i j|ng,i j, pg)binomial

�
yi j|ni j, f (pm, pg)

�i
.

(3)229

230

Because bags are destructively sampled, the indices for bag ID, i, and recovery time, j, are redun-231

dant and the likelihood function will range over unobserved combinations of bag ID and recovery232

time (e.g. any bag i at a time j when the bag was not recovered). We retain this notation because it233

makes explicit the parallel with the likelihood for observations from seed addition experiments and234

because, in practice, we omit the unobserved combinations from the likelihood when implementing235

it with statistical software.236

For the seed addition experiment, we construct a likelihood for the observations of seedlings.237

We assume that the number of seedlings is a binomial sample from the number of seeds that start238

the experiment: binomial
�
yg,i j|ni j, f (. . .)

�
. The number of seedlings is the product of mortality239

and germination. We describe the combination of those processes with a deterministic model,240

f (. . .), that modifies Equation 2 to include germination. Each observation takes place at the time241

of germination, rather than after, so that f (pm, pg) = pg⇥’ j
k=1(1� pm)(1� pg)I( j>1). To account242

for germination, the function now includes the probability of germination, pg, in addition to the243

survival function for mortality and the germination history. The likelihood for observations of244

seedlings is245

f (pm, pg) = pg ⇥
j

’
k=1

(1� pm)⇥ (1� pg)
I( j>1)

L(pm, pg|yg) =
I

’
i=1

J

’
j=1

⇥
binomial

�
yg,i j|ng,i j, f (pm, pg)

�⇤
.

(4)246

247

4 Methods248

To conduct a comprehensive analysis of statistical models for observations from seed bag burial249

and seed addition experiments, we now consider statistical models with four combinations of con-250

stant (C) or age-dependent (A) seed mortality and germination. Population models that incorporate251

a seed bank typically use one of the following mortality/germination combinations to parameterize252
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seed stages: C/C (e.g. Kurkjian et al. 2017), A/C (e.g. Yates and Ladd 2010), C/A (e.g. Elderd253

and Miller 2016), and A/A (e.g. Kalisz 1991). We thus consider models to estimate the following254

cases:255

1. Constant mortality/constant germination (C/C): Mortality, pm, and germination, pg, hazards256

are the same for all seed ages.257

2. Age-dependent mortality/constant germination (A/C): The mortality hazard is a function of258

seed age, pm, j, while the germination hazard is the same for all seed ages, pg.259

3. Constant mortality/age-dependent germination (C/A): The mortality hazard is the same for260

all seed ages, pm, while the germination hazard is a function of seed age, pg, j.261

4. Age-dependent mortality/age-dependent germination (A/A): Both mortality, pm, j, and ger-262

mination, pg, j, hazards are functions of seed age.263

For each of these four cases, we study the identifiability of models for seed bag burial and seed ad-264

dition experiments to determine when each can be used to estimate seed mortality and germination.265

To directly compare the statistical properties of estimates for seed mortality and germination from266

seed bag burial and seed addition experiments, we fit a model with constant mortality and constant267

germination (C/C) to observations from a seed bank with constant mortality and constant germina-268

tion (C/C). Finally, we study the consequences of model misspecification on parameter estimates.269

We focus on a special case where observations are generated by a seed bank with age-dependent270

mortality and constant germination (A/C) but we fit a model with constant mortality and constant271

germination (C/C).272

4.1 Identifiability analysis by the symbolic method273

To determine when seed bag burial and seed addition experiments can be used to estimate con-274

stant or age-dependent seed mortality and germination, we analyze the identifiability of statistical275

models for the experiments. We study if parameters can be estimated in terms of the structure of276

the likelihood (‘intrinsic identifiability’) (Cole 2020). Intrinsic identifiability refers to cases where277

parameters in a model can be uniquely estimated. For example, models will not be identifiable if278

different combinations of mortality and germination have the same likelihood for a set of observa-279
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tions. If the model is not identifiable, there are no unique maximum likelihood estimates.280

To analyze the identifiability of statistical models for different combinations of experiment,281

hazard, and length of the experiment, we use an algebraic approach called the symbolic method282

