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ABSTRACT20

Behavioral flexibility, the ability to adapt behavior to new circumstances, is thought to play an important21

role in a species’ ability to successfully adapt to new environments and expand its geographic range. However,22

flexibility is rarely directly tested in species in a way that would allow us to determine how flexibility works23

and predictions a species’ ability to adapt their behavior to new environments. We use great-tailed grackles24

(a bird species) as a model to investigate this question because they have rapidly expanded their range25

into North America over the past 140 years. We attempted to manipulate grackle flexibility using colored26

tube reversal learning to determine whether flexibility is generalizable across contexts (touchscreen reversal27

learning and multi-access box), whether it is repeatable within individuals and across contexts, and what28

learning strategies grackles employ. We found that we were able to manipulate flexibility: birds in the29

manipulated group took fewer trials to pass criterion with increasing reversal number, and they reversed30

a color preference in fewer trials by the end of their serial reversals compared to control birds who had31

only one reversal. Flexibility was repeatable within individuals (reversal), but not across contexts (from32

reversal to multi-access box). The touchscreen reversal experiment did not appear to measure what was33

measured in the reversal learning experiment with the tubes, and we speculate as to why. One third of the34

grackles in the manipulated reversal learning group switched from one learning strategy (epsilon-decreasing35
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where they have a long exploration period) to a different strategy (epsilon-first where they quickly shift their36

preference). A separate analysis showed that the grackles did not use a particular strategy earlier or later in37

their serial reversals. Posthoc analyses using a model that breaks down performance on the reversal learning38

task into different components showed that learning to be attracted to an option (phi) more consistently39

correlated with reversal performance than the rate of deviating from learned attractions that were rewarded40

(lambda). This result held in simulations and in the data from the grackles: learning rates in the manipulated41

grackles doubled by the end of the manipulation compared to control grackles, while the rate of deviation42

slightly decreased. Grackles with intermediate rates of deviation in their last reversal, independently of43

whether they had gone through the serial reversal manipulation, solved fewer loci on the plastic and wooden44

multi-access boxes, and those with intermediate learning rates in their last reversal were faster to attempt45

a new locus on both multi-access boxes. This investigation allowed us to make causal conclusions rather46

than relying only on correlations: we manipulated reversal learning, which caused changes in a different47

flexibility measure (multi-access box switch times) and in an innovativeness measure (multi-access box loci48

solved), as well as validating that the manipulation had an effect on the cognitive ability we think of as49

flexibility. Understanding how behavioral flexibility causally relates to other traits will allow researchers to50

develop robust theory about what behavioral flexibility is and when to invoke it as a primary driver in a51

given context, such as a rapid geographic range expansion. Given our results, flexibility manipulations could52

be useful in training threatened and endangered species in how to be more flexible. If such a flexibility53

manipulation was successful, it could then change their behavior in this and other domains, giving them a54

better chance of succeeding in human modified environments.55

Video summary56

INTRODUCTION57

Behavioral flexibility, the ability to adapt behavior to new circumstances (see Mikhalevich et al., 2017 for58

the theoretical background on this definition), is thought to play an important role in a species’ ability to59

successfully adapt to new environments and expand its geographic range (e.g., Lefebvre et al., 1997; Sol et60

al., 2002, 2005, 2007; Sol & Lefebvre, 2000). This research predicts that behavioral flexibility (hereafter61

referred to as flexibility) should positively relate with innovativeness. However, these predictions are based62

on species-level data and proxies for flexibility and for innovation when examining such relationships (see63

Logan et al., 2018). Flexibility is rarely directly tested in species that are rapidly expanding their geographic64

ranges in a way that would allow us to determine how flexibility works and predict a species’ ability to adapt65

their behavior to new areas. Those investigations that examine the relationship between flexibility and66

innovation (or problem solving) in species that are expanding their range show mixed results, with these67

variables correlating positively (e.g., grey squirrels: Chow et al., 2016), negatively (e.g., Indian mynas: Griffin68

et al., 2013), or not at all (e.g., stick tool use and string pulling in great-tailed grackles: Logan, 2016). One69

way to improve our understanding of whether and how flexibility relates to innovativeness is to perform a70

manipulative experiment on one of the variables to determine whether there is an associated change in the71

other.72

We focused our study on great-tailed grackles (Quiscalus mexicanus, hereafter grackles), a bird species that73

is flexible (Logan, 2016) and rapidly expanding its geographic range (Wehtje, 2003). We attempted to74

manipulate grackle flexibility using serial reversals of a color preference to determine whether their flexibility75

is generalizable across additional experimental contexts (touchscreen reversal learning and multi-access box76

solution switching), whether improving flexibility also improves innovativeness (number of loci solved on77

a multi-access box), whether it is repeatable within individuals and across contexts, and what learning78

strategies grackles employ (Figure 1).79

If grackle flexibility is manipulatable using serial reversals, this could provide conservation managers with an80

important tool for managing at-risk populations. If the manipulation works in grackles, it has the potential81

to be effective in other species as well. This could be particularly useful for endangered species conservation82

efforts, such as when selecting individuals for captive breeding programs, because individuals that are more83

flexible might be able to adapt better to new environments. If the flexibility manipulation is not successful,84
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this could indicate either that we did not manipulate the right aspect of flexibility (e.g., perhaps training85

them to solve a variety of different types of tasks quickly would be more effective) or that grackle flexibility86

is not a trait that is trainable.87

88

Figure 1. A visual illustration of Hypothesis 1 (A), Hypothesis 2 (B), Hypothesis 3 (C1 and C2), and Hy-89

pothesis 4 (D). Longer black arrows indicate slower reversal times, the two yellow circles represent experience90

with the two yellow tubes that both contained food for the control group.91

HYPOTHESES92

H1: Behavioral flexibility, as measured by reversal learning using colored tubes, is manipulat-93

able. Prediction 1: Individuals improve their flexibility on a serial reversal learning task using colored94

tubes by generally requiring fewer trials to reverse a preference as the number of reversals increases (manip-95

ulation condition). Their flexibility on this test will have been manipulated relative to control birds who do96

not undergo serial reversals. Instead, individuals in the control condition will be matched to manipulated97

birds for experience (they will experience a similar number of trials), but there will be no possibility of a98

functional tube preference because both tubes will be the same color and both will contain food, therefore99

either choice will be correct.100

P1 alternative 1: If the number of trials to reverse a preference does not correlate with or positively101

correlates with reversal number, which would account for all potential correlation outcomes, this suggests102

that some individuals may prefer to rely on information acquired previously (i.e., they are slow to reverse)103

rather than relying on current cues (e.g., the food is in a new location) (Griffin & Guez, 2014; Liu et al.,104

2016; e.g., Manrique et al., 2013; but see Homberg et al., 2007).105

H2: Manipulating behavioral flexibility (improving reversal learning speed through serial re-106

versals using colored tubes) improves flexibility (rule learning and/or switching) and problem107
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solving in a new context (two distinct multi-access boxes and serial reversals on a touchscreen).108

P2: Individuals that have improved their flexibility on a serial reversal learning task using colored tubes (re-109

quiring fewer trials to reverse a preference as the number of reversals increases) are faster to switch between110

new methods of solving (latency to solve or attempt to solve a new way of accessing the food [locus]), and111

learn more new loci (higher total number of solved loci) on multi-access box flexibility tasks, and are faster112

to reverse preferences in a serial reversal task using a touchscreen than individuals in the control group where113

flexibility has not been manipulated. The positive correlation between reversal learning performance using114

colored tubes and a touchscreen (faster birds have fewer trials) and the multi-access boxes (faster birds have115

lower latencies) indicates that all three tests measure the same ability even though the multi-access boxes116

require inventing new rules to solve new loci (while potentially learning a rule about switching: “when an117

option becomes non-functional, try a different option”) while reversal learning requires switching between118

two rules (“choose light gray” or “choose dark gray”) or learning the rule to “switch when the previously119

rewarded option no longer contains a reward.” Serial reversals eliminate the confounds of exploration, inhi-120

bition, and persistence in explaining reversal learning speed because, after multiple reversals, what is being121

measured is the ability to learn one or more rules. If the manipulation works, this indicates that flexibility122

can be influenced by previous experience and might indicate that any individual has the potential to move123

into new environments (see relevant hypotheses in preregistrations on genetics (R1) and expansion (H1)).124

P2 alternative 1: If the manipulation does not work in that those individuals in the experimental condition125

do not decrease their reversal speeds more than control individuals, then this experiment will elucidate126

whether general individual variation in flexibility relates to flexibility in new contexts (two distinct multi-127

access boxes and serial reversals on a touchscreen) as well as problem solving ability (multi-access boxes).128

The prediction is the same in P2, but in this case variation in flexibility is constrained by traits inherent to129

the individual (some of which will be tested in McCune et al., 2019), which suggests that certain individuals130

will be more likely to move into new environments.131

P2 alternative 2: If there is no correlation between reversal learning speed (colored tubes) and the latency132

to solve/attempt a new locus on the multi-access boxes, this could be because the latency to solve not only133

measures flexibility but also innovativeness. In this case, an additional analysis will be run with the latency134

to solve as the response variable, to determine whether the fit of the model (as determined by the lower135

AIC value) with reversal learning as an explanatory variable is improved if motor diversity (the number of136

different motor actions used when attempting to solve the multi-access box) is included as an explanatory137

variable (see Diquelou et al., 2015; Griffin et al., 2016). If the inclusion of motor diversity improves the138

model fit, then this indicates that the latency to solve a new locus on the multi-access box is influenced by139

flexibility (reversal learning speed) and innovation (motor diversity).140

P2 alternative 3: If there is a negative correlation or no correlation between reversal learning speed on141

colored tubes and reversal learning speed on the touchscreen, then this indicates that it may be difficult142

for individuals to perceive and/or understand images on the touchscreen in contrast with physical objects143

(colored tubes) (e.g., O’Hara et al., 2015).144

H3a: Behavioral flexibility within a context is repeatable within individuals. Repeatability of145

behavioral flexibility is defined as the number of trials to reverse a color preference being strongly negatively146

correlated within individuals with the number of reversals.147

P3a: Individuals that are faster to reverse a color preference in the first reversal will also be faster to reverse148

a color preference in the second, etc. reversal due to natural individual variation.149

P3a alternative: There is no repeatability in behavioral flexibility within individuals, which could indicate150

that performance is state dependent (e.g., it depends on their fluctuating motivation, hunger levels, etc.).151

We will determine whether performance on colored tube reversal learning related to motivation by examining152

whether the latency to make a choice influenced the results. We will also determine whether performance was153

related to hunger levels by examining whether the number of minutes since the removal of their maintenance154

diet from their aviary plus the number of food rewards they received since then influenced the results.155
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H3b: The consistency of behavioral flexibility in individuals across contexts (context 1=re-156

versal learning on colored tubes, context 2=multi-access boxes, context 3=reversal learning157

on touchscreen) indicates their ability to generalize across contexts. Individual consistency of158

behavioral flexibility is defined as the number of trials to reverse a color preference being strongly positively159

correlated within individuals with the latency to solve new loci on each of the multi-access boxes and with160

the number of trials to reverse a color preference on a touchscreen (total number of touchscreen reversals =161

5 per bird).162

If P3a is supported (repeatability of flexibility within individuals)…163

P3b: …and flexibility is correlated across contexts, then the more flexible individuals are better at general-164

izing across contexts.165

P3b alternative 1: …and flexibility is not correlated across contexts, then there is something that influences166

an individual’s ability to discount cues in a given context. This could be the individual’s reinforcement history167

