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ABSTRACT 

A substantial amount of phenotypic diversity results from changes in gene regulation. Understanding 

how regulatory diversity evolves is therefore a key priority in identifying mechanisms of adaptive 

change. However, in contrast to powerful models of sequence evolution, we lack a consensus model of 

regulatory evolution. Furthermore, recent work has shown that many of the comparative approaches 

used to study gene regulation are subject to biases that can lead to false signatures of selection. In this 

review, we first outline the main approaches for describing regulatory evolution and their inherent 

biases. Next, we bridge the gap between the fields of comparative phylogenetic methods and 

transcriptomics to reinforce the main pitfalls of inferring regulatory selection and use simulation studies 

to show that shifts in tissue composition can heavily bias inferences of selection. We close by 

highlighting the multi-dimensional nature of regulatory variation and identifying major, unanswered 

questions in disentangling how selection acts on the transcriptome. 
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INTRODUCTION 

A growing body of evidence indicates that changes in gene regulation play a key role in phenotypic 

divergence1. Within species, a single genome can encode multiple distinct phenotypes by varying 

expression levels of the underlying loci2. Similarly, across species, regulatory variation is implicated in 

major phenotypic differences that underlie adaptive change1. Given the importance of gene regulation 

in shaping phenotypic diversity, transcriptome analyses are widely used as a genomic tool to identify 

the genes that underlie phenotypic variation and the selective regimes acting on them3. However, the 

dominant mode of evolution acting on gene expression remains controversial. Current evidence 

supports the notion that global patterns of gene expression evolve predominantly under stabilizing 

selection, but the extent of neutral evolution is heavily debated4–7.   

Much of this debate is driven by the lack of a consensus neutral model of transcriptome evolution. In 

contrast to established models of sequence evolution that allow us to predict the phenotypic effects of 

different types of coding mutations and scan coding sequence data for regions of adaptive evolution, 

gene regulation can be complex and non-additive in its phenotypic effects. This complexity has resulted 

in a wide range of approaches to study regulatory evolution3,8,9. Importantly, these approaches make 

direct assumptions about how expression evolves across species, many of which have yet to be 

robustly validated, and these assumptions vary extensively across models. Over the last decade, 

statistical frameworks developed in the field of phylogenetic comparative methods have been applied 

to transcriptome data to infer selection8,10, and these have provided important insights into patterns of 

regulatory variation. However, in recent years it has become clear that several of these phylogenetic 

comparative approaches suffer from biases that often lead to false inferences of stabilizing selection 

when applied to real phenotypic data11,12. Many of the root causes of these biases are even more 

pronounced in transcriptomic data, but the issues uncovered in the phylogenetic comparative 

literature11,12 are only rarely discussed in the genomics field13,14.  

Finally, most studies make the explicit assumption that when differential gene expression is observed, 

it is the direct result of regulatory change. In reality, this fundamental assumption may often be flawed 

as most studies measure expression in bulk across heterogeneous tissue samples and so cannot 

distinguish changes in gene regulation from differences in tissue composition15,16. Of course, changes 
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in tissue composition, which encompass both changes in cell type abundance within tissues and 

allometric scaling across them, are likely due to regulatory changes in development. However, these 

developmental regulatory differences will not be detected if transcriptomes are measured after 

development is completed and instead the resulting differences in gene abundance will be mistaken as 

causative adaptive changes (Fig. 1). This problem undermines our current understanding of the nature 

and abundance of regulatory variation, and how it contributes to phenotypic divergence. Although the 

implications of varying tissue composition across species for measuring regulatory change have been 

discussed15,16, the consequences of how it affects the inference of expression evolution have received 

little attention and so are not widely appreciated. 

 

Figure 1. Variation in tissue composition can lead to the perception of differential expression.  
Schematic illustrating how variation in tissue composition can bias perception of expression measured from bulk 
RNA-Seq. Here, a single tissue is comprised of two cell types, type 1 (blue) which only expresses gene 1, and 
type 2 (yellow) which only expresses gene 2. During development in Species I (a-d),  cell type 1 and 2 have the 
same rate of cell proliferation (a) and per cell expression is the same for both genes within each cell type (b). 
The resulting tissue is evenly comprised of each cell type (c) and bulk RNA-Seq expression for both gene 1 and 
2 is equal (d). In Species II (e-h), a slight increase in the rate of cellular proliferation for cell type 1 (e) results in 
a greater proportion of cells of type 1 in the resulting adult tissue (g). Even though there has been no change in 
per cell expression of either gene 1 or 2 (f), the relative expression from bulk RNA-Seq of the entire tissue results 
in the perception of higher expression of gene 1 and lower expression of gene 2 compared to expression in 
Species 1 (h). 
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Here, we examine our current understanding of the evolutionary processes generating variation in gene 

regulation. First, we outline the main approaches for describing regulatory evolution, examine their 

inherent biases, and synthesize findings to provide new perspectives to the debate over how selection 

acts on the transcriptome. Second, we attempt to bridge the gap between the fields of comparative 

phylogenetic methods and transcriptomics to reinforce the main pitfalls of inferring regulatory variation. 