(Catchpole and Morgan 1997; Cole et al. 2010; Cole 2020). With this method, we focus on general283

issues of experimental design and model structure rather than on specific datasets. We determine284

the intrinsic identifiability of statistical models for all combinations of experiment (seed bag burial285

vs. seed addition), hazards (C/C, A/C, C/A, A/A), and length of experiment (1, 2 or 3 years). All286

the likelihoods that we analyze are shown in Table 1. To apply the symbolic method, we summarize287

each model by a vector that completely determines the model (an ‘exhaustive summary’). The288

exhaustive summary is subsequently differentiated with respect to all of the constituent parameters289

to form a ‘derivative matrix’ (the transpose of the Jacobian). The model is identifiable if the rank of290

the derivative matrix is equal to the number of parameters in the model; the model is not identifiable291

if the rank of the derivative matrix is less than the number of parameters. We implement these steps292

using the computer algebra software Maxima (Maxima, 2014); for detailed methods and scripts,293

see Appendix: Identifiability analysis.294

4.2 Simulation experiments295

To compare the statistical properties of seed bag burial and seed addition experiments, and296

study the effect of model misspecification, we conduct numerical experiments in which we fit297

models to simulated data. To simulate data with the structure of seed bag burial and seed addition298

experiments (Figure 1), we use the likelihoods corresponding to those observations (Table 1). In299

practice, we use mortality and germination hazards to calculate the expected probability of a seed300

remaining in the soil at the end of each year, and its subsequent probability of germinating. We use301

the expected probability of remaining in the soil to draw a binomial sample of seeds from the initial302

number of seeds in the bag. We use the probability of germination to draw a binomial sample of303

germinants from the seeds remaining in the bag. To simulate data with the structure of the seed304

addition experiment, we retain only the observations of seedlings.305

Both maximum likelihood and Bayesian methods would be appropriate to fit the models as-306
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sociated with seed bag burial and seed addition experiments. However, we chose to fit Bayesian307

models to the simulated observations because we can readily estimate the parameters in the joint308

likelihood. All parameters in our models are probabilities with support [0,1] on which we place309

beta(1,1) priors. Figure S4 shows the directed acyclic graphs corresponding to the joint and pos-310

terior distributions for the models. Parameters and sample sizes for simulations are given in the311

sections that follow. We wrote all simulations and analyzed model output in R version 3.6.2 (R312

Core Team, 2019). We wrote, fit all models, and sampled posterior distributions using JAGS 4.10313

with rjags (Plummer et al., 2019). For each fit, we ran 3 chains with 3,000 iterations for adap-314

tation, 5,000 for burn-in, and 5,000 for sampling. For computational efficiency, we thinned the315

chains and kept every 10th iteration. We used the MCMCvis package to work with model output,316

check chains for convergence, and recover posterior distributions (Youngflesh et al., 2021).317

4.2.1 Statistical properties of seed bag burial and seed addition experiments318

To compare the statistical properties of estimates from identifiable models, we used a simula-319

tion experiment in which we fit a model with constant mortality and constant germination (C/C)320

to observations from a seed bank with constant mortality and constant germination (C/C). We321

generated data from a 3-year experiment with a sample sizes n = (5,10,15,20,25,30) bags or322

plots each year. Each bag or plot started the experiment with 100 seeds. For each sample size,323

we simulated 250 replicate datasets for the following combinations of ‘true’ mortality and germi-324

nation: low mortality/low germination (0.1,0.1), low mortality/high germination (0.1,0.5), high325

mortality/low germination (0.5,0.1), and high mortality/high germination (0.5,0.5). We then fit326

each simulated dataset with two models; one for a seed bag burial experiment and one for a seed327

addition experiment.328

To quantify the bias of estimates, we calculated the difference between the posterior modes329

and the ‘true’ parameters for the probability of mortality or germination. Parameter estimates are330

unbiased when the difference is 0. To quantify the uncertainty of estimates, we calculated the width331

of the 95% credible interval for each parameter. For each set of ‘true’ parameters and sample sizes,332

we estimated the mean difference and width, and quantified 95% confidence intervals for each with333
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a t distribution (Pappalardo et al., 2020). To estimate the coverage of the 95% credible intervals,334

we calculated the proportion of credible intervals that contain the ‘true’ parameter value. Ideally,335

a 95% credible interval would contain the ‘true’ parameter value 95% of the time. We calculated336

confidence intervals for coverage with the Wilson method in the binom package (Pappalardo et al.,337