(tested in P3a alternative), their reliance on particular learning strategies (one alternative is tested in H4),168

or their motivation (tested in P3a alternative) to engage with a particular task (e.g., difficulty level of the169

task).170

H4: Individuals should converge on an epsilon-first learning strategy (learn the correct choice171

after one trial) as they progress through serial reversals. P4: Individuals will prefer a mixture172

of learning strategies in the first serial reversals (an epsilon-decreasing strategy where individuals explore173

both options extensively before learning to prefer the rewarded option, and an epsilon-first strategy where174

the correct choice is consistently made after the first trial), and then move toward the epsilon-first learning175

strategy. The epsilon-first strategy works better later in the serial reversals where the reward is all or176

nothing because individuals will have learned the environment is changing in predictable ways (Bergstrom177

& Lachmann, 2004): only one option is consistently rewarded, and if the reward isn’t in the previously178

rewarded option, it must be in the other option.179

P4 alternative 1: Individuals will continue to prefer a mixture of learning strategies, and/or they do180

not converge on the more functional epsilon-first learning strategy, regardless of how many reversals they181

participate in. This pattern could suggest that the grackles do not attend to functional meta-strategies, that182

is, they do not learn the overarching rule (once food is found in the non-preferred tube, one must switch to183

preferring that tube color), but rather they learn each preference change as if it was new.184

ASSOCIATED PREREGISTRATION185

Our methods and analysis plans are described in the peer-reviewed preregistration of this article that received186

in principle recommendation from PCI Ecology, which is included below as the Methods. We moved the187

hypotheses from the preregistration to the section above to improve flow for the reader.188

DEVIATIONS FROM THE PREREGISTRATION189

In the middle of data collection190

1) 10 April 2019: We discontinued the reversal learning experiment on the touchscreen because191

it appears to measure something other than what we intended to test and it requires a huge time192

investment for each bird (which consequently reduces the number of other tests they are available193

to participate in). This is not necessarily surprising because this is the first time touchscreen tests194

have been conducted in this species, and also the first time (to our knowledge) this particular reversal195

experiment has been conducted on a touchscreen with birds. We based this decision on data from four196

grackles (2 in the flexibility manipulation group and 2 in the flexibility control group; 3 males and 1197

female). All four of these individuals showed highly inconsistent learning curves and required hundreds198

more trials to form each preference when compared to the performance of these individuals on the199
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colored tube reversal experiment. It appears that there is a confounding variable with the touchscreen200

such that they are extremely slow to learn a preference as indicated by passing our criterion of 17 correct201

trials out of the most recent 20. We will not include the data from this experiment when conducting202

the cross-test comparisons in the Analysis Plan section of the preregistration. Instead, in the Results203

section, we provide summary results for this experiment and, in the Discussion, qualitatively compare204

it with performance on the colored tube reversal test to explain what might have confounded the205

touchscreen experiment.206

2) 16 April 2019: Because we discontinued the touchscreen reversal learning experiment, we added an207

additional but distinct multi-access box task, which allowed us to continue to measure flexibility208

across three different experiments. There are two main differences between the first multi-access box,209

which is made of plastic, and the new multi-access box, which is made of wood. First, the wooden210

multi-access box is a natural log in which we carved out 4 compartments. As a result, the apparatus and211

solving options are more comparable to what grackles experience in the wild, though each compartment212

is covered by a transparent plastic door that requires different behaviors to open. Furthermore, there213

is only one food item available in the plastic multi-access box and the bird could use any of 4 loci214

to reach it. In contrast, the wooden multi-access box has a piece of food in each of the 4 separate215

compartments.216

Post data collection, pre-data analysis217

3) We completed our simulation to explore the lower boundary of a minimum sample size and determined218

that our sample size for the Arizona study site is above the minimum (see details and code219

in Ability to detect actual effects; 17 April 2020).220

4) Please see our Alternative Analyses section where we describe how we changed the analysis for221

P2 and that we are replacing this analysis with the new models in the Ability to detect actual effects222

section (14 May 2020). We also describe here that we realized that Condition (manipulated or control)223

does not need to be a variable in our models because the manipulated birds have, by definition, faster224

reversal speeds.225

5) We originally planned on testing only adults to have a better understanding of what the species is226

capable of, assuming the abilities we are testing are at their optimal levels in adulthood, and so we227

could increase our statistical power by eliminating the need to include age as an independent variable228

in the models. Because the grackles in Arizona were extremely difficult to catch, we ended up testing229

two juveniles: Taco and Chilaquile. We did not conduct the full test battery with Taco or put him in230

the flexibility manipulation or control groups (he received 1 reversal and then moved on to the next231

test) because he was the first juvenile and we wanted to see whether his performance was different232

from adult performances. His performances were similar to the adults, therefore we decided to put233

Chilaquile in the full test battery. Chilaquile’s performances were also similar to the adults, therefore234

we decided not to add age as an independent variable in the models to avoid reducing our statistical235

power.236

Post data collection, mid-data analysis237

6) We log transformed the response variable and changed the GLMM distribution from Poisson to238

Gaussian in the P3a analysis (24 Aug 2021).239

7) The original model for P2 (Table 4: Model 1) included the covariate aviary batch, however this ended240

up confounding the analysis because control and manipulated individuals, while randomly assigned to241

these conditions, ended up in particular batches as a result of their willingness to participate in tests242

offered during their time in the aviary (Table 4: Model 3). Several grackles never passed habituation243

or training such that their first experiment could begin, therefore we replaced these grackles in the244

aviaries with others who were willing to participate. This means that batch did not indicate a particular245

temporal period. Therefore, we removed batch from the model.246
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8) Bayesian data analysis: we conducted post-hoc exploratory analyses on the serial reversal learning247

data to better understand the effect the flexibility manipulation had on performance. We used the248

version of the Bayesian model that was developed by A. Blaisdell et al. (2021) and modified by Logan249

CJ et al. (2020) [see Analysis Plan > mance. We used the version of the Bayesian model that was250

developed by A. Blaisdell et al. (2021) and modified by Logan CJ et al. (2020, see Analysis Plan251

> Flexibility analysis in 2020 for model specifications and validation). This model estimates two252

components to describe the behavior of individuals in the serial reversal learning experiments (the rate253

of updating previously learned attractions and the rate of deviating from the learned attractions), and254

we also relate these components to the data from the other experiments. See model details in Methods255

> Analysis Plan > Unregistered analyses: Bayesian flexibility models. We report our results at the256

end of the Results section.257

RESULTS258

Data are publicly available at the Knowledge Network for Biocomplexity (Logan, Blaisdell, et al., 2021).259

Please see the data sheet titled g_flexmanip_data_AllGrackleExpOrder at KNB for an overview of all color260

marked grackles at the Arizona field site (2018-2021), which of the aviary experiments they participated in,261

and whether data for the variables that were collected in the wild are present.262

Although 22 grackles completed their initial colored tube discrimination, only 20 grackles participated in one263

or more reversals (Table 1). The rest of the tests began only after a bird’s reversal experiment was complete264

(see the order of tests for each bird at the data sheet titled g_flexmanip_data_AllGrackleExpOrder at265

Logan, Blaisdell, et al. (2021)). Interobserver reliability analyses (unregistered) showed that the reversal266

learning and multi-access box (plastic and wooden) experiments were highly repeatable across live coders267

and video coders (see details in Analysis Plan > Interobserver reliability).268
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Table 1. Summarized results per bird in the reversal learning (tube and touchscreen) and multi-access box (plastic and wooden) experiments.269

Reversals to pass indicates how many serial reversals it took a bird to pass criterion if they were in the flexibility manipulation condition. Note:270

Tapa did not finish the MAB log experiment; Marisco’s MAB log experiment ended too early due to experimenter error (timed out on 2 consecutive271

sessions, not 3); Mole and Habanero: do not count MAB plastic number of options solved because they were given the box fully put together for272

habituation due to experimenter error; Taco was the first juvenile we tested and we did not put him in the flexibility experiment: he received 1273

reversal and moved on to his next test, therefore he was essentially a control bird without the matched yellow tube experience.274

Bird Batch Sex Trials to
learn

(tube)

Trials to
first

reversal
(tube)

Trials to
last

reversal
(tube)

Reversals
to pass

Total
loci

solved
(MAB
plastic)

Total
loci

solved
(MAB

wooden)

Average
latency

to
attempt

new
locus

(MAB
plastic)

Average
latency

to
attempt

new
locus

(MAB
wooden)

Trials to
learn

(touch-
screen)

Trials to
first
reversal
(touch-
screen)

Motor
actions
(MAB
plastic)

Motor
actions
(MAB

wooden)

Tomatillo 1 M 40 50 50 Control 3 NA 317 NA NA NA 13 NA
Queso 1 M 50 70 70 Control 1 NA 88 NA 330 460 8 NA
Tapa 1 F 30 100 100 Control 4 NA 685 NA 450 (629+) 13 NA
Yuca 3 F 40 80 80 Control 4 4 132 77 NA NA 13 11
Marisco 3 M 40 50 50 Control 1 2 NA 208 NA NA 4 7
Pizza 3 M 50 60 60 Control 0 1 NA 1482 NA NA 0 8
Mofongo 4 M 20 40 40 Control 3 4 502 630 NA NA 13 14
Taquito 4 M 90 160 160 Control 0 4 NA 100 NA NA 11 10
Chalupa 1 F 50 90 50 8 0 NA NA NA NA NA 6 NA
Mole 1 M 30 70 50 7 4 4 356 1173 431 307 14 15
Habanero 1 M 50 80 40 6 4 NA 28 NA 350 290 15 NA
Diablo 3 M 20 80 40 8 2 1 25 NA NA NA 10 2
Burrito 3 M 40 60 23 8 3 4 76 391 NA NA 17 18
Adobo 3 M 50 100 50 6 4 4 31 79 NA NA 16 18
Chilaquile 3 JM 30 40 30 6 4 4 44 170 NA NA 19 11
Pollito 4 M 40 60 40 8 0 3 NA 668 NA NA 0 11
Taco 3a JM 50 80 80 (Control) 1 4 NA 117 NA NA 3 19
Memela 1 F 50 60 80 X (11+) NA NA NA NA NA NA NA NA
Fideo 2 M 60 70 70 Control NA NA NA NA NA NA NA NA
Avocada 1 F 50 100 100 Control NA NA NA NA NA NA NA NA
Huachinago3 M 70 NA NA Control NA NA NA NA NA NA NA NA
Guacamole 4 M 30 NA NA NA NA NA NA NA NA NA NA NA

275

276

8



Because the wooden multi-access box was added after in principle recommendation, we conducted an un-277

registered analysis to determine whether the plastic and wooden multi-access box results correlated with278

each other, which would indicate that these tests are interchangeable. We found that they did not corre-279

late with each other on either variable measured: the average latency to attempt a new locus (switching;280

Pearson’s r=0.74, 95% CI=-0.19-0.97, t=2.18, df=4, p=0.09) or the total number of loci solved (problem281

solving; Pearson’s r=0.51, 95% CI=-0.09-0.84, t=1.86, df=10, p=0.09). Therefore, these two tests are not282

interchangeable and we analyzed them separately.283

P1: reversal speed gets faster with serial reversals284

The birds in the manipulated group required a similar number of trials during their first reversal (R1285

median=75 trials) as the birds in the control group needed during their first and only reversal (R1 median=70286

trials). The manipulated birds improved during the reversal manipulation to a median of 40 trials in their287

last reversal. There was a significant negative correlation between the number of trials to reverse (average=71288

trials, standard deviation (sd)=28) and the reversal number for those grackles in the flexibility manipulation289

condition (n=9, which included Memela who did not pass the manipulation condition; Figure 2).290

Unregistered analysis: There was additionally a difference between manipulated and control reversal291

speeds when comparing their last reversals (Figure 3; for the control birds, their last reversal was their first292

reversal): the Akaike weight of the full model was 0.94, which means that including condition in the model293

explains the bulk of the variation in the number of trials to reverse in the last reversal (Table 3). This294

analysis includes 19 grackles (8 manipulated condition - only those who actually passed the manipulation,295