Importantly, we identify a previously overlooked challenge to the study of expression evolution 

concerning shifts in tissue composition across taxa, and use simulation studies to show that this issue 

can heavily bias inferences of selection. We close by highlighting the multi-dimensional nature of 

regulatory variation and identifying major, unanswered questions in disentangling how selection acts 

on the transcriptome. 

INFERRING THE MODE OF GENE EXPRESSION EVOLUTION 

Currently, a number of different approaches for describing regulatory evolution have been proposed in 

the absence of a single consensus model. These can be divided into three broad categories; (i) 

contrasts between divergence and variation in expression (Fig 2A), (ii) phylogenetic comparative 

methods (Fig 2B) and (iii) fitness-based approaches (Fig 2C). Importantly, each makes different 

assumptions regarding the mode of expression divergence and are subject to distinct biases. With a 

few exceptions13,14,17,18, studies rarely interrogate multiple approaches and so it remains unclear 

whether discrepancies between studies are biologically meaningful or caused by inherent 

methodological differences. Below we synthesise results from different analytical frameworks to provide 

an overview on the debate concerning the importance of selection versus genetic drift in shaping 

regulatory variation. 

Contrasting divergence and variation in expression 

Many early analyses of regulatory evolution tested for selection by contrasting expression divergence 

between species and expression diversity within species19–23. This method relies on the assumption 

that neutral changes are based solely on the underlying mutation rate24,25 and so divergence between 

species relative to polymorphism within species will be equal at neutral loci25. When applied to 

expression data, mutation leads to polymorphism, which can be inferred through variation in expression 

level amongst individuals. Thus, a neutral model of evolution can be rejected when there are deviations 
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from an equal ratio of within to between species regulatory variation (Fig. 2A). Studies employing this 

approach are dominated by two competing viewpoints. One posits that gene regulation is predominantly 

neutrally evolving9,19,20,26 and the other suggests widespread conservation and purifying selection of 

gene expression levels21,23,27,28 with evidence of positive selection acting on certain loci29–34.  

Analogous approaches using alternative neutral models of expression divergence have also found 

broad support for stabilizing selection3,6. One such approach uses mutation accumulation studies to 

estimate neutral expectations of expression divergence and infer selection through contrasts with 

natural populations35–37. Most recently, the distribution of expression levels of F2 offspring from a 

genetic cross has been used to estimate expected levels of neutral divergence38. Here, under neutrality, 

expression variance of the two parental populations should be equal to the F2 progeny as the F2 

phenotypes result from random combinations of segregating alleles. Following this logic, directional 

selection can be inferred when parental divergence is significantly greater than the neutral expectation 

and stabilizing selection can be inferred when parents are significantly less diverged than expected. 

This study found widespread stabilizing selection across a range of species, the magnitude of which 

was dependent on the species’ effective population size, consistent with population genetic theory. 

Selection has also been inferred through comparisons of additive genetic variance of expression (QST) 

with sequence divergence in neutral molecular markers (FST) across populations39. However, while 

QST:FST approaches have been successfully applied to gene expression variation in a few instances40–

44, accurately estimating the additive genetic basis of gene regulation can be challenging45. There is a 

tendency for dominance variance to bias QST estimates, potentially leading to incorrect inferences of 

neutrality39. 

Nonetheless, the broad approach of contrasting inter- and intra-specific regulatory variation offers a 

tractable method to investigate selective forces shaping expression levels. However, one drawback is 

that these tests assume species or populations are phylogenetically independent and do not account 

for shared and often complex evolutionary histories. Therefore, in cases where more than one pair of 

species are compared, these methods can produce evolutionary patterns that are generated by the 

structure of the underlying phylogeny46,47. Furthermore, the neutral expectation that expression 

divergence equals diversity tends to break down over longer evolutionary time periods. This is because 

gene expression divergence cannot accumulate indefinitely due to upper limits on the rate of 
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transcription. With increasing genetic distance, expression divergence among taxa may become 

nonlinear, leading to instances of genetic drift being mistaken as directional selection9,14. To test for 

selection across multiple species and evolutionary distances, approaches that take a phylogenetic 

perspective are required. 

Phylogenetic comparative methods 

Phylogenetic comparative methods have been widely adopted to infer selection acting on phenotypic 

traits for a number of decades10,47–49. By incorporating phylogenetic information, these methods account 

for shared ancestry and therefore can overcome issues of statistical non-independence. Recently, these 

approaches have been widely applied to transcriptome data to infer selection acting on gene expression 

by fitting a number of discrete evolutionary processes to expression data for a given gene8,50,51 (Fig. 