2020). Finally, we calculated root mean squared error as a measure of the combined effect of bias338

and uncertainty.339

4.2.2 Consequences of model misspecification340

To study the consequences of model misspecification, we focused on a special case in which341

we fit a model with constant mortality and constant germination (C/C) to observations from a seed342

bank with age-dependent mortality and constant germination (A/C). We generated data from a 3-343

year experiment with sample sizes of n = (5,10,15,20,25,30) bags or plots each year. Each bag344

or plot started the experiment with 100 seeds. For each sample size, we simulated 250 replicate345

datasets in which ‘true’ probabilities of mortality in the three years was pm,1 = 0.1, pm,2 = 0.2, and346

pm,3 = 0.3. The germination rate in all years was pg = 0.1. As before, we fit two models to each347

simulated dataset; one for a seed bag burial experiment and one for a seed addition experiment. In348

all cases we fit the C/C model with two parameters, pm and pg. Even though we only estimated349

one parameter for the probability of mortality, we compared properties of the estimate to the age-350

dependent probability of mortality in each of the three years. For all parameters, we quantified351

bias, uncertainty, coverage, and root mean squared error.352

5 Results353

5.1 Identifiability analysis by the symbolic method354

All models for observations from seed bag burial experiments exhibit a deficiency of 0, indi-355

cating that the models are identifiable (Table 2). In all cases we consider, the models for seed bag356

burial experiments can be used to estimate parameters for seed mortality and germination. Models357

for observations from seed addition experiments only show a deficiency of 0 when mortality and358

germination rates are assumed to be constant, and when more than one year of observations is359

available (Table 2). In all other cases, models have a deficiency greater than 0, indicating that the360
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models are not identifiable.361

5.2 Statistical properties of seed bag burial and seed addition experiments362

The C/C models fit to observations from the seed bag burial and seed addition experiments are363

identifiable when there is more than one year of data (Table 2); here, we analyze simulated data for364

3-year long experiments. Both experiments produce unbiased estimates of mortality (Fig. 2A-D)365

and germination (Fig. 2I-L) at large sample sizes. At small sample sizes, seed addition experiments366

are more likely to produce biased estimates (e.g. Fig. 2A, C). Estimates from seed addition experi-367

ments display greater uncertainty for all parameter values and sample sizes (Fig. 2E-H, M-P). The368

difference in uncertainty of estimates between experiments depends on the true probability of mor-369

tality and germination. Seed mortality estimates show 3-5 times more uncertainty for seed addition370

experiments when mortality and germination are low, but at most 2 times as much uncertainty when371

mortality is low but germination is high (Fig. 2E vs. F). For both experiments, coverage is ⇠95%372

(Fig. S8A-D, I-L), and root-mean squared error decreases with sample size (Fig. S8E-H, M-P).373

5.3 Consequences of model misspecification374

We fit the C/C model to observations from a simulation in which the probability of seed mor-375

tality increases over time (pm,1 = 0.1, pm,2 = 0.2, pm,3 = 0.3). For both seed bag burial and seed376

addition experiments, the bias in mortality estimates changes over time (Fig. 3A-C). Both experi-377

ments progress from overestimating to underestimating mortality, but the magnitude of bias varies378

depending on the experiment (open vs. filled points). In the first year, seed bag burial experiments379

exhibit less bias than seed addition experiments; this pattern reverses by the third year. Bias is380

unaffected by sample size (Fig. 3A-C), but the width of the 95% credible interval decreases with381

increasing sample size for all parameters and both experiments (Fig. 3E-G). Low accuracy and382

increased precision at larger sample sizes reduces coverage even when bias does not change (e.g.383

Fig. 3I-K). The root-mean squared error (RMSE) for mortality is largely determined by the bias of384

estimates; estimates with a smaller absolute bias also show smaller RMSE (Fig. 3M-O).385