11 control condition) who had an overall average of 62 trials in their last reversal (sd=32).296

Table 2. The number of trials to reverse decreases with increasing reversal number.297

Posterior
mean

Lower 95%
confidence

interval

Upper 95%
confidence

interval

Effective
sample size

pMCMC Significance
code: **=0.01

(Intercept) 4.43921 4.24323 4.63401 420 <0.002 **
Reverse
Number

-0.05558 -0.09386 -0.01920 420 <0.002 **

298

299
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Figure 2. Individuals in the manipulated condition (who received serial reversals) did not linearly decrease301

their reversal passing speeds with increasing reversal number (n=9 grackles).302

Table 3. Individuals in the manipulated condition pass their last reversal in fewer trials than control303

individuals. The Akaike weight of the full model was >0.89, indicating that it is more reliable than the null304

model.305

(Intercept) d$ReversalsToPass df logLik AICc delta weight
2 78.18182 + 3 -88.09966 183.7993 0.000000 0.94218449
1 62.26316 NA 2 -92.31561 189.3812 5.581888 0.05781551

306
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Figure 3. Individuals in the manipulated condition (who received serial reversals) passed their last reversal308

in fewer trials than individuals in the control condition (who only received 1 reversal). n=19 grackles:309

11=control, 8=manipulated.310

P2: serial reversals improve rule switching and problem solving on the MAB311

To determine whether the serial reversal manipulation affected flexibility generally, we compared performance312

(the number of trials to reverse a preference in the first and last color reversal, performance of the manipulated313

group relative to the control group) to speed of solution switching on two multi-access boxes. Furthermore,314

we assessed whether flexibility measured through these serial reversals related to innovativeness by comparing315

performance to the number of loci solved on the multi-access boxes. The results for each of these comparisons316

are described in detail below and an overview is provided in Figure 4.317
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318

Figure 4. Overview of the results from the P2 analyses with the multi-access boxes (plastic and wooden).319

An effect of natural variation in flexibility on performance on the multi-access box tasks would result320

in correlations in the first reversal. An effect of the flexibility manipulation would result in a change in321

correlations from the first to last reversals. A plus sign (+) indicates a positive correlation, a minus sign (-)322

indicates a negative correlation, the letter U indicates that birds with intermediate values perform worse,323

and a 0 indicates no correlation between the two variables. The asterisks (*) indicate that a small sample324

size decreases the reliability of this result.325

Rule switching: latency to attempt a new locus on the multi-access box (plastic) ~ trials to326

reverse Grackles that were faster to reverse a preference in their last reversal (average 52 trials, sd=23),327

where grackles in the control condition received only one reversal which served as their first and last reversal,328

were also faster to attempt to solve a new locus on the plastic multi-access box (after just having passed329

criterion on a different locus; average=208 seconds, sd=226; Figure 5a; Table 4: Model 9; n=11 grackles: 6330

in manipulated condition, 5 in control condition; 6 subjects completed this experiment but solved 0 loci or331

1 locus and so did not have switching times). We also found that individuals in the flexibility manipulation332

had faster switch latencies than those in the control condition (Table 4: Model 10). There was a positive333

correlation between the number of trials to reverse in the first reversal (average=70 trials, sd=21) and the334

average switch latency on the plastic multi-access box (Table 4: Model 11). A correlation was determined335

to be present if the prediction interval for the slope (b) in the model output did not cross zero (Table 4).336

This criterion was used throughout the analyses for P2.337
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338

Figure 5. The average latency (seconds) to attempt to solve a different locus after having previously339

successfully solved a locus on a) the plastic multi-access box (MAB) is positively correlated with the number340

of trials to pass their last reversal (n = 11 grackles), but on b) the wooden MAB it is not correlated with341

the number of trials to pass their last reversal (n = 11 grackles). Additionally, the probability of solving a342

locus on c) the plastic MAB is negatively correlated with the number of trials to pass their last reversal (n343

= 15 grackles), but on d) the wooden MAB it is not correlated with the number of trials to pass their last344

reversal (n = 12 grackles, estimate of slope includes zero). Shading represents the 97% prediction intervals.345

Rule switching: latency to attempt a new locus on the multi-access box (wooden) ~ trials to346

reverse (unregistered analysis) There was no correlation between the number of trials to reverse a347

preference in their last reversal (average 60 trials, sd=38) and the latency to attempt to solve a new locus348

on the wooden multi-access box (after just having passed criterion on a different locus; average=463 seconds,349

sd=481; Figure 5b; Table 4: Model 12; n=11 grackles: 5 in manipulated condition, 6 in control condition;350

Diablo also completed this experiment and solved 1 locus, but did not attempt another locus after that,351
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thus he does not have any switching times to analyze). We additionally found that there was no difference352

in the average latency to switch between individuals in the flexibility manipulation and those in the control353

condition (Table 4: Model 13). There was a negative correlation between the number of trials to reverse in354

the first reversal (average=73 trials, sd=34) and the average switch latency on the multi-access box (Table355

4: Model 14).356

Innovativeness: number of loci solved on the multi-access box (plastic) ~ trials to reverse357

Grackles that were faster to reverse a preference in their last reversal (average 62 trials, sd=34) solved358

more loci on the plastic multi-access box (average=2 loci, sd=1.6; Figure 5c; Table 4: Model 2; n=15359

grackles: 6 in manipulated condition, 9 in control condition; this number excludes Mole and Habanero who360

were, due to experimenter error, given the fully put together box during habituation and could have learned361

how to solve the loci at that time). There was no correlation between the number of loci solved and which362

reversal condition a grackle was randomly assigned to (Table 4: Model 4). There was also no correlation363

between the number of trials to reverse in the first reversal (average=75 trials, sd=31) and the number of364

loci solved on the multi-access box (Table 4: Model 5).365

Table 4. Model outputs for the number of loci solved and the latency to switch loci after passing criterion on366

a different locus on the plastic (models 1-5 and 9-11) and wooden (models 6-8 and 12-14) multi-access boxes.367

SD=standard deviation, the 89% prediction intervals are shown, n_eff=effective sample size, Rhat4=an368

indicator of model convergence (1 is ideal), b=the slope of the relationship between loci solved or average369

switch latency and the number of trials to pass the reversal.370
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Mean SD 5.5% 94.5% n_eff Rhat4
MODEL 1 (last
reversal): loci
solved plastic ~
a[batch] +
b*trials
a[1] 0.04 0.46 -0.70 0.78 2304 1.00
a[2] 0.29 0.36 -0.30 0.87 2456 1.00
a[3] -0.78 0.55 -1.65 0.08 2510 1.00
b -0.22 0.25 -0.63 0.18 2364 1.00
MODEL 2 (last
reversal): loci
solved plastic ~ a
+ b*trials
a -0.02 0.24 -0.40 0.35 1466 1.00
b -0.46 0.31 -0.97 -0.01 1383 1.00
MODEL 3 (last
reversal): trials ~
a[batch]
a[1] 0.09 0.37 -0.48 0.69 2095 1.00
a[2] -0.21 0.29 -0.68 0.25 1715 1.00
a[3] 0.25 0.39 -0.38 0.86 2161 1.00
sigma 1.03 0.21 0.75 1.39 2049 1.00
MODEL 4: loci
solved ~
a[condition]
a[1] control -0.11 0.32 -0.62 0.40 1311 1.00
a[2] manipulated 0.15 0.39 -0.46 0.80 1222 1.00
MODEL 5 (first
reversal): loci
solved plastic ~ a
+ b*trials
a 0.00 0.24 -0.37 0.39 1208 1.00
b -0.44 0.30 -0.94 0.02 1273 1.00
MODEL 6 (last
reversal): loci
solved wooden ~ a
+ b*trials
a 1.06 0.27 0.63 1.50 1255 1.00
b 0.41 0.43 -0.21 1.13 1107 1.00
MODEL 7: loci
solved ~
a[condition]
a[1] control -0.45 0.40 -1.10 0.18 1161 1.00
a[2] manipulated 0.77 0.41 0.13 1.44 1302 1.00
MODEL 8 (first
reversal): loci
solved wooden ~ a
+ b*trials
a 0.11 0.26 -0.30 0.52 1221 1.00
b -0.50 0.35 -1.09 0.04 1234 1.00
MODEL 9 (last
reversal): avg
switch latency
plastic ~ a +
b*trials
a 4.93 0.30 4.45 5.41 1235 1.01
b 0.46 0.29 0.00 0.92 1363 1.00
phi 0.93 0.35 0.44 1.55 1476 1.00
MODEL 10: avg
switch latency
plastic ~
a[condition]
a[1] manipulated 4.07 0.39 3.46 4.68 1027 1.00
a[2] control 5.18 0.39 4.50 5.76 1006 1.00
phi 0.91 0.41 0.37 1.63 925 1.01
MODEL 11 (first
reversal): avg
switch latency
plastic ~ a +
b*trials
a 4.93 0.29 4.46 5.39 1488 1.00
b 0.46 0.28 0.02 0.93 1211 1.00
phi 0.94 0.36 0.44 1.60 1447 1.00
MODEL 12 (last
reversal): avg
switch latency
wooden ~ a +
b*trials
a 5.75 0.28 5.28 6.18 1049 1.00
b -0.41 0.32 -0.86 0.15 1281 1.01
phi 1.04 0.42 0.48 1.77 1456 1.00
MODEL 13: avg
switch latency
wooden ~
a[condition]
a[1] control 5.31 0.42 4.61 5.95 701 1.00
a[2] manipulated 5.34 0.44 4.61 6.00 620 1.01
phi 0.66 0.32 0.25 1.25 806 1.00
MODEL 14 (first
reversal): avg
switch latency
wooden ~ a +
b*trials
a 5.71 0.26 5.28 6.12 1109 1.00
b -0.50 0.28 -0.89 -0.01 1308 1.00
phi 1.08 0.41 0.53 1.80 1347 1.00

371
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372

Innovativeness: number of loci solved on the multi-access box (wooden) ~ trials to reverse373

(unregistered analysis) The prediction interval for the estimate for the association between the number374

of loci solved on the wooden multi-access box (average=3.2, sd=1.3) and the number of trials to reverse a375

preference in their last reversal (average=59 trials, sd=38) crossed zero (Figure 5d; Model 6, Table 4; n=12376

grackles: 6 in manipulated condition, 6 in control condition). This could mean that there is no association,377

however our simulations showed that we would not be able to reliably distinguish whether a small effect is378

different from zero with our sample size (correlation test suggests effect size of 0.2; Table M2). We did find a379

correlation between the number of loci solved and which reversal condition a grackle was randomly assigned380

to, indicating the reversal manipulation appears to have affected performance on the wooden multi-access381

box. The model estimates that manipulated birds solved on average 1.2 more loci than birds in the control382

condition (Table 4: Model 7, wooden; 89% prediction intervals=0.34-2.14; n=12 grackles: 6 in manipulated383

condition, 6 in control condition). However, there is no association between the number of trials to reverse384

in the first reversal (average=74 trials, sd=34) and the number of loci solved on the multi-access box (Table385

4: Model 8, wooden).386

Reversal learning experiments: discriminating shapes on the touchscreen compared with color387

using tubes In the tube experiment, it took four grackles an average of 40 trials (sd=12) in the initial388

discrimination phase to learn to prefer a color, while it took the same individuals an average of 390 trials389

(sd=59) to learn to prefer a shape using the touchscreen (Queso, Mole, Habanero, and Tapa). The two indi-390

viduals who were faster to learn in the tube experiment were slower to learn in the touchscreen experiment.391

For the reversal, it took three of these individuals (Queso, Mole, and Habanero) an average of 80 trials392