2B). A commonly used model, Brownian Motion (BM), assumes that expression divergence between 

species will be a function of divergence time and evolutionary rate, and, as such, is often seen as 

analogous to genetic drift. A second model, the Ornstein-Uhlenbeck (OU) model, adds an ‘elastic band’ 

element drawing expression values towards an optimum across the phylogeny, akin to stabilizing 

selection8,52. The OU model can be extended to allow for branch-specific events, such as shifts in 

optimum trait values8,53, analogous to directional selection in particular lineages.  

Comparative transcriptomic analyses based on the OU model have found overwhelming support for 

stabilizing selection on expression levels across a wide range of species, including Drosophila8,54, 

African cichlids55 and mammals56. While this appears consistent with past work21,23,27,28, using OU 

models to infer selection has received repeated criticism within the phylogenetic comparative literature 

(BOX 1). In essence, any factor that leads to a reduction of phylogenetic signal in species’ trait values 

will favour the inference of an OU process over BM, regardless of the underlying evolutionary process 

Importantly, failing to account for biological intraspecific variance or methodological measurement error 

by running these models on a mean species expression value has been shown to erode phylogenetic 

signal and lead to false inferences of stabilizing selection11–13 or branch-specific selection14. These 

issues are particularly relevant to expression data, which can be noisy (i.e. subject to a high degree of 

measurement error), particularly when environmental and developmental variance is not strictly 

controlled for. The OU framework has been adapted to specifically include within-species expression 
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variability as an error term13,53,57, and whilst it has been shown to reduce false inferences of stabilizing 

selection, this approach has only been employed by a handful of studies18,58.  

Recently, Rohlfs et al.14 built on this approach with the Expression Variance and Evolution (EVE) model 

for testing expression evolution. This approach is grounded in the OU framework but incorporates 

contrasts of expression variance within versus between species, analogous to divergence-diversity ratio 

comparisons (Fig. 2A). This is a major advance as it accounts for evolutionary relationships between 

species as well as incorporating a neutral expectation for expression divergence that is dataset-specific. 

Interestingly, the few studies that have employed this approach have typically revealed a higher 

proportion of genes evolving under directional than under stabilizing selection14,18, and evidence for 

elevated rates of expression evolution consistent with adaptive evolution58–61, contrasting with previous 

findings. However, this method also relies on accurately estimating parameters of the OU process, so 

it is still likely subject to similar pitfalls identified by the phylogenetic comparative literature (BOX 1). 

Fitness-based approaches 

Most recently, fitness based approaches have been applied to study contemporary patterns of selection 

acting on gene regulation62,63. One classical approach, which has been used to study a wide range of 

morphological traits, uses regression-based methods to estimate the strength of selection64. In this 

approach, the covariance between fitness and gene expression is calculated to infer selection 

differentials at each locus, which signify the mode of selection62,63 (Fig. 2C). To reduce noise and 

computation time, as well as increase robustness of model prediction, expression data can be 

transformed to reduce dimensionality (i.e., by PCA) and selection gradients can then be obtained to 

estimate direct selection on suites of correlated transcripts. Recent studies have used these principles 

to measure regulatory selection in experimental contexts (e.g. by quantifying flowering success and 

fecundity of rice grown in wet versus drought conditions62) and in natural settings (e.g. by measuring 

parasite load and survivorship of wild trout using mark-recapture63). In contrast to comparative 

approaches, neither of these studies found strong support for stabilizing selection, and in one case, the 

dominant mode of selection was disruptive63. Causes of this discrepancy require further investigation, 

particularly whether or not this reflects methodological biases. However, it is possible that selection 
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pressures vary over short- versus long-term evolutionary time frames, and these approaches are 

capturing different snapshots of the evolutionary process. 

 

Figure 2. Approaches to detect selection on regulatory variation.  
Panel (a) Gene expression evolution has been inferred by contrasting levels of variation within a focal species to 