The ‘true’ probability of germination does not depend on seed age in the simulation, but ger-386

mination estimates are slightly biased for both seed bag burial and seed addition experiments387
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(Fig. 3D). Although the absolute magnitude of bias is smaller than for mortality estimates, ger-388

mination is overestimated by 13-20%. The coverage of estimates also decreases with increasing389

sample size (Fig. 3L), but RMSE is relatively low (Fig. 3P).390

6 Discussion391

We develop and analyze statistical models for observations from field experiments commonly392

used to study the soil seed bank. We present the first systematic evaluation and comparison of393

inferences made with statistical models for seed bag burial and seed addition experiments. We394

show that seed bag burial experiments can separately estimate mortality and germination even if395

one, or both, are age-dependent. For seed addition experiments, we demonstrate that seed mortality396

and germination are only identifiable if both mortality and germination do not change with seed397

age and with more than one year of observations. In all other cases, it is impossible to separately398

estimate mortality and germination.399

To compare the statistical properties of estimates from seed bag burial and seed addition ex-400

periments, we focus on the identifiable models with constant mortality and constant germination.401

Estimates from both experiments are unbiased as sample size increases. However, estimates from402

seed bag burial experiments are more precise for all parameter combinations that we consider.403

Finally, we evaluate the effect of fitting the wrong model to observations from each experiment.404

We fit a model with constant mortality and germination rates to observations produced by age-405

dependent mortality and constant germination. The bias of mortality estimates changes over time,406

and is exacerbated by increased precision at large sample sizes. Germination estimates are also407

biased, though to a lesser extent.408

6.1 Recommendations for practitioners409

We demonstrate how seed bag burial or seed addition experiments can be used to estimate seed410

mortality and germination. To estimate age-dependent mortality or germination rates in the field,411

you should conduct a seed bag burial experiment. Even when estimating constant mortality and412

germination, seed bag burial experiments will produce estimates that are more accurate and precise413

for a given sample size. Nonetheless, estimates from seed addition experiments will be unbiased414
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when mortality and germination do not change with seed age.415

We suggest that the best way to adapt our broad-strokes recommendations is to simulate data416

and fit models to those simulations. Practitioners already likely to know much about many of the417

key parts of a seed bank experiment. How many seeds could be collected and used for an ex-418

periment, how many replicates are logistically feasible, and for how long would the experiment419

run? With these pieces in hand, it is then possible to use plausible values for seed mortality and420

germination rates to simulate observations. It will not be possible to know the ‘true’ values or their421

age-dependence, but simulations could explore likely scenarios (e.g. constant vs. increasing mor-422

tality). Fitting models to these simulations would then make it possible to compare the statistical423

properties of estimates from seed bag burial versus seed addition experiments. To facilitate this424

process, we include the code for our study (https://zenodo.org/record/5794709); this includes R425

code to simulate observations, the JAGS code for the models, and the R code to fit the models to426

observations.427

Our analysis can also help guide parameter estimation if observations have already been col-428

lected. Lack of identifiability creates issues for both frequentist and Bayesian statistical methods,429

which we illustrate in detail in Appendix: Implications of identifiability for model fitting. No430

amount of clever modeling can estimate parameters when they are intrinsically not identifiable.431

Observations from seed bag burial experiments give you the flexibility to fit models with constant432

or age-dependent mortality and germination. With observations from seed addition experiments, it433

is only possible to fit models with constant mortality and germination.434

Ultimately, the impact of bias or imprecision in estimates of seed mortality or germination on435

population growth rate depends on the sensitivity of population growth rate to those vital rates. The436

models and analyses we present will most relevant to researchers working with plant populations in437

which aboveground vital rates exhibit high temporal variability because these populations are likely438

sensitive to transitions in the seed bank (Doak et al., 2002; Nguyen et al., 2019). Considering the439

broader context of the plant life history can help population ecologists determine which fieldwork440

and modeling approaches are sufficiently accurate and precise for their study system.441
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6.2 Extensions442

Existing studies have used simulations and post-hoc comparisons to explore the consequences443

of age structure in the seed bank, emphasize how estimates of seed rates interact with temporal444

variability in aboveground success, and describe the effect of underestimating parameter uncer-445

tainty (Doak et al., 2002; Paniw et al., 2017; Nguyen et al., 2019). However, these methods do not446

provide an intuitive way to use observations to test assumptions about seed bank structure and as-447

sociated parameter uncertainty. For example, the methods do not allow for model checks or model448

selection, both of which could be used to ask whether the fitted model is consistent with obser-449

vations. Because accuracy and precision of estimates for seed mortality and germination interact450

with information about other components of the life cycle, it seems crucial to evaluate the model451

used to estimate seed mortality or germination separately from the population model.452