(sd=14) to reverse their colored tube preference, and an average of 362 trials (sd=111) to reverse their shape393

preference on the touchscreen (Tapa had to be released back to the wild before finishing the experiment, but394

was on trial 629 in reversal one of the touchscreen experiment at the time of release. In the tube experiment,395

she was also the slowest of the four to reverse at 100 trials). All three individuals were about equally fast at396

the reversal in the tube experiment, while their reversal learning speeds differed on the touchscreen.397

P2 alternative 2 (additional analysis): latency and motor diversity398

Because there was no correlation between the number of trials to reverse in the last reversal and the latency to399

attempt a different locus on the wooden multi-access box, we conducted this additional analysis to determine400

whether the model fit was improved when adding the number of motor actions as an explanatory variable.401

Adding the number of motor actions (wooden: average=13, sd=4) did not improve the model fit when402

examining the relationship between the latency to switch loci on the wooden multi-access box (wooden:403

average=463, sd=481) and the number of trials to reverse in the last reversal (wooden: average=60, sd=38)404

because the Akaike weights were similar for both models (wooden: n=11 grackles: 5 in the manipulated405

group, 6 in the control group; Table 5).406

Table 5. Adding the number of motor actions used to the analysis of the average latency to attempt a407

new option on the wooden multi-access box and the number of trials to reverse in the last reversal does not408

improve the model fit.409

(Intercept) dw$MotorActionsWoodendw$TrialsLastReversal df logLik AICc delta weight
1 463.1818 2 -83.02521 171.5504 0.000000 0.70712147
3 665.8320 -3.362220 3 -82.63113 174.6908 3.140406 0.14708333
2 783.9748 -24.85016 3 -82.76565 174.9599 3.409451 0.12857047
4 1136.8430 -32.86188 -4.138591 4 -82.15674 178.9801 7.429713 0.01722472

410
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P3a: reversal is repeatable within individuals within a context411

Performance was repeatable within individuals within the context of reversal learning. We obtained a412

repeatability value of 0.13, which is significantly greater than that expected if birds are performing randomly413

in each reversal (p=0.001; see analysis details in the R code for Analysis Plan > P3a). Consequently, and as414

preregistered, we did not need to conduct the analysis for the P3a alternative to determine whether a lack415

of repeatability was due to motivation or hunger.416

P3b: not repeatable across contexts417

There was no consistency of flexibility in individuals across contexts: the latency to attempt a different418

locus on both multi-access boxes did not correlate within individuals with the number of trials to reverse419

a preference in each reversal (Table 6; n=8 grackles: only those in the manipulated condition because only420

they experienced more than one reversal; Memela was not included because she did not complete the reversal421

experiment and therefore was not offered the multi-access box experiments).422

Table 6. No repeatability across contexts. MCMCglmm output for the multi-access box plastic and wooden423

models.424

Table 1:

variable post.mean l.95..CI u.95..CI eff.samp pMCMC effect modelName
1 (Intercept) 2.3 -5.5 11.3 100 0.6 fixed Plastic
2 ReverseNumber 1.0 -2.3 6.1 100 0.6 fixed Plastic
3 TrialsToReverse 0.01 -0.1 0.1 100 0.8 fixed Plastic
4 ReverseNumber:TrialsToReverse -0.01 -0.1 0.04 100 0.7 fixed Plastic
5 ID 0.1 0 0.3 100 random Plastic
6 units 1.9 0.7 3.7 100 residual Plastic
7 (Intercept) 4.8 0.5 9.9 28.4 0.02 fixed Wooden
8 ReverseNumber -0.4 -2.8 2.4 49.4 0.9 fixed Wooden
9 TrialsToReverse 0.02 -0.04 0.1 31.8 0.5 fixed Wooden
10 ReverseNumber:TrialsToReverse 0.002 -0.03 0.03 51.7 0.8 fixed Wooden
11 ID 1.3 0 5.1 100 random Wooden
12 units 0.5 0.1 1.8 69.7 residual Wooden

P4: serial reversal learning strategy425

Three out of nine grackles switched from an epsilon-decreasing to an epsilon-first strategy in their last reversal426

(Diablo reversal 8, Burrito reversal 8, and Chilaquile reversal 6; Figure 6). The rest continued to rely on an427

epsilon-decreasing strategy throughout their reversals.428
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Figure 6. The proportion of trials correct by trial number and reversal for each bird.430

We additionally quantitatively determined to what degree each bird used the exploration versus exploitation431

strategy using methods in Federspiel et al. (2017) by calculating the number of 10-trial blocks where birds432

were choosing “randomly” (2-9 correct choices; called sampling blocks; akin to the exploration strategy)433

divided by the total number of blocks to reach criterion per bird. This ratio was also calculated for “ac-434

quisition” blocks where birds made primarily correct choices (9-10 correct choices; akin to the exploitation435

strategy). There was no correlation between exploration (sampling ratio) or exploitation (acquisition ratio)436

and reversal number (sampling: reversal estimate=-0.09, SE=0.11, z=-0.86, p=0.39; acquisition: reversal437

estimate=0.00, SE=0.00, z=-0, p=1.00), indicating that the grackles did not use a particular strategy earlier438

or later in their serial reversals.439

Post-hoc, unregistered exploratory analyses to investigate the effect the flexibility manipula-440

tion had on performance441

In addition to the planned analyses, we conducted post-hoc exploratory analyses on the serial reversal442

learning data to better understand the effect the flexibility manipulation had on performance. We used the443

version of the Bayesian model that was developed by A. Blaisdell et al. (2021) and modified by Logan CJ444

et al. (2020see their Analysis Plan > “Flexibility analysis” for model specifications and validation). This445

model uses data from every trial of reversal learning (rather than only using the total number of trials to446

pass criterion) and represents behavioral flexibility using two parameters: the learning rate of attraction to447

either option (𝜙) and the rate of deviating from learned attractions (𝜆). We wanted to address the following448

questions: 1) What did the manipulation change? 2) Do the manipulations shift birds beyond what is449

naturally observed and does it make them more similar? 3) Are 𝜙 or 𝜆, the two components of flexibility450

in reversal learning, associated with performance on the multi-access boxes across control and manipulated451

birds?452

1) Observed effects of the manipulation on reversal performance, 𝜙, and 𝜆 A pooled model of453

performance across all reversals estimates that birds can expect to improve by about 30 trials (89% prediction454

interval (PI): 25-36; Table 7: Model 15) after completing the serial reversals. While all manipulated birds455

improved, those birds that were already fast to reverse in their first reversal improved less than the birds that456

required many trials to reverse in their first reversal (posterior peak indicates a correlation of +0.64, with457

highest posterior density intervals (HPDI) all positive, between the first reversal value and the improvement458

achieved by the last reversal; Table 7: Model 16). However, the birds who were the fastest in the first459

reversal, were also the fastest in the last reversal, but the difference between the slower and faster reversers460

is reduced (Figure 7).461
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462

Figure 7. All eight manipulated birds needed fewer trials to reverse in their last reversal than in their463

first. Their improvement depended on their starting value, with steeper slopes for those birds that needed464

more trials to reverse in the first reversal (blue = observed values and changes, black = model estimates).465

However, birds who needed more trials in the first reversal did not completely catch up, such that the birds466

that needed more trials in their first reversal also needed more trials in their last reversal relative to other467

grackles.468

The findings from the simulated data indicated that 𝜆 and 𝜙 can only be estimated accurately when calculated469

across at least one switch (initial discrimination plus first reversal or final two reversals). For the manipulated470

birds, the estimated 𝜙 more than doubled from 0.03 (for reference, control grackles=0.03) in the beginning to471

0.07 in their last two reversals (model estimate of expected average change: +0.02 to +0.05; Table 7: Model472

17), while their 𝜆 went slightly down from 4.2 (for reference, control grackles=4.3) to 3.2 (model estimate473

of average change -1.63 to -0.56; Table 7: Model 18). For 𝜙, this pattern fits with the observations in the474

simulations: larger 𝜙 values are associated with fewer trials to reverse. However, while in the simulations475

individuals needed fewer trials to reverse when we increased 𝜆 (less deviation from the learned association),476

the birds in the manipulation showed an increased 𝜆 in their last reversal when they needed fewer trials to477

reverse. This suggests that 𝜆 is a constraint rather than having a direct linear influence on the number of478

trials to reverse: birds with low 𝜆 still can reach the criterion in a small number of trials as long as they479

have a sufficiently high value of 𝜙 (see Figure M1 in the Methods).480

For the 𝜙 values, we also observed a correlation between the 𝜙 estimated from an individual’s performance481

in the first reversal and how much their 𝜙 changed toward the value for their performance in the last reversal482

(-0.4; 50% highest posterior density intervals (HPDI) all negative;Table 7: Model 17), while there is no such483

obvious relationship for 𝜆 (-0.15; 50% HPDI crosses zero; Table 7: Model 18). For both 𝜙 and 𝜆, unlike for484

the number of trials to reverse, we did not see that the individuals who had the largest values during the485

first reversal also always had the largest values during the last reversal. The manipulation changed both 𝜙486

and 𝜆, such that, across all birds, there was a negative correlation between 𝜙 and 𝜆.487

2) Variation in reversal performance, 𝜙, and 𝜆 The values we observed after the manipulation in the488

last reversal for the number of trials to reverse, as well as the 𝜙 and 𝜆 values estimated from the last reversal,489

all fall within the range of variation we observed among the control birds in their first and only reversal490

(Figure 8). This means that the manipulation did not push birds to new levels, but changed them within491

the boundaries of their natural environment. Some birds in the control group already had similar flexibility492

measures to the manipulated birds after going through serial reversal learning, presumably because some493

birds have had experiences in their natural environments that made them more flexible. Accordingly, birds494
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in the manipulated group were not automatically all better performers than all of the birds in the control495

group. Those birds who needed only few trials in their last reversal, irrespective of whether they were in496

the control or the manipulated group (first and only reversal for control birds, last reversal for manipulated497

birds) were also on average better at solving the multi-access boxes (see results above on rule switching and498

Figure 4).499

Across both manipulated and control birds, 𝜙 was more consistently associated with the number of trials500

individuals needed to reverse, and 𝜙 changed more than 𝜆 across reversals for the manipulated birds (Figure501

8). However, changes in 𝜙 and 𝜆 independently correlated with changes in the improvement in performance502

of the manipulated birds from the first to the last reversal (association of change in number of trials from503

first to last reversal with standardized change in 𝜙: 11, 89% PI: 6-15 and with standardized 𝜆: 6, 89% PI:504

1-10; Table 7: Model 19).505
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506

Figure 8. Comparisons of the different measures of performance in the reversal task for each of the 19507

birds. The figure shows a) the number of trials to pass criterion for the first reversal (orange; all birds) and508

the last reversal (blue; only manipulated birds); b) the 𝜙 values reflecting the learning rate of attraction to509

the two options from the initial discrimination and first reversal (orange; all birds) and from the last two510

reversals (blue; manipulated birds); and c) the 𝜆 values reflecting the rate of deviating from the learned511

attractions to the two options from the initial discrimination and first reversal (orange; all birds) and from512

the last two reversals (blue; manipulated birds). Individual birds have the same position along the x-axis513

in all three panels. Birds that needed fewer trials to reverse their preference generally had higher 𝜙 values,514

whereas 𝜆 appeared to reflect whether any choices of the unrewarded color occurred throughout the trials515

or only at the beginning. For the manipulated birds, their 𝜙 values changed more consistently than their516

𝜆 values, and the 𝜙 values of the manipulated individuals were generally higher than those observed in the517

control individuals, while their 𝜆 values remained within the range also observed in the control group.518
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The pairwise analyses above indicate that the number of trials in the last reversal is correlated with the519

number of trials in the first reversal, with 𝜙, and with 𝜆. The number of trials in the first reversal, 𝜙, and520

𝜆 are also correlated with each other (Figure 9). With the Bayesian approach, we can use one model to521

estimate all potential links simultaneously to identify the pathways through which the variables interact with522

each other (e.g., some variables might be correlated because both are influenced by a third variable). We523

therefore simultaneously estimated support for the following pathways:524

• trials last reversal ~ trials first reversal + 𝜙 last reversal + 𝜆 last reversal525