divergence across species in a pairwise framework. This principle is analogous to the Hudson Kreitman Aguadé 
(HKA) test used to detect selection at the DNA level. The neutral expectation is that divergence covaries linearly 
with intra-specific variance, at least over shorter evolutionary distances. Loci with the highest or lowest levels of 
regulatory variation relative to neutrality are the best candidates for balancing or directional selection respectively. 
Loci under stabilizing selection should exhibit limited biological variance and divergence. Panel (b) Phylogenetic 
comparative analyses enable comparisons across species to distinguish between evolutionary processes. 
Brownian motion models neutral trait evolution via an unconstrained random walk. It assumes that divergence time 
between species will describe the diversity across the phylogeny with only one parameter 𝞼2, the drift rate, and 
that variance at the tips of the phylogeny will equal T𝞼2. The Ornstein-Uhlenbeck (OU) model assumes that gene 
regulation follows a stochastic process that is attracted towards a single optimum value, consistent with stabilizing 
selection. The additional parameters are therefore ɑ, the strength of pull, and θ, the evolutionary optima. This 
framework has been extended to test for branch specific processes by incorporating multiple optima to test for trait 
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divergence in specific lineages (red line). Panel (c) Phenotypic selection analyses have been applied to gene 
expression data to infer the mode and strength of selection. These employ multiple regression of relative fitness 
on multiple traits to calculate selection differentials that estimate total selection (direct and indirect) on gene 
expression. The covariance between fitness and expression is calculated to infer linear (S) and quadratic (C) 
selection differentials at each locus, which signify directional, stabilizing, or disruptive selection. The linear 
selection differential estimates positive versus negative directional selection, while the quadratic selection 
differential estimates disruptive versus stabilizing selection. This panel is adapted from Groen et al (2020)62, which 
used this approach to measure selection on gene expression in rice. Rice was grown under wet (blue) and dry 
(yellow) environmental conditions, and phenotypes and fitness were measured. 

DECOMPOSING TRANSCRIPTIONAL VARIATION 

Importantly, approaches designed to test for selection on regulatory variation all make the explicit 

assumption that when differential gene expression is observed, it is the direct result of regulatory 

change. However, in most cases, it is unclear whether this assumption is valid as processes other than 

regulatory evolution can generate apparent gene expression differences among taxa. For example, to 

date, studies have primarily used bulk sequencing approaches to measure expression across 

aggregate tissues or even entire body regions, which are often composed of many different cell types 

with variable expression profiles1. In doing so, these ‘bulk’ expression values represent an average of 

expression across entire populations of distinct cell types. Importantly, this means that samples that 

vary in tissue composition can produce patterns of differential expression that are often mistaken as 

evidence of regulatory change (Fig. 1). Conversely, this approach can also dampen and/or mask 

genuine regulatory differences15,16. 

Recent advances in single-cell transcriptomics are providing new insights into tissue composition and 

how this can vary both within and across species. Within species, dramatic changes in tissue 

composition are well documented throughout development65–67 and between the sexes65. This is 

exemplified by gonadal tissue, which exhibits sex-specific cell types65 as well as a mix of haploid and 

diploid cells at various stages of differentiation67–70. Similarly, changes in cell type abundance between 

homologous tissues are common across species, particularly in the testes16,71,72, likely as a result of 

varying levels of sperm competition and sexual selection. For instance, species of New World 

Blackbirds under more intense sperm competition exhibit a greater proportion of sperm-producing tissue 

within their testes71 than species subject to weaker sperm competition. In addition to differences in cell 

type abundance within a tissue, inter-specific single-cell analyses are starting to show that allometric 
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shifts might be common in many other tissues, including the brain73–75. Therefore, in many instances, 

differentially expressed genes that are identified from bulk transcriptomic approaches might simply be 

a product of variation in cellular heterogeneity rather than true regulatory change.  

To our knowledge, only a handful of studies have directly addressed the consequences of varying tissue 

allometry for inferring regulatory variation across species15,16,76,77. To provide further insight into this 

issue, here we use existing single-cell expression data (scRNA-seq) for the developing chicken 

hypothalamus66 to investigate this further (Fig. 3). At this stage in development (HH10), the 

hypothalamus is composed of three major cell types, where the FOXA1 cell type represents the greatest 

proportion of cells (Fig. 3A). Importantly, each cell type exhibits a distinct gene expression profile (Fig. 

3B). We condensed the expression of single cells from these three cell types into a composite 

expression value for each loci, analogous to a bulk RNA-seq approach for the whole hypothalamus. We 

find that broad expression patterns across the entire tissue are not reflective of true regulatory variation, 

although the magnitude of this effect varies across genes (Fig. 3B), consistent with recent work in the 

mouse gonad16. This illustrates that changes in tissue composition can have profound implications for 

quantifying gene regulation and we urge future studies to carefully consider the composition of samples.  

 

Figure 3. Deconstructing gene expression measured in bulk from heterogeneous tissue.  
Tissue composition and gene regulation of the chicken hypothalamus at a single developmental stage (HH10). 
Panel (a) Pie chart shows the proportion of cells in each major cell type in the hypothalamus. Panel (b) Heatmap 
shows gene expression measured across individual cells. Highly expressed genes are shown in yellow and lowly 
expressed genes are in pink. The first three columns of the heatmap show average expression for each gene 
across cells in each of the three major cell types. The final column shows average expression estimated across 
the entire tissue. In this case, we ignore cell identity and convert scRNA-seq data to ‘bulk’ data, equivalent to 
generating RNA-seq data from the whole tissue. Data from66. 
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CHALLENGES OF INFERRING SELECTION 