The models we define can accommodate constant and age-dependent seed mortality and germi-453

nation. In our simulations, we can assess the accuracy of parameter estimates obtained with these454

models because we picked the values used to generate the data. We lack this luxury for empirical455

datasets. But standard model checking (e.g. Conn et al. 2018) and model selection (e.g. Hooten456

and Hobbs 2015; Tredennick et al. 2021) methods could be applied to determine whether the model457

that we fit to empirical data is consistent with the process that generated the data. Evaluating the458

performance of these approaches would be a valuable extension to the present work.459

Studies also describe seed mortality with parametric functions such as exponential models (e.g.460

Lommen et al. 2018). Analyzing the identifiability and statistical properties of models with contin-461

uous, parametric descriptions of seed mortality would complement the present study and connect462

it to the work of Rees and Long (1993), who fit a variety of parametric models for recruitment to463

observations of seedlings from a seed addition experiment. The authors showed that recruitment is464

affected by the age-dependence of seed mortality and germination, and that seed banks do not, as a465

rule, exhibit exponential decay (Rees and Long, 1993). However, they did not separately estimate466

seed mortality and germination. The models we present could be expanded to include continuous,467

parametric descriptions for mortality, in which case we would describe the combination of contin-468
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uous mortality and discrete germination hazards with a product integral (Klein and Moeschberger469

2003, p. 36). In comparison to our non-parametric approach, a parametric description for mor-470

tality could reduce the number of parameters and facilitate the use of methods from event history471

analysis (Fox, 2001; Landes et al., 2020).472

It would also be valuable to combine information from seed bag burial and seed addition exper-473

iments, and from field experiments with laboratory trials. Studies that have gone to great lengths474

to carry out both seed bag burial and seed addition experiments (e.g. Liu et al. 2005) have not475

been able to formally combine observations from those experiments and instead explore a variety476

of scenarios based on the parameters estimated from each experiment. In addition, a common477

endpoint for field experiments with seeds is to test intact seeds for viability with lab assays, which478

may also have uncertainty associated with them. In certain cases, it might be desirable to combine479

the assays and field experiments to fully account for uncertainty about seed fates.480

6.3 Limitations481

Event history analysis is developed for and appropriately applied to individual data (Zens and482

Peart, 2003; Landes et al., 2020), and the models we describe would be completely appropriate if483

applied to observations of individual seeds. Yet seeds of many plant species are too small for indi-484

viduals to be tracked in the field. When examining aggregate data—from cohorts, or populations—485

heterogeneity between subpopulations and change in hazards over time can confound whether pat-486

terns are the result of changes to hazards or to population structure (Rees and Long, 1993; Zens487

and Peart, 2003). Our approach is not intended to assess changes to the hazards for individual488

seeds (unless individual-level data are available) but rather a framework for consistent inferences489

about seed mortality and germination.490

To focus on the commonalities between seed bag burial and seed addition experiments, we491

describe stereotyped versions of each. Not all experiments in the literature exactly follow the492

schematic we describe; some seed bag burial experiments count intact seeds and estimate germi-493

nation in another way (e.g. Lommen et al. 2018), or count only seeds at certain times, but both494

seeds and germinants at other times (e.g. Eckhart et al. 2011). Individual analyses will inevitably495
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have to be tailored to specific data. We sought to explicitly describe the assumptions underlying496

our statistical models so that they could be readily modified. Investigators will naturally construct497

models that are appropriate to their system and aims.498

Other studies have addressed issues of experimental design that could affect observations from499

seed bag burial or seed addition experiments. For example, high seed densities in mesh bags may500

promote transmission of pathogenic fungi and increase seed mortality (Van Mourik et al., 2005).501

Seed bag or seed burial depth may influence mortality and germination rates; for instance, Dille502

et al. (2017) showed that deeper burial reduced germination, but not mortality, for Kochia scoparia503

seeds. Although beyond the scope of our study, accounting for such considerations is a crucial part504

of collecting observations that reflect seed mortality in and germination from the soil seed bank.505