• trials first reversal ~ 𝜙 first reversal + 𝜆 first reversal;526

• 𝜙 last reversal ~ 𝜙 first reversal527

• 𝜆 last reversal ~ 𝜆 first reversal528

Results from this simultaneous estimation of the potential pathways shows that the 𝜙 from the initial529

learning and first reversal determines the number of trials to pass the first reversal, which, in turn, explains530

how many trials they need to pass their last reversal. The 𝜙 for the last reversal does not appear to provide531

any additional information about the number of trials in the last reversal, and 𝜆 is not directly associated532

with the number of trials birds need to reverse (Table 7: Model 20) (Figure 9).533
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534

Figure 9. Causal graph showing the relationships between the number of trials to pass a reversal, 𝜙, 𝜆, and535

the flexibility manipulation. In the pairwise assessments (dotted lines), most of the variables are indicated536

as being associated with each other. The combined model identifies which of these associations are likely to537

be direct (solid lines with arrows). The results from the combined model indicate that a) the manipulation538

worked, b) 𝜙 has a more direct influence on performance in the reversals than 𝜆 does, and c) individuals539

have some consistency both in their abilities and in their performance.540
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Table 7. Model outputs for the pairwise comparisons (models 15-19) and for the combined model (model541

20) explaining the changes during the manipulation. SD=standard deviation, the 89% prediction intervals542

are shown, n_eff=effective sample size, Rhat4=an indicator of model convergence (1 is ideal).543

Mean SD 5.5% 94.5% n_eff Rhat4
MODEL 15
(improvement)
trials ~ a[bird] +
b[bird]*reversal
b_bar -30.30 3.51 -35.65 -24.65 109 1.00
sigma_bar 2.13 2.93 0.17 9.77 9 1.00
sigma 6.54 2.42 0.23 9.41 10 1.00
MODEL 16
(improvement):
trials ~ a[reversal]
+ b[bird,reversal]
rho 0.34 0.39 -0.40 0.85 2452 1.00
MODEL 17 (phi
improvement):
phi ~ a[bird] +
b[bird]*reversal
a 0.00 0.02 -0.02 0.03 620 1.00
b 0.03 0.01 0.02 0.05 207 1.01
rho -0.29 0.46 -0.93 0.52 1492 1.00
sigma 0.02 0.01 0.01 0.03 184 1.01
MODEL 18
(lambda
improvement):
lambda ~ a[bird]
+ b[bird]*reversal
a 5.36 0.35 4.57 6.18 255 1.01
b -1.10 0.30 -1.57 -0.64 260 1.01
rho -0.08 0.44 -0.77 0.64 566 1.01
sigma 0.85 0.20 0.58 1.19 648 1.00
MODEL 19
(improvement
association):
performanceim-
provement ~ a +
b*phiimprovement
+
c*lambdaimprovement
a 32.74 2.52 28.76 36.79 1362 1.00
b 10.63 3.09 5.68 15.31 1155 1.00
c 5.58 3.03 0.73 10.20 1223 1.00
sigma 7.22 1.36 5.31 9.56 1322 1.00
MODEL 20
(combined)
trials last ~ trials
first

0.62 0.36 0.04 1.17 1166 1.00

trials last ~ phi
last

-0.28 0.51 -1.07 0.54 1095 1.00

trials last ~
lambda last

-0.22 0.48 -0.98 0.55 1278 1.00

trials first ~ phi
first

-1.04 0.15 -1.26 -0.80 1059 1.00

trials first ~
lambda first

0.18 0.16 -0.41 0.06 890 1.00

phi last ~ phi first 0.29 0.37 -0.31 0.86 1696 1.00
lambda last ~
lambda first

0.19 0.38 -0.41 0.79 1806 1.00

544

545

3) Association between 𝜙 and 𝜆 with performance on the multi-access boxes We modified the546

analyses from the preregistered analyses in the Results section that assessed potential links between reversal547

learning and performance on the multi-access boxes by replacing the number of trials it took individuals to548

reverse with 𝜙 (learning rate of attraction to either option) and 𝜆 (rate of deviating from learned attractions)549

estimated from the reversal performances. The modified analyses did not find matches with any of the three550

previously detected correlations between reversal learning and performance on the two multi-access boxes551

(latency to attempt a locus on the plastic multi-access box, number of loci solved on the plastic and wooden552

multi-access boxes) (Table 8). We detected a different correlation: the latency to attempt a new locus on553

the wooden multi-access box was positively correlated with 𝜙 in the last reversal (Table 8: Model 28). This554

correlation appears to arise not because of a linear increase of the latency with increasing 𝜙 values, but555

because there are several individuals who have both a long latency and a large 𝜙. However, there are also556

some individuals who have a long latency with a low 𝜙 (see below for additional analyses). This indicates that557

individuals who were faster to update their associations in reversal learning (higher 𝜙, therefore needed fewer558

trials in their last reversal) took more time to attempt a new locus. Even though 𝜙 was closely associated559

with the number of trials a bird needed to reach the reversal criterion, we presumably could not recover the560

previous correlations because of our small sample sizes. In addition, we estimated 𝜙 and 𝜆 across at least one561
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reversal (initial discrimination plus first reversal, or last two reversals for manipulated birds), whereas the562

previous analyses using the number of trials to reverse were based on a single reversal (first or last reversal).563

For the manipulated birds, we found that during their last reversal there was a positive correlation between564

𝜙 and 𝜆, with individuals with higher 𝜙 values also showing higher 𝜆 values. This positive correlation565

could lead to worse performance on the multi-access boxes for birds with intermediate values. There could566

be two alternative routes to better performances on the multi-access boxes with some birds solving a new567

locus faster because they quickly update previously learned associations (higher 𝜙) despite also deviating568

more from learned associations (higher lambda), while other birds might attempt a new locus faster because569

they are more likely to deviate from learned associations (lower 𝜆) despite also not updating information as570

quickly (lower 𝜙). Our data shows that, for the number of loci solved on both the plastic and the wooden571

multi-access boxes, there is a U-shaped association, particularly with 𝜆 values in the last reversal (Table 8:572

models 39 & 46) (Figure 10), with birds with intermediate values of 𝜆 solving fewer loci on both multi-access573

boxes (Figure 4). For the latency to attempt a new locus, there is also a U-shaped association, particularly574

with 𝜙, with birds with intermediate values of 𝜙 showing shorter latencies to attempt a new locus (Table575

8: models 25 & 32). Given that there is also a positive correlation between number of loci solved and the576

latency to attempt a new locus, there might be a trade off, where birds with extreme 𝜙 and 𝜆 values solve577

more loci, but need more time, whereas birds with intermediate values have shorter latencies, but solve fewer578

loci.579
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580

Figure 10. Relationships between phi and lambda from the last reversal and performance on the wooden581

(black dots) and plastic (red dots) multi-access boxes. Birds with intermediate 𝜆 values in their last reversal582

(a) were less likely to solve all four loci on the multi-access boxes than birds with either high or low 𝜆 values.583

Birds who solved two or fewer loci on either box all fall within the central third of the 𝜆 values observed for the584

last reversal, while 12 of the 14 birds who solved all four loci fall outside this central range. An individual’s585

𝜙 and 𝜆 values change slightly between the top and bottom rows because values were standardized for each586

plot and not all individuals were tested on both boxes, therefore values changed relative to the mean of the587

points included in each plot. There are no clear relationships between (b) 𝜙 and the number of loci solved,588

(c) 𝜆 and the latency to attempt a locus, or (d) 𝜙 and the latency to attempt a new locus.589
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Table 8. Model outputs for the latency to switch loci after passing criterion on a different locus on the590

plastic (models 21-27) and wooden (models 28-34) multi-access boxes in relation to 𝜙 and 𝜆. SD=standard591

deviation, the 89% prediction intervals are shown, n_eff=effective sample size, Rhat4=an indicator of model592

convergence (1 is ideal), b=the slope of the relationship between loci solved or average switch latency and 𝜙593

or 𝜆.594

Mean SD 5.5% 94.5% n_eff Rhat4
MODEL 21 (plastic
phi): latency ~ a +
b*phi
a 4.99 0.31 4.51 5.48 1354 1
b -0.07 0.24 -0.45 0.31 1769 1
var 0.80 0.31 0.39 1.34 1527 1
MODEL 22 (plastic
lambda): latency ~ a
+ b*lambda
a 4.97 0.30 4.50 5.46 1547 1
b 0.32 0.27 -0.10 0.74 1260 1
var 0.87 0.34 0.40 1.46 1425 1
MODEL 23 (plastic
both): latency ~ a+
b*phi + c*lambda
a 4.99 0.31 4.52 5.46 1183 1
b 0.33 0.27 -0.09 0.76 1736 1
c -0.01 0.25 -0.41 0.42 1556 1
var 0.83 0.32 0.39 1.42 1321 1
MODEL 24 (plastic
interaction): latency ~
a + b*phi*lambda
a 5.02 0.31 4.51 5.49 886 1
b 0.07 0.21 -0.25 0.42 1256 1
var 0.80 0.30 0.39 1.33 1493
MODEL 25 (plastic U
shaped): latency ~ a+
b*abs(lambda) +
c*abs(phi)
a 3.07 0.52 2.29 3.91 1210 1
b 0.82 0.53 -0.02 1.68 1353 1
c 1.49 0.47 0.76 2.27 1226 1
var 1.27 0.48 0.61 2.12 1456 1
MODEL 26 (plastic
phi first): latency ~ a
+ b*phi
a 4.97 0.30 4.49 5.44 1105 1
b 0.16 0.26 -0.24 0.60 1376 1
var 0.80 0.30 0.39 1.32 1218 1
MODEL 27 (plastic
lambda first): latency
~ a + b*lambda
a 4.95 0.34 4.40 5.47 1284 1
b 0.20 0.27 -0.53 0.88 1334 1
var 0.80 0.34 0.36 1.41 1614 1
MODEL 28 (wooden
phi): latency ~ a +
b*phi
a 5.73 0.28 5.27 6.15 1064 1
b 0.47 0.30 0.00 0.94 1144 1
var 1.06 0.44 0.48 1.86 1364 1
MODEL 29 (wooden
lambda): latency ~ a
+ b*lambda
a 5.76 0.30 5.28 6.21 1373 1
b -0.25 0.25 -0.63 0.15 1415 1
var 0.96 0.37 0.35 1.62 1532 1
MODEL 30 (wooden
both): latency ~ a+
b*phi + c*lambda
a 5.72 0.31 4.52 5.46 1183 1
b -0.29 0.27 -0.09 0.76 1736 1
c 0.47 0.25 -0.41 0.42 1556 1
var 1.07 0.32 0.39 1.42 1321 1
MODEL 31 (wooden
interaction): latency ~
a + b*phi*lambda
a 5.80 0.30 5.31 6.23 1259 1
b 0.15 0.24 -0.22 0.56 1448 1
var 0.92 0.35 0.44 1.54 1342 1
MODEL 32 (wooden U
shaped): latency ~ a+
b*abs(lambda) +
c*abs(phi)
a 5.07 0.53 4.20 5.90 739 1
b 0.68 0.59 -0.23 1.68 867 1
c 0.39 0.77 -0.81 1.62 931 1
var 0.78 0.34 0.34 1.42 932 1
MODEL 33 (wooden
phi first): latency ~ a
+ b*phi
a 5.75 0.30 5.27 6.22 1172 1
b 0.30 0.33 -0.22 0.82 1467 1
var 0.95 0.40 0.43 1.65 1216 1
MODEL 34 (wooden
lambda first): latency
~ a + b*lambda
a 5.76 0.30 5.28 6.21 1250 1
b -0.21 0.25 -0.60 0.21 1233 1
var 0.94 0.37 0.45 1.59 1537 1