While the implications of varying tissue allometry for measuring regulatory change across species have 

been discussed15,16 (Fig. 1 & 3), the consequences of tissue composition on inferences of expression 

evolution have received very little attention. Nearly all studies that test for regulatory selection use 

transcriptomic data generated from heterogeneous tissue, with the exception of recent work that used 

cell sorting to isolate distinct cell types in the mouse testes61. Given that changes in tissue composition 

across species are likely to be common, this could pose an underappreciated challenge to comparative 

studies of regulatory evolution. As discussed in BOX 1, there is a tendency for phylogenetic comparative 

methods to falsely infer stabilizing selection or more complex adaptive processes if non-evolutionary 

processes (such as measurement error) reduce phylogenetic signal. Changes in expression that are 

driven by variation in tissue composition across species represent a prominent source of non-

evolutionary expression variance and could therefore bias inferences of selection. This possibility has 

yet to be examined and so, using a series of simulated scenarios, we directly explore how compositional 

shifts on a phylogeny can bias the inference of evolutionary processes. 

We simulated three distinct scenarios to explore how asymmetry in tissue composition across a 

phylogeny can drive false model inferences of regulatory selection when applying comparative methods 

(Fig. 4). Specifically, we imagine a simple situation where a tissue is composed of two distinct cell types. 

We estimate bulk expression values as a function of expression in each cell type and their relative 

abundances in the tissue, and fit a set of discrete evolutionary models to this bulk expression.  

First, we describe a scenario of extreme stabilizing selection on gene regulation of a single locus. This 

locus is highly expressed in one cell type and lowly expressed in the other, but importantly, expression 

values are identical (i.e. not evolving) across species. However, the relative abundance of each cell 

type is evolving under genetic drift and so varies across species (Fig. 4A, scenario i). As predicted, the 

composite expression value is not reflective of single-cell expression levels nor consistent with extreme 

stabilizing selection (Fig. 4B, scenario i). Intuitively, a phylogenetic comparative approach consistently 

rejects a ‘static’ model of expression evolution and finds the greatest support for genetic drift as the 

dominant mode of regulatory change (Fig. 4C, scenario i). In this instance, the false positive (i.e. Type 

1 error rate) rate is around ~85% relative to when these models are run on single-cell expression levels. 
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This striking result suggests that shifts in tissue composition can lead to false inferences of evolutionary 

processes acting on gene expression in the complete absence of any regulatory change within each 

cell type. 

 

Figure 4. Inferring selection when expression level is measured from a heterogeneous tissue. 
Three scenarios illustrating potential pitfalls of inferring regulatory selection at a single locus using phylogenetic 
approaches when expression is measured from bulk sequencing. Panel (a) The first column shows the 
expression level of a single gene in two different cell types across a phylogeny. High levels of expression are in 
dark pink and low expression in light pink. The relative proportion of each cell type is indicated by the size of the 
rectangle where cell type 1 is on the left and cell type 2 is on the right. Panel (b) This column shows the composite 
expression level of the gene as a function of cell type proportion and gene expression in each species. This would 
be analogous to measuring expression in bulk from a heterogeneous tissue. Panel (c) Results of simulated 
phylogenetic comparative analyses for each scenario with a phylogeny of 25 (blue) or 100 (yellow) tips on 1000 
unique trees. Abbreviations of phylogenetic models are BM (Brownian motion), WN (White noise), OU (Ornstein-
Uhlenbeck model) and BS (OU model with a branch shift). These models were fitted on the simulated bulk 
expression values and the relative support for each model is calculated using Akaike weights. Error bars show 
standard deviation around the mean across simulations. Shown in parenthesis (25 tips, 100 tips) are type 1 error 
rates for each scenario relative to when these models are fit to expression at the single-cell level. Full details:  
(https://github.com/Wright-lab-2021-Transcriptome-Evo/Inferring_expression_evolution_review). In scenario (i), 
expression values are static across the phylogeny for each cell type but cell type abundance is evolving under 
Brownian Motion (BM). However, phylogenetic approaches falsely infer that expression is evolving under BM. For 
(ii), expression in both cell types is evolving under BM, whereas tissue composition is stable across the phylogeny 
with the exception of one tip which has undergone an allometric shift. Here, phylogenetic approaches falsely infer 
an adaptive shift in expression on a single branch. For (iii), gene expression in both cell types, as well as cell-
type abundance, is evolving under BM. However, phylogenetic approaches increasingly falsely infer stabilizing 
selection on expression evolution. 
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Second, we assume that gene expression is evolving under genetic drift. The two cell types are of equal 

abundance in all species with one exception in which a lineage-specific change in cellular composition 

occurs so that one cell type dominates (Fig. 4A, scenario ii). After model fitting, we find that this type of 

composition shift in one lineage leads to false inferences of a shift in gene regulation, consistent with 

adaptive evolution (Fig. 4B & C, scenario ii). The scale of this bias is highly dependent on the size of 

the allometric shift (Fig. 5A). Where the shift leads to a single cell type dominating, the actual mode of 

regulatory evolution (i.e. genetic drift), will be rejected in ~35% of instances. While this extreme situation 

is arguably biologically unrealistic, our simulations show that even marginal shifts in relative proportion 

result in elevated type 1 error rates. For example, across New World Blackbirds, the proportion of 

seminiferous tissue in the testes ranges from 87% to 96%71. This equates to a shift in the proportion of 

~9%. Even though our simulations use different starting conditions, it is clear that shifts of a similar 

magnitude (e.g. 0.50 to 0.60 in Fig. 5A) can result in increased type 1 errors. 