6.4 Conclusion506

Observations from seed bag burial and seed addition experiments are hard-won data, but statis-507

tical models for observations from these experiments have received little attention to-date. Study-508

ing these models can help plant population ecologists make the most of existing and future data509

by identifying potential models to fit, the statistical properties of parameter estimates, and poten-510

tial bias introduced by making assumptions about age-dependence of mortality and germination.511

Our analysis contributes to efforts to make richer inferences from the trove of demographic data512

collected by plant population ecologists.513
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9 Tables630

Table 1: Likelihoods of models for observations from seed bag burial and seed addition experi-
ments.

Model
Mortality Germination Likelihood
SEED BAG BURIAL EXPERIMENT

C (pm) C (pg)
f (pm, pg) =

j

’
k=1

(1� pm)⇥ (1� pg)
I( j>1)

L(pm, pg|yg,y) =
I

’
i=1

J

’
j=1

h
binomial(yg,i j|ng,i j, pg)binomial

�
yi j|ni j, f (pm, pg)

�i

A (pm, j) C (pg)
f (pm, j, pg) =

j

’
k=1

(1� pm, j)⇥ (1� pg)
I( j>1)

L(pm, pg|yg,y) =
I

’
i=1

J

’
j=1

h
binomial(yg,i j|ng,i j, pg)binomial

�
yi j|ni j, f (pm, j, pg)

�i

C (pm) A (pg, j)
f (pm, pg, j) =

j

’
k=1

(1� pm)⇥ (1� pg, j)
I( j>1)

L(pm,pg|yg,y) =
I

’
i=1

J

’
j=1

h
binomial(yg,i j|ng,i j, pg, j)binomial

�
yi j|ni j, f (pm, pg, j)

�i

A (pm, j) A (pg, j)
f (pm, j, pg, j) =

j

’
k=1

(1� pm, j)⇥ (1� pg, j)
I( j>1)
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J

’
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h
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SEED ADDITION EXPERIMENT

C (pm) C (pg)
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1 In columns 1 and 2, C is a constant hazard and A is an age-dependent hazard.
2 In all likelihoods, I(x) is an indicator function equal to 1 if the inequality is true, and 0 if it is not. As discussed in

the main text, the indicator function identifies whether or not seeds have yet experienced a germination opportu-
nity; at the first time point j, they have not.
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Table 2: Analysis of intrinsic identifiability for non-parametric models with different assumptions
about whether germination and mortality are constant or age-dependent. Each row corresponds
to a model in which the germination component is defined in column one and the mortality com-
ponent is defined in column two. For each model, the columns show the results of the intrinsic
identifiability analysis for 1, 2, or 3 years of observations. The analysis identifies the deficiency
of the model for a given set of assumptions about the germination and mortality components. The
deficiency is calculated as in Cole (2020): the number of parameters in the model minus the rank
of the derivative matrix, the latter calculated by the symbolic method. Models with a deficiency of
0 are identifiable; models with a deficiency greater than 0 are not identifiable.

Model Deficiency
Mortality component Germination component 1 year 2 years 3 years
SEED BAG BURIAL EXPERIMENT
Constant (pm) Constant (pg) 0 0 0
Age-dependent (pm, j) Constant (pg) 0 0 0
Constant (pm) Age-dependent (pg, j) 0 0 0
Age-dependent (pm, j) Age-dependent (pg, j) 0 0 0

SEED ADDITION EXPERIMENT
Constant (pm) Constant (pg) 1 0 0
Age-dependent (pm, j) Constant (pg) 1 1 1
Constant (pm) Age-dependent (pg, j) 1 1 1
Age-dependent (pm, j) Age-dependent (pg, j) 1 2 3

631
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10 Figure captions632

Figure 1. (A) Schematic of a seed bag burial experiment. Each bag in the experiment is represented633

by a single line from when the bag is buried at month 0 to when the bag is dug up for sampling634

(filled circles). The data are organized with indices for bag and sampling time. (B) Data from the635

seed bag burial experiment. Each row corresponds to a bag and sampling time. (C) Schematic of636

a seed addition experiment. Each plot in the experiment is represented by a single line from when637

seeds are added to the plot at month 0 to when plots are censused for seedlings (filled circles). The638

data are organized with indices for plot and time. (D) Data from the seed addition experiment.639