595
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Table 9. Model outputs for the number of loci solved on the plastic (models 35-41) and wooden (models597

42-48) multi-access boxes in relation to 𝜙 and 𝜆. SD=standard deviation, the 89% prediction intervals are598

shown, n_eff=effective sample size, Rhat4=an indicator of model convergence (1 is ideal), b=the slope of599

the relationship between loci solved or average switch latency and 𝜙 or 𝜆.600
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Mean SD 5.5% 94.5% n_eff Rhat4
MODEL 35
(plastic phi): loci
solved ~ a + b*phi
a 0.02 0.30 -0.45 0.50 1153 1
b 0.24 0.26 -0.16 0.65 1463 1
MODEL 36
(plastic lambda):
loci solved ~ a +
b*lambda
a 0.00 0.25 -0.40 0.41 1369 1
b 0.14 0.22 -0.21 0.49 1200 1
MODEL 37
(plastic both):
loci solved ~ a+
b*phi + c*lambda
a 4.99 0.31 4.52 5.46 1183 1
b 0.33 0.27 -0.09 0.76 1736 1
c -0.01 0.25 -0.41 0.42 1556 1
MODEL 38
(plastic
interaction): loci
solved ~ a +
b*phi*lambda
a 5.02 0.31 4.51 5.49 886 1
b 0.07 0.21 -0.25 0.42 1256 1
MODEL 39
(plastic U
shaped): loci
solved ~ a+
b*abs(lambda) +
c*abs(phi)
a -0.66 0.50 -1.45 0.15 947 1
b 1.51 0.60 0.61 2.48 845 1
c -0.55 0.58 -1.45 0.37 861 1
MODEL 40
(plastic phi first):
loci solved ~ a +
b*phi
a 0.02 0.26 -0.41 0.42 1313 1
b 0.20 0.22 -0.17 0.54 1624 1
MODEL 41
(plastic lambda
first): loci solved
~ a + b*lambda
a 0.01 0.26 -0.41 0.42 1346 1
b 0.29 0.23 -0.08 0.66 1536 1
MODEL 42
(wooden phi): loci
solved ~ a + b*phi
a 1.35 0.34 0.83 1.90 1329 1
b -0.08 0.27 -0.52 0.37 1268 1
MODEL 43
(wooden lambda):
loci solved ~ a +
b*lambda
a 1.34 0.33 0.83 1.87 1566 1
b 0.20 0.27 -0.24 0.63 1444 1
MODEL 44
(wooden both):
loci solved ~ a+
b*phi + c*lambda
a 0.75 0.42 0.07 1.43 1186 1
b 0.37 0.34 -0.18 0.92 1354 1
c 0.56 0.36 -0.01 1.14 1131 1
MODEL 45
(wooden
interaction): loci
solved ~ a +
b*phi*lambda
a 0.92 0.38 0.34 1.53 966 1
b 0.67 0.32 0.17 1.19 952 1
MODEL 46
(wooden U
shaped): loci
solved ~ a+
b*abs(lambda) +
c*abs(phi)
a 0.40 0.50 -0.43 1.20 902 1
b 1.52 0.75 0.33 2.70 827 1
c 0.43 0.67 -0.60 1.52 1002 1
MODEL 47
(wooden phi
first): loci solved
~ a + b*phi
a 1.34 0.34 0.82 1.19 1259 1
b 0.05 0.28 -0.37 0.48 1434 1
MODEL 48
(wooden lambda
first): loci solved
~ a + b*lambda
a 1.34 0.33 0.82 1.88 1283 1
b -0.11 0.27 -0.52 0.32 1111 1

601
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602

DISCUSSION603

The flexibility manipulation worked604

Although animal behavior can affect conservation outcomes (Greggor et al., 2016), behavioral manipulations605

other than predator recognition training have rarely been attempted (Jolly et al., 2018; Moseby et al., 2012;606

Ross et al., 2019; West et al., 2018; see review in Tetzlaff et al., 2019). Here, we conducted a controlled607

experiment to evaluate whether serial reversal learning affected behavioral flexibility. We found that the608

number of trials to reverse decreased with increasing reversal number, and, when examining last reversals,609

there was a difference between the manipulated and control groups. This indicates that the flexibility610

manipulation was effective in that it manipulated reversal learning speeds. The post-hoc Bayesian analyses611

further showed that performance in the last reversal was not linked with how many reversals they needed to612

reach criterion. Most grackles performed worse in the middle of the manipulation (e.g., reversals 2 through613

their third to last reversal) before improving and reaching criterion. That we were able to manipulate614

flexibility is a novel and important contribution because manipulating flexibility, which is thought of as a615

generalizable cognitive ability, has the potential to change not only the trained behavior, but may also allow616

trained individuals to change other behaviors related to this general cognitive ability.617

The post-hoc Bayesian analyses revealed that the primary component of flexibility that was manipulated618

was the learning rate (𝜙), which more than doubled between the first and last reversals. The increase in the619

learning rate might reflect that birds recognize that this is an environment where new information should be620

prioritized over previously learned associations. In contrast, the rate of deviating from learned preferences621

(𝜆) did not correlate with the number of trials to reverse. The decrease in the rate of deviation from the first622

to the last reversal might indicate that individuals learned a meta-rule about the serial reversal experiment,623

that this is an environment where information from the last few trials is highly predictive of the reward624

location and that they should deviate from their previous attractions as soon as the reward changes.625

Serial reversals affected performance on both multi-access boxes626

While performance differed between the two multi-access boxes, the serial reversal flexibility manipulation did627

affect flexibility in a new context as well as innovativeness. Grackles that were faster to reverse a preference628

in their first and last reversals, and those in the manipulated condition, were also faster to attempt to solve629

a new locus on the plastic multi-access box. Similarly, the flexibility manipulation affected innovativeness630

because grackles in the manipulated condition solved on average 1.2 more loci on the wooden multi-access631

box than those birds in the control condition and there was a positive correlation between the number of632

loci solved on the plastic multi-access box and the number of trials to reverse in the last reversal. That our633

results were not consistent across first reversal, last reversal, and condition (Figure 4) on the two different634

multi-access boxes could be due to the small sample sizes because even in the control group there were several635

individuals who solved their first and only reversal in very few trials. Furthermore, the lack of correlation636

between the number of trials to reverse in the first reversal and the number of loci solved on either multi-637

access box indicates that flexibility is not an inherently utilized tool, but one that is shaped by experience.638

If it was an inherently utilized tool, the variation in the number of trials to complete first reversals would639

likely have resulted in a correlation with the number of loci solved. The analyses linking 𝜙 and 𝜆 to the640

performance on the multi-access boxes suggest that birds might also use different strategies to solve a larger641

number of loci on the multi-access box, either being potentially quicker at discounting the no longer rewarded642

locus or alternatively being more likely to explore new loci. In addition, it is also possible that performance643

on the multi-access boxes relies on other cognitive abilities in which individuals may differ. For example, we644

previously found that grackles who are faster to complete go no-go, an inhibition task, were slower to switch645

loci on the multi-access boxes (Logan, McCune, et al., 2021). As such, variation in self control may affect646

performance on flexibility and innovation tasks by decreasing exploratory behaviors.647
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Repeatability of flexibility and reversal learning strategies648

Examining only the manipulated grackles, there was repeatability of flexibility performance within649

a context (serial reversal learning with colored tubes), but not across contexts (correlation650

of reversal learning and solution switching on the multi-access boxes). Individuals who were651

faster at reversing a color preference in reversal 1 were also generally faster at reversing in subsequent652

reversals. The post-hoc Bayesian analyses replicated this result because manipulated birds exhibited among-653

individual variation in performance across reversals. Consequently, it is possible to formulate a general rule654

for determining when the manipulation is complete by using individual performance in reversal 1: the number655

of trials in the last reversal equaling roughly (trials first reversal)^2 / 200.656

While one third of the grackles switched from an exploratory strategy (epsilon-decreasing) to an exploitative657

strategy (epsilon-first) in their last reversal, there was no correlation between either strategy and reversal658

number, indicating that the grackles did not use a particular strategy earlier or later in their serial reversals.659

This could suggest that the grackles did not learn the overarching rule that once food is not present in the660

preferred color’s tube, they must switch to preferring the other color. Instead, they may learn each preference661

change as if it was new.662

Why did performance on a touchscreen vary so drastically from a traditional approach?663

We assumed that reversal learning performance using shape on the touchscreen would directly compare664

to and be interchangeable with reversal learning performance using colored tubes. However, it quickly665

became clear that the touchscreen experiment may have been asking a different question compared with666

the traditional reversal learning approach using physical objects. Unfortunately, we did not have the time667

to explore what might have caused the differences between the two tests, but we speculate below. We668

conclude that these two methods, the traditional physical object and the touchscreen, do not measure the669

same construct in this species and with this reversal learning experiment.670

One possible explanation for the difference between the two experiments is that grackles might require more671

trials to learn to discriminate between shapes than between colors. Shapes are known to require a few more672

trials for a preference to develop (e.g., Shaw et al., 2015: mean=40 trials color, mean=55 trials shape in673

toutouwai; Isden et al., 2013: mean=6 trials color, mean=10 trials shape in spotted bowerbirds), however674

grackles required hundreds more trials to learn shapes, therefore this explanation seems unlikely. Moreover,675

grackles may not have understood how the touchscreen worked and therefore it was the apparatus that676

interfered with their performance, yet grackles successfully completed a go no-go inhibition task using the677

same touchscreen apparatus (Logan, McCune, et al., 2021). The go no-go task similarly used two different678

white shapes (wavy lines or a heart), but the shapes were presented sequentially rather than simultaneously679

(as in the reversal touchscreen experiment). Given this difference between the two touchscreen experiments,680

it is possible that the grackles found touching the screen in the reversal experiment rewarding in and of681

itself because something happened whenever they made a response. That is, if they touched the correct682

stimulus, they received food; if they touched the incorrect stimulus, the screen went blank immediately.683

This is in contrast with the go no-go experiment where the stimulus stayed on the screen for a set amount684

of time after an incorrect choice. Another potential reason for the difference between performances on the685

two touchscreen experiments was that making the incorrect choice in the reversal experiment was not costly686

enough. In the reversal touchscreen experiment, they could get through many trials, receiving some rewards,687

in a short amount of time. Consequently, there was potentially not enough incentive to learn quickly, thus688

explaining the differences in learning speeds between the two reversal experiments.689

We are not the first group to attempt to transfer a traditional lab or field task to a touchscreen apparatus690

(e.g., Drayton & Santos, 2014). Despite some of the challenges associated with touchscreen apparatuses,691

other attempts to transfer tasks to a touchscreen have been more successful (e.g., A. P. Blaisdell & Cook,692

2005; Kangas & Bergman, 2017; Sawa et al., 2005). We maintain that touchscreens have the potential to be693

an incredibly useful tool for studying comparative cognition in some systems (for reviews and methods, see694

Bussey et al., 2008; Cook et al., 2004; Kangas & Bergman, 2017; Logan, McCune, et al., 2021; Seitz et al.,695

2021; Wolf et al., 2014).696
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Conclusion697

We demonstrate that it is possible to manipulate flexibility using a paradigm such as reversal learning. This698

opens up many opportunities to better understand what flexibility is and whether and how it is causally699

related to other behaviors or forms of cognition. Understanding how flexibility causally relates to other traits700

will allow researchers to develop robust theory about the mechanisms and functional impact of flexibility,701

and when to invoke it as a primary driver in a given context, such as a rapid geographic range expansion.702

Indeed, we are already in the process of testing the latter hypothesis by conducting cross-population research703

on great-tailed grackles to test whether a population on the range edge is more flexible (Logan CJ et al.,704