Finally, we simulated a scenario where gene expression and cell type abundance are both evolving 

under genetic drift (Fig. 4, scenario iii). Here, we are able to recover the true signal of genetic drift more 

reliably (Fig. 4C, scenario iii). However, in all instances so far, we have assumed that gene expression 

at a single locus is evolving independently in each cell type. While this is likely a reasonable assumption 

for some loci that have evolved tissue- or cell-specific regulatory machinery78,79, expression changes 

are probably correlated in many instances. Interestingly, we find that this has implications for how 

regulatory evolution is inferred (Fig. 5B). When tissue composition evolves across the phylogeny, the 

type 1 error rate is highly dependent on the level of expression covariance between the cellular 

components of that tissue. In particular, if expression across cell types negatively covaries, where an 

increase in expression in one cell type is associated with a decrease in expression in another cell type 

at a single locus, the type 1 error rate can exceed 40% (Fig. 5B). The extent to which gene regulation 

is decoupled across cell types is, in and of itself, an interesting question. But here we have shown that 

gene expression covariation across cell types can also have profound implications for how we infer 

which selective processes are operating. 

These scenarios demonstrate the potential challenges of inferring regulatory selection using expression 

data from heterogeneous tissues. It is also worth noting that our simulations are conservative as we do 

not model other non-evolutionary sources of variation (such as measurement error and tree topology 
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error) that are likely to be common in transcriptome studies. We believe this highlights an urgent need 

to reappraise our current understanding of regulatory evolution in the light of these underlying 

methodological issues. In particular, establishing (i) how often and by what magnitude changes in tissue 

composition occur and (ii) the extent to which regulatory variation is correlated across cell types are 

important prerequisites for studying expression evolution using phylogenetic comparative approaches 

with bulk RNA-seq. Unfortunately, we are not aware of a simple solution for correcting the biases we 

have uncovered, beyond recommending the use of single-cell data to study regulatory evolution where 

possible. However, while single-cell approaches are increasingly available, the technical demands of 

this approach means that they currently remain unfeasible for many species. In the meantime, we urge 

caution when using phylogenetic comparative approaches and recommend some steps to minimise 

other sources of error (BOX 2).  

 

Figure 5. The magnitude of allometric shift and covariance of expression level biases the inference of 
regulatory evolution. Panel (a) The probability that regulatory selection is incorrectly inferred increases 
substantially with the magnitude of an allometric shift. This plot is a more detailed representation of Fig. 4 (scenario 
ii), where one species undergoes a shift in tissue composition, ranging from a scenario where a tissue is composed 
of two cell types at equal proportion to a scenario where only a single cell type is present. All other species have 
a tissue composition of 50:50 and expression is evolving under Brownian motion in each cell type. Panel (b) 
Covariance of expression between cell types biases inferences of selection. This plot is an extension of Fig. 4 
(scenario iii). Expression is evolving under Brownian motion but cell type composition is either static (dotted lines) 
or also evolving under BM (solid lines). We varied the extent to which gene expression is correlated between cell 
types, ranging from negative covariance, where expression levels increase in one cell type at the same time as 
decreasing in the other cell type, to positive covariance, where expression levels decrease or increase in both cell 
types in a correlated manner. The relative type 1 error rate was calculated as the rate at which a BM model was 
not best fit to the composite expression value relative to the equivalent error rate when models are fit to single cell 
simulations.  
Full details: (https://github.com/Wright-lab-2021-Transcriptome-Evo/Inferring_expression_evolution_review).  
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FUTURE DIRECTIONS 

To date, studies of regulatory evolution have primarily focused on differences in gene expression level. 

However, regulatory variation is highly complex and multi-dimensional, and below we identify major, 

unanswered questions in disentangling how selection acts on the entire transcriptome. As we discuss, 

our understanding of gene regulatory evolution will make critical advances as we continue to link 

insights across layers of the genotype-to-phenotype map, developmental contexts, and evolutionary 

timescales, with organismal ecology as our foundation.  