Each row corresponds to a plot and sampling time.640

Figure 2. Results of simulation experiment in which we generated observations with constant641

mortality and germination, and fit a model with constant mortality and germination parameters.642

(A-D) Bias for estimates of mortality probability, pm, for different combinations of true mortality643

and germination probability. (E-H) Width of the 95% credible interval for pm. (I-L) Bias for esti-644

mates of germination probability, pg, for different combinations of true mortality and germination645

probability. (M-P) Width of the 95% credible interval for pg. In all panels, error bars represent the646

95% confidence interval based on a t distribution.647

Figure 3. Results of simulation experiment in which we generated observations with age-dependent648

mortality and germination, but fit a model with constant mortality and germination. From left to649

right, columns are analyses of mortality parameters for ages 1, 2, and 3, and germination. (A-D)650

Bias for estimates of mortality and germination parameters. Error bars represent the 95% confi-651

dence interval based on a t distribution. (E-H) Width of the 95% credible interval for mortality and652

germination parameters. Error bars represent the 95% confidence interval based on a t distribution.653

(I-L) Coverage for mortality and germination parameters. Error bars represent the 95% confidence654

interval calculated using the Wilson method for binomial proportions. (M-P) Root mean squared655

error for mortality and germination parameters.656
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11 Figures657

A.

C.

Indices Variable Data (counts) Calculated (counts)

Bag Time
Time

(months)
Starting
seeds

Intact
seeds

Germinants Survivors
Surviving

seeds
i j tij nij — yg,ij yij ng,ij

12 1 12 100 27 27 54 54
21 1 12 100 25 29 54 54
30 1 12 100 21 22 43 43
33 2 24 100 2 4 6 6
45 2 24 100 8 9 17 17
46 2 24 100 1 4 5 5
61 3 36 100 0 1 1 1
69 3 36 100 1 2 3 3
79 3 36 100 2 2 4 4

B.

Indices Variable Data (counts)
Plot Time Time (months) Added seeds Seedlings
i j tij nij yg,ij

7 1 12 100 22
19 1 12 100 26
21 1 12 100 29
7 2 24 100 7

19 2 24 100 8
21 2 24 100 4
7 3 36 100 3

19 3 36 100 1
21 3 36 100 1

D.

Figure 1: (A) Schematic of a seed bag burial experiment. Each bag in the experiment is represented by a
single line from when the bag is buried at month 0 to when the bag is dug up for sampling (filled circles). The
data are organized with indices for bag and sampling time. (B) Data from the seed bag burial experiment.
Each row corresponds to a bag and sampling time. (C) Schematic of a seed addition experiment. Each plot
in the experiment is represented by a single line from when seeds are added to the plot at month 0 to when
plots are censused for seedlings (filled circles). The data are organized with indices for plot and time. (D)
Data from the seed addition experiment. Each row corresponds to a plot and sampling time.
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Figure 2: Results of simulation experiment in which we generated observations with constant mortality and
germination, and fit a model with constant mortality and germination parameters. (A-D) Bias for estimates
of mortality probability, pm, for different combinations of true mortality and germination probability. (E-
H) Width of the 95% credible interval for pm. (I-L) Bias for estimates of germination probability, pg, for
different combinations of true mortality and germination probability. (M-P) Width of the 95% credible
interval for pg. In all panels, error bars represent the 95% confidence interval based on a t distribution.

29



Figure 3: Results of simulation experiment in which we generated observations with age-dependent mor-
tality and germination, but fit a model with constant mortality and germination. From left to right, columns
are analyses of mortality parameters for ages 1, 2, and 3, and germination. (A-D) Bias for estimates of
mortality and germination parameters. Error bars represent the 95% confidence interval based on a t dis-
tribution. (E-H) Width of the 95% credible interval for mortality and germination parameters. Error bars
represent the 95% confidence interval based on a t distribution. (I-L) Coverage for mortality and germina-
tion parameters. Error bars represent the 95% confidence interval calculated using the Wilson method for
binomial proportions. (M-P) Root mean squared error for mortality and germination parameters.
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