2020). That we were able to manipulate flexibility, which had causal effects on flexible behavior in a705

different context (multi-access box) as well as a different cognitive ability (innovativeness), demonstrates706

that flexibility manipulations could be useful in training individuals of other species in how to be more707

flexible. This could have important implications for threatened and endangered taxa (such as informing the708

choice of individuals for captive breeding or introduction programs where individuals or their offspring are709

released into novel areas), as well as for habituating zoo animals or other managed populations to novelty. If710

such a flexibility manipulation was successful, it could then change their behavior in this and other domains,711

giving them a better chance of succeeding in human modified environments.712

METHODS713

Below is our preregistration that received in principle acceptance at PCI Ecology (PDF version)714

A. STATE OF THE DATA715

This preregistration was written (2017) prior to collecting data. Pilot data on serial reversal learning (using716

colored tubes) in one grackle was collected January through April 2018, which informed the revision of 1)717

the criterion to pass serial reversal learning, 2) more accurate language for H1 P1 (each subsequent reversal718

may not be faster than the previous, however their average reversal speed decreases), 3) the removal of719

shape reversals from H3a and H3b (to reduce the amount of time each bird is tested), and 4) a new passing720

criterion for touchscreen serial reversals in H3b. Part way through data collection on reversal learning (using721

colored tubes) for the first two birds, the criterion for what counts as making a choice was revised (October722

2018) and part way through data collection on the first four birds (October 2018; see below for details) the723

number of trials that birds in the control group receive was revised to make the test battery feasible in the724

time given.725

This preregistration was submitted to PCI Ecology for peer review (July 2018), we received the first round726

of peer reviews a few days before data collection began (Sep 2018), we revised and resubmitted after data727

collection had started (Feb 2019) and it passed peer review (Mar 2019) before any of the planned analyses728

had been conducted. See the peer review history at PCI Ecology.729

B. PARTITIONING THE RESULTS730

We may present the different hypotheses in separate papers (Nov 2020: all hypotheses are included in this731

one post-study article).732

D. METHODS733

Planned Sample Great-tailed grackles will be caught in the wild in Tempe, Arizona, USA for individual734

identification (colored leg bands in unique combinations). Some individuals (~32: ~16 in the control group735

(they receive 1 reversal) and ~16 in the flexibility manipulation (they receive multiple reversals)) will be736

brought temporarily into aviaries for testing, and then they will be released back to the wild.737
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Sample size rationale We will test as many birds as we can in the approximately three years at this field738

site given that the birds only participate in tests in aviaries during the non-breeding season (approximately739

September through March).740

Data collection stopping rule We will stop testing birds once we have completed two full aviary sea-741

sons (likely in March 2020) if the sample size is above the minimum suggested boundary based on model742

simulations (see section “Ability to detect actual effects” below). If the minimum sample size is not met by743

this point, we will continue testing birds at our next field site (which we move to in the summer of 2020)744

until we meet the minimum sample size.745

Open materials Design files for the plastic multi-access box: 3D printer files and laser cutter files746

Testing protocols for all three experiments: colored tube reversal learning, plastic multi-access box, wooden747

multi-access box, and touchscreen reversal learning748

NOTE (Oct 2020): Touchscreen training data and a summary of the training process is detailed in Seitz et749

al. (2021)750

Open data The data are available at the Knowledge Network for Biocomplexity’s data repository: https:751

//knb.ecoinformatics.org/view/corina_logan.84.42.752

Randomization and counterbalancing H1: Subjects will be randomly assigned to the manipulated or753

control group. In the reversal learning trials, the rewarded option is pseudorandomized for side (and the754

option on the left is always placed first). Pseudorandomization consisted of alternating location for the first755

two trials of a session and then keeping the same color on the same side for at most two consecutive trials756

thereafter. A list of all 88 unique trial sequences for a 10-trial session, following the pseudorandomization757

rules, will be generated in advance for experimenters to use during testing (e.g., a randomized trial sequence758

might look like: LRLLRRLRLR, where L and R refer to the location, left or right, of the rewarded tube).759

Randomized trial sequences will be assigned randomly to any given 10-trial session using a random number760

generator (random.org) to generate a number from 1-88.761

Blinding of conditions during analysis No blinding is involved in this study.762

Dependent variables P1-P3763

Number of trials to reverse a preference. An individual is considered to have a preference if it chose the764

rewarded option at least 17 out of the most recent 20 trials (with a minimum of 8 or 9 correct choices out765

of 10 on the two most recent sets of 10 trials). We use a sliding window to look at the most recent 10 trials766

for a bird, regardless of when the testing sessions occurred.767

P2 alternative 2: additional analysis: latency and motor diversity768

1) Number of trials to attempt a new locus on the multi-access boxes769

2) Number of trials to solve (meet criterion) a new locus on the multi-access boxes770

P3b: additional analysis: individual consistency in flexibility across contexts + flexibility is correlated across771

contexts772

Number of trials to solve a new locus on the multi-access boxes773

P4: learning strategies774

Proportion of correct choices in a non-overlapping sliding window of 4-trial bins across the total number of775

trials required to reach the criterion of 17/20 correct choices (as in P1-P3).776
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Independent variables777

P1: reversal speed gets faster with serial reversals778

1) Reversal number779

2) Batch (random effect because multiple batches included in the analysis). Note: batch is a test cohort,780

consisting of 8 birds being tested simultaneously781

3) ID (random effect because repeated measures on the same individuals)782

P2: serial reversals improve rule switching & problem solving783

1) Average latency to attempt to solve a new locus after solving a different locus784

2) Average latency to solve a new locus after solving a different locus785

3) Total number of loci solved786

4) Experimental group (manipulated=multiple reversals with color stimuli; control=one reversal plus787

equalized experience making choices where both are the same color and both contain a reward)788

5) Batch (random effect because multiple batches included in the analysis). Note: batch is a test cohort,789

consisting of 8 birds being tested simultaneously790

Note April 2020: we realized that the average latency to solve a new locus after solving a different locus791

is confounded with the total number of loci solved because the measure of innovation is included in the792

definition. Therefore, we will remove this independent variable when conducting the analysis so that we793

are only examining pure measures of flexibility (average latency to attempt to solve) and innovation (total794

number of loci solved).795

P2 alternative 2: additional analysis: latency and motor diversity796

1) Number of trials to reverse a preference in the last reversal that individual participated in797

2) Motor diversity: the number of different motor actions used when attempting to solve the multi-access798

boxes799

3) ID (random effect because repeated measures on the same individuals)800

P3a: repeatable within individuals within a context801

1) Reversal number802

2) ID (random effect because repeated measures on the same individuals)803
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P3a alternative 1: was the potential lack of repeatability on colored tube reversal learning due804

to motivation or hunger?805

1) Trial number806

2) Latency from the beginning of the trial to when they make a choice807

3) Minutes since maintenance diet was removed from the aviary808

4) Cumulative number of rewards from previous trials on that day809

5) ID (random effect because repeated measures on the same individuals)810

6) Batch (random effect because repeated measures on the same individuals). Note: batch is a test cohort,811

consisting of 8 birds being tested simultaneously812

P3b: repeatable across contexts813

1) Reversal number814

2) Condition (colored tubes, plastic multi-access box, wooden multi-access box, touchscreen)815

3) Latency to solve a new locus816

4) Number of trials to reverse a preference (colored tubes)817

5) Number of trials to reverse a preference (touchscreen)818

6) ID (random effect because repeated measures on the same individuals)819

P4: serial reversal learning strategy820

1) Trial number821

2) ID (random effect because repeated measures on the same individuals)822

E. ANALYSIS PLAN823

We do not plan to exclude any data. When missing data occur, the existing data for that individual will be824

included in the analyses for the tests they completed. Analyses will be conducted in R [current version 4.0.3;825

R Core Team (2017)], using several R packages: Zhu (2021), Hlavac (2018), J. D. Hadfield (2010), Bartoń826

(2020), McElreath (2020), Stan Development Team (2020), Xie (2019), Ushey et al. (2020), Eddelbuettel &827

François (2011), Wickham (2016), knitr (Xie, 2013, 2017, 2018), Wickham et al. (2021), Gabry & Češnovar828

(2021), posterior (Bürkner et al., 2020), cowplot (Wilke, n.d.), bayesplot (Gabry et al., 2019), irr (Gamer829

et al., 2012), psych (Revelle, 2014, 2017), Lin (2020), DHARMa (Hartig, 2019), lme4 (Bates et al., 2012;830

Bates et al., 2015). When there is more than one experimenter within a test, experimenter will be added as831

a random effect to account for potential differences between experimenters in conducting the tests. If there832

are no differences between models including or excluding experimenter as a random effect, then we will use833

the model without this random effect for simplicity.834
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Unregistered analysis: interobserver reliability of dependent variables To determine whether835

experimenters coded the dependent variables in a repeatable way, hypothesis-blind video coders were first836

trained in video coding the dependent variable, and then they coded at least 20% of the videos in the reversal837

(tubes) and multi-access box experiments. We randomly chose a subset of all of the birds who participated838

in each experiment using random.org:839

• Reversal 6/20 grackles (30% with half from the control group): Chalupa, Avocada, Diablo, Fideo,840

Tomatillo, Adobo841

• Multi-access box plastic 3/15 grackles (20%): Habanero, Queso, Chalupa842

• Multi-access box log 3/12 grackles (25%): Diablo, Adobo, Yuca843

Video coders then analyzed all videos from these birds. The experimenter’s data was compared with the844

video coder data using the intra-class correlation coefficient (ICC) to determine the degree of bias in the845

regression slope (Hutcheon et al. (2010), using the irr package in R: Gamer et al. (2012)). Note that the846

data in columns from coders 1 and 2 in the data sheets were aligned based on similar numbers between847

coders to prevent disagreements near the top of the data sheet from misaligning all subsequent entries.848

Interobserver reliability training To pass interobserver reliability (IOR) training, video coders849

needed an ICC score of 0.90 or greater to ensure the instructions were clear and that there was a high degree850

of agreement across coders (see R code comments for details).851

Alexis Breen (compared with experimenter’s live coding):852

• Multi-access box: correct choice unweighted Cohen’s Kappa=0.90 (confidence boundaries=0.77-1.00,853

n=33 data points)854

• Multi-access box: locus solved unweighted Cohen’s Kappa=0.90 (confidence boundaries=0.76-1.00,855

n=33 data points)856

Note: Breen was not a hypothesis-blind video coder. She contributed to extensive video coding across857

the whole project, however, for interobserver reliability analyses, her data were always compared with a858

hypothesis-blind coder’s data.859

Anja Becker (compared with experimenter’s live coding):860

• Reversal: correct choice ICC=1.00 (confidence boundaries=1.00-1.00, n=25 data points)861

Tiana Lam (compared with experimenter’s live coding):862

• Multi-access box: correct choice ICC=0.90 (confidence boundaries=0.77-1.00, n=33 data points)863

• Multi-access box: locus solved unweighted Cohen’s Kappa=0.95 (confidence boundaries=0.84-1.00,864

n=33 data points)865

Brynna Hood (compared with experimenter’s live coding):866

• Multi-access log: correct choice unweighted Cohen’s Kappa=1.00 (confidence boundaries=1.00-1.00,867

n=29 data points)868

• Multi-access log: locus solved unweighted Cohen’s Kappa=1.00 (confidence boundaries=1.00-1.00,869

n=29 data points)870
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Interobserver reliability Interobserver reliability scores (minimum 20% of the videos) were as follows:871