Transcriptional diversity and layers of gene regulation 

Variation in splicing, whereby the same gene can express different RNA variants that produce distinct 

proteins or isoforms, are a common source of regulatory diversity across species28,80–82 with important 

phenotypic effects (recently reviewed83,84). For genes with constraints on expression levels (e.g. 

because of pleiotropic effects) alternative splicing may act as another adaptive mechanism of gene 

regulation85. Long-read sequencing methods have the advantage of producing full-length transcript 

sequences86, which can be a more reliable way to identify alternatively spliced variants in transcriptomic 

datasets. Understanding the evolution of gene regulation will ultimately require an integrated 

understanding of how and when differences in expression level and splicing contribute to phenotypes 

under selection.  

For regulatory variation – whether in terms of expression level or alternative splicing – to be selected 

upon, it must contribute to variation at the protein layer of the genotype to phenotype map. Due to 

difficulties in assaying proteins in comparison to RNA, the links between transcription and translation 

are underexplored, particularly in non-model organisms. Recent methodological advances that 

measure rates of protein synthesis to assay the translatome, report a higher correlation between the 

translatome and proteome than between the transcriptome and proteome 87. However, this effect tends 

to decrease in instances surrounding functionally relevant loci, such as differentially expressed genes88. 

This indicates that in many cases, mRNA abundance does not fully capture regulatory variation, and 

more work is needed to understand the complex relationship between transcription and translation (e.g. 

mechanisms of buffering, feedback, degradation)5,89. 
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Regulatory and co-expression networks 

The intrinsically correlated nature of gene expression means that identifying selection at a single locus 

is hard to disentangle from the expression patterns at loci with shared architectures. To account for this, 

we must either take on network-based approaches and try to account for connectivity or covariance 

between loci, or we must reduce the dimensionality of our data. Furthermore, recent work identifying 

key nodes in gene regulatory networks of health and disease phenotypes between sexes also 

established that genes that appear architecturally central to a phenotype may also not appear 

differentially expressed90. If this is common for evolutionary relevant loci, studying expression on a locus 

by locus basis and not through inter-locus interactions may limit our ability to understand the 

architectures underlying adaptive phenotypes. 

Developmental context  

Phenotypic variation is produced by dynamic developmental changes through space and time. While 

gene regulation is highly context-dependent in terms of tissue identity and developmental stage, studies 

primarily test for regulatory selection in a single snapshot, most often in adult tissues1. Single-cell 

transcriptomic methods offer a promising path to better understanding how these sources of variation 

interface with gene expression through development and inform models of gene expression evolution.  

Genotype to phenotype to adaptation 

If our goal is to uncover how gene regulation underlies adaptation, we must link regulatory variation with 

organismal ecology and natural history. This effort is twofold, as it requires understanding when and 

how selection acts on organisms, and how regulatory variation contributes to phenotypic responses to 

selection. Methods of surveying regulatory variation offer increasing precision and resolution. However, 

our ability to identify the evolutionary processes causing this regulatory variation ultimately depends on 

our understanding of the organisms in question. Model systems like yeast continue to enable high-

throughput analyses that have yielded pivotal insights into regulatory evolution3,91–94, but non-model 

systems also hold promise for studying regulatory evolution under natural settings which may yield 

novel and more ecologically relevant findings63,95. Furthermore, it remains to be seen how results from 

microevolutionary studies within or across a single generation integrate with those from 
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macroevolutionary studies comparing diverged lineages, and the relative roles of stabilizing versus 

directional selection across these scales.  
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BOX 1: Common pitfalls of inferring selection using Ornstein Uhlenbeck models 

Recent work from the phylogenetic comparative methods field has revealed inherent biases in estimating OU 
processes, often leading to false inferences of stabilizing selection. As these have already been discussed 
elsewhere11,12,96, we summarise the main pitfalls in relation to transcriptome studies. 
 
Small phylogenetic samples 
Recent work has shown that the ability to accurately estimate parameters of the OU model is strongly influenced 
by the number of species. Cooper et al11 simulated a range of phylogenies of varying size under Brownian 
motion and compared the fit of BM and OU models to test how often stabilizing selection was falsely inferred. 
They found a high type 1 error rate, especially when the number of sampled taxa was limited. For example, with 
a phylogeny of 25 species, stabilizing selection was falsely inferred ~10% of the time. This is especially 
concerning for transcriptomic studies, which are frequently comprised of far fewer species due to sampling and 
computational costs and employ thousands of model comparisons in order to infer selection at each orthologous 
locus separately. We do anticipate this concern will lessen as expression data becomes available for more 
species. However, even with phylogenies of 100 species, Cooper et al11 still estimate a type 1 error rate > 0.05.  
 