Brynna Hood (compared with experimenter’s live coding):872

• Multi-access log: correct choice unweighted Cohen’s Kappa=0.91 (confidence boundaries=0.76-1.00,873

n=39 data points)874

• Multi-access log: locus solved unweighted Cohen’s Kappa=1.0 (confidence boundaries=1.0-1.00, n=39875

data points)876

Tiana Lam (compared with experimenter’s live coding):877

• Multi-access box: correct choice unweighted Cohen’s Kappa=0.83 (confidence boundaries=0.73-0.92,878

n=102 data points)879

• Multi-access box: locus solved unweighted Cohen’s Kappa=0.90 (confidence boundaries=0.830-0.97,880

n=102 data points)881

Anja Becker (compared with experimenter’s live coding):882

• Reversal: correct choice ICC=0.99 (confidence boundaries=0.98-0.99, n=3280 data points)883

These scores indicate that the dependent variables are repeatable to a high or extremely high degree given884

our instructions and training.885

Unregistered analyses: Bayesian Flexibility models In addition to the planned analyses, we con-886

ducted post-hoc exploratory analyses on the serial reversal learning data to better understand the effect the887

flexibility manipulation had on performance. We used the version of the Bayesian model that was developed888

by A. Blaisdell et al. (2021) and modified by Logan CJ et al. (2020see their Analysis Plan > “Flexibility889

analysis” for model specifications and validation). This model uses data from every trial of reversal learning890

(rather than only using the total number of trials to pass criterion) and represents behavioral flexibility using891

two parameters: the learning rate of attraction to either option (𝜙) and the rate of deviating from learned892

attractions (𝜆). We wanted to address the following questions:893

1) What did the manipulation change? Can we determine what mechanisms of flexibility the894

birds in the manipulated group who were already fast at reversing rely on? We predicted895

that birds that were already faster at reversing would have similar deviation rates from the learned896

attractions between the first and last reversals and lower learning rates than slower birds, which would897

allow them to change their preference more quickly because the attraction would be weaker and easier898

to reverse.899

2) Does the manipulation shift birds beyond what is naturally observed and does it make900

them more similar? In the analyses in the Results section, it was unclear how there was an effect901

on innovation and flexibility in the multi-access box experiments when, in some cases, there was902

no difference between the control and manipulated conditions. Therefore, for both the control and903

manipulated groups, we investigated whether the learning rate and rate of deviating from learned904

attractions differed between a bird’s first 10 trials of the first and last reversals and whether what we905

observe among the manipulated birds at the end might already naturally be present in some birds in906

the control group. In addition, we wanted to know whether the manipulations affected all birds equally907

or if we could still detect variation.908

3) Are 𝜙 or 𝜆, the two components of flexibility in reversal learning, associated with perfor-909

mance on the multi-access boxes across control and manipulated birds? In the analyses in910

the Results section, we detected some associations between a bird’s performance in the reversal learning911

task and on the multi-access boxes. Examining the two parameters, 𝜙 and 𝜆, separately might offer912

a more detailed understanding of potential abilities that might influence performance on the different913

tasks.914
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Using simulations to check models estimating potential factors underlying performance in the915

reversal experiment We first ran the Bayesian model on simulated data to better understand how the916

two parameters might lead to differences in performance and whether we could detect meaningful differences917

between control and manipulated birds. The settings for the simulations were based on the previous analysis918

of data from grackles in a different population (Santa Barbara, A. Blaisdell et al. (2021)). When we used919

only the choices simulated individuals made during their one reversal, the estimated 𝜙 and 𝜆 values did not920

match those the individuals had been assigned. We realized that 𝜙 and 𝜆 values were consistently shifted in921

a correlated way. When estimating these values from only a single reversal, there was equifinality: multiple922

combinations of the two parameters 𝜙 and 𝜆 could potentially explain the performance of birds during this923

reversal, and the estimation adjusts both learning parameters towards the mean. However, when we combined924

data from across at least one switch in the color of the rewarded option, combining initial discrimination925

learning with the first reversal, the model accurately recovered the 𝜙 and 𝜆 values that simulated what the926

individuals had been assigned.927

In terms of the influence of the two parameters 𝜙 and 𝜆 on the number of trials birds needed to reverse a928

color preference, the 𝜙 values assigned to simulated individuals had a stronger influence than the 𝜆 values929

(estimated association of number of trials with standardized values of 𝜙: -21, 89% prediction interval (PI):-22930

to -19; with standardized values of 𝜆 -14, 89% PI: -16 to -13). In particular, low numbers of trials to reverse931

could be observed across the full range of 𝜆 values, though when 𝜆 was smaller than 8, simulated birds might932

need 150 or more trials to reverse a preference (Figure M1). In contrast, there was a more linear relationship933

between 𝜙 and the number of trials to reverse, with birds needing fewer trials the larger their 𝜙.934

935

Figure M1. In the simulations, the 𝜙 values assigned to individuals (green) had a clearer influence on936

the number of trials these individuals needed to reverse than their 𝜆 values (red). 𝜙 and 𝜆 values were937

standardized for direct comparison. In general, individuals needed fewer trials to reverse if they had larger938

𝜙 and 𝜆 values. However, relatively small 𝜆 values could be found across the range of reversal performances,939

whereas there was a more clear distinction with 𝜙 values.940
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Ability to detect actual effects To begin to understand what kinds of effect sizes we will be able to941

detect given our sample size limitations and our interest in decreasing noise by attempting to measure it,942

which increases the number of explanatory variables, we used G*Power (v.3.1, Faul et al., 2007, 2009) to943

conduct power analyses based on confidence intervals. G*Power uses pre-set drop down menus and we chose944

the options that were as close to our analysis methods as possible (listed in each analysis below). Note that945

there were no explicit options for GLMs (though the chosen test in G*Power appears to align with GLMs) or946

GLMMs or for the inclusion of the number of trials per bird (which are generally large in our investigation),947

thus the power analyses are only an approximation of the kinds of effect sizes we can detect. We realize that948

these power analyses are not fully aligned with our study design and that these kinds of analyses are not949

appropriate for Bayesian statistics (e.g., our MCMCglmm below), however we are unaware of better options950

at this time. Additionally, it is difficult to run power analyses because it is unclear what kinds of effect sizes951

we should expect due to the lack of data on this species for these experiments.952

To address the power analysis issues, we will run simulations on our Arizona data set before conducting any953

analyses in this preregistration. We will first run null models (i.e., dependent variable ~ 1 + random effects),954

which will allow us to determine what a weak versus a strong effect is for each model. Then we will run955

simulations based on the null model to explore the boundaries of influences (e.g., sample size) on our ability956

to detect effects of interest of varying strengths. If simulation results indicate that our Arizona sample size957

is not larger than the lower boundary, we will continue these experiments at the next field site until we meet958

the minimum suggested sample size.959

SIMULATIONS APRIL 2020 (pre-data analysis): following procedures in McElreath (2018), we first960

constructed a hypothesis-appropriate mathematical model that encompasses the relationship between961

the variables of interest for each analysis: 1) number of loci solved on the multi-access box ~ trials to reverse,962

and 2) latency to attempt a new locus on the multi-access box ~ trials to reverse.963

Simulation and model: number of loci solved on the multi-access box ~ trials to reverse964

The model takes the form of:965

locisolved ~ Binomial(4, p) [likelihood]966

logit(p) ~ 𝛼[batch] + 𝛽trials [model]967

locisolved is the number of loci solved on the multi-access box, 4 is the total number of loci on the multi-968

access box, p is the probability of solving any one locus across the whole experiment, 𝛼 is the intercept and969

each batch gets its own, 𝛽 is the expected amount of change in locisolved for every one unit change in trials,970

and trials is the number of trials to reverse a color preference.971

Expected values for the number of loci solved on the multi-access box were set to either 2 or 0 (out of972

4 loci maximum) because we were unsure of whether the grackles would be able to solve any loci on the973

multi-access box because this experiment had never been done on this species before. Expected values for974

reversal learning using colored tubes (mean, standard deviation, and range of number of trials to reverse a975

color preference) were based on previously published data on great-tailed grackles (Logan, 2016). This data976

indicates that the average number of trials to reverse a preference is 91 and the standard deviation is 21. In977

our model, the variation in the actual data is reflected by both the population standard deviation and the978

expected amount of change related to the explanatory variable. After running simulations, we identified the979

following distributions and priors to be the most likely for our expected data:980

𝛼 ~ Normal(4,10) [𝛼 prior]981

𝛽 ~ Normal(0,5) [𝛽 prior]982

We used normal distributions for 𝛼 and 𝛽 because they are (or are based on) sums with large means (see983

Figure 10.6 in McElreath, 2018). For the 𝛽 prior, we had no expectation about whether the relationship984

would be positive or negative, therefore we centered it on 0 (the mean).985

Simulation and model: latency to attempt a new locus on the multi-access box ~ trials to986

reverse987
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For the average latency to attempt a new locus on the multi-access box as it relates to trials to reverse (both988

are measures of flexibility), we simulated data and set the model as follows:989

latency ~ gamma-Poisson(𝜆𝑖, 𝜙) [likelihood]990

log(𝜆𝑖) ~ 𝛼[batch] + 𝛽trials [the model]991

latency is the average latency to attempt a new locus on the multi-access box, 𝜆𝑖 is the rate (probability of992

attempting a locus in each second) per bird (and we take the log of it to make sure it is always positive; birds993

with a higher rate have a smaller latency), 𝜙 is the dispersion of the rates across birds, 𝛼 is the intercept994

for the rate per batch, 𝛽 is the expected amount of change in the rate of attempting to solve in any given995

second for every one unit change in trials, and trials is the number of trials to reverse a color preference.996

Expected values for the latency to attempt a new locus on the multi-access box was set to between 1-2700997

sec because the experiment ends for a bird if they do not obtain the food in 3 consecutive trials, and each998

trial can last up to 15 min. Because we did not have prior data for this species on this test, we set the mean999

to 300 sec, which is half way through a usual 10 min trial because it seems likely that if a bird is going to1000

attempt another locus, it will likely do so at the next opportunity, especially after being successful in the1001

previous trial. Expected values for reversal learning using colored tubes are the same as above. After running1002

simulations, we identified the following to be the most likely distributions and priors for our expected data:1003

𝜙 ~ 1/(Exponential(1)) [𝜙 prior]1004

𝛼 ~ Normal(300,50) [𝛼 prior]1005

𝛽 ~ Normal(0,5) [𝛽 prior]1006

We used a gamma-Poisson distribution for latency because it constrains the values to be positive and to1007

primarily occur sooner rather than later, which is what we expect from the grackles (based on data from New1008

Caledonian crows and kea in Auersperg et al., 2011). For 𝜙, we used an exponential distribution because it1009

is standard for this paramter. We used normal distributions for 𝛼 and 𝛽 because they are (or are based on)1010

sums with large means (see Figure 10.6 in McElreath, 2018). For the 𝛽 prior, we had no expectation about1011

whether the relationship would be positive or negative, therefore we centered it on 0 (the mean).1012

We translated the simulation output into effect sizes and examined what kind of effect size these1013

parameter values represent (Table M1). For each 𝛽, we calculated the effect size (Box 13.3 in Lajeunesse et1014

al., 2013: linear regression):1015

r = 𝛽 (SDx / SDy) = 𝛽 (1.5 / 21)1016

Where r is the Pearson product moment correlation and SD is the standard deviation. For the standard1017

deviation of x (number of loci solved on the multiacccess box), we estimated a possible value of 1.5. For the1018

standard deviation of y (trials to reverse), we used 21 from the Santa Barbara grackle data (Logan, 2016).1019

We then calculated the effect sizes and R2 values for each value of 𝛽.1020

Table M1. The connection between 𝛽 and effect sizes (SDx=standard deviation of x, which is the number1021

of loci solved; SDy=standard deviation of y, which is the number of trials to reverse; R2=R squared).1022

We then used the simulations to run models on simulated data to estimate the measurement error associated1023

with varying sample size, 𝛽, and the range of multi-access box loci solved or latency to attempt a new locus1024

(Table M2). Before running the models, we decided that a model would detect an effect if 89% of the1025

posterior sample was on the same side of zero (following McElreath, 2018). We ran the simulation with1026

𝛽