Measurement error 
Error in measuring traits across lineages can erode phylogenetic signal in the data, falsely biasing model 
selection away from BM models and towards OU processes and the inference of stabilizing selection11,12. Recent 
work has shown that even small amounts of measurement error can be problematic, particularly when the 
number of taxa sampled is small. For instance, Cooper et al11 estimate that with a phylogeny of 25 species and 
a 10% trait measurement error, stabilizing selection will be falsely concluded ~50% of the time. This is a 
particular concern for gene expression studies, as the environment can strongly influence regulatory variation. 
Studies should endeavour to control environmental conditions so that regulatory variation across samples 
reflects the heritable, genetic component of expression, as has been discussed previously4,97. Second, it is clear 
that using a single mean expression value for each species can lead to spurious inferences of selection13, 
making multiple replicates essential. Importantly, the OU framework has been extended to parameterise within-
species variance as an error term13,53,57 and appears to be a promising approach. 

Complex patterns of trait evolution 
Many phenotypic traits exhibit complex patterns of evolution and evolve at different rates across lineages98. 
While few studies have directly tested the tempo of expression change across species55, it seems likely that 
gene regulation does not evolve at a constant rate but instead shifts as mutation rate, selective pressures and 
pleiotropic constraints42,99,100 vary. However, many evolutionary models, including BM and OU, assume a 
homogeneous process of trait change across lineages and/or through time. This is analogous to fitting a fixed 
dN/dS across all branches when estimating selection on coding sequences. Recent work has shown that fitting 
single-process models masks complexity and leads to inaccurate inferences about the underlying evolutionary 
process98. Comparative methods that account for rate heterogeneity are available (discussed in98), analogous 
to allowing dN/dS to vary across branches, but to our knowledge have not been widely applied in the context of 
gene expression evolution.  
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BOX 2: Best practises for inferring selection in a comparative framework 

Best practises for inferring selection on traits using comparative approaches have been discussed in length in 
the phylogenetic literature. Briefly, to avoid false inferences of stabilizing selection (BOX 1), studies should (i) 
strive to minimise measurement error, (ii) maximise the number of species sampled and (iii) use comparative 
approaches that parameterise within-species variance as an error term. Below, we discuss additional 
recommendations. 

Validation of model fit 

As discussed, many factors can bias model inference to conclude stabilizing selection over genetic drift. The 
best fitting model is often chosen by comparing the relative fit of different models. However, studies rarely 
examine the absolute model fit98. This simple step, performed using existing methods such as ARBUTUS101 or 
in the probabilistic language RevBayes102, can be used to assess confidence in model selection. This approach 
relies on the process of posterior predictive simulations, in which datasets are simulated on the estimated 
parameters, and then a series of test-statistics are run on the simulated data. Similarly, parametric bootstrapping 
approaches can be applied, resampling the data to generate a bootstrapped sampling distribution from which 
test statistics are calculated. These results can then be compared to the empirical data to assess the adequacy 
of the model. Using such approaches for model estimation has been shown to outperform maximum likelihood 
approaches in specific cases103.   

Consider tissue composition 

By directly comparing regulatory variation across equivalent cell types, comparative single-cell transcriptomics 
(scRNA-seq) can circumvent problems arising when expression is measured from heterogeneous tissue (Fig. 1 
& 3). However, scRNA-seq is not yet feasible for many non-model organisms as it is necessary to isolate and 
process single cells immediately after harvesting tissue. Although tissue dissociation and storage techniques 
are being developed, bulk transcriptomic approaches are currently the only feasible option for many species, 
particularly those sampled from the wild. Accepting these difficulties, we suggest that where possible, studies 
should quantify cellular composition of the tissue in question and how this varies across species. For instance, 
if a single cell type dominates or expression level is dominated by one cell type, then our simulations suggest 
that the potential for bias is reduced. Importantly, if scRNA-seq data is available for the tissue, it is possible to 
use this to directly test for biases in cellular composition in bulk RNA-seq data77,104. Finally, we urge the use of 
sampling techniques to directly isolate specific regions or cells of interest using microdissection or cell sorting 
to greatly reduce cell composition complications, as discussed by Hunnicutt et al16. 
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GLOSSARY 

Alternative splicing: a post-transcriptional modification involving the differential removal of introns, 

resulting in the production of multiple transcripts from a single gene. 

Brownian motion (BM) model: a model of neutral evolution via unconstrained, random fluctuations in 

trait values. 

Gene regulation: all pre and post-transcriptional mechanisms involved in controlling the level of gene 

expression. 

Genome: the complete set of genetic elements encoded by the entire DNA sequence of an organism. 

Ornstein-Uhlenbeck (OU) model: a modified Brownian Motion model of evolution with random 

fluctuations in trait values constrained towards a single optimum value. 

Proteome: the set of proteins produced in a specific tissue or cell type at a particular time. 

Ribo-Seq: a translatome profiling technique that involves sequencing transcripts bound and being 

actively translated by ribosomes. 

Transcriptome: the set of RNA molecules produced by the genome in a specific tissue or cell type at 

a particular time. 

Translatome: the set of mRNA molecules being actively translated in a specific tissue or cell type at a 

particular time. The regulation of the translatome determines the formation of the proteome. 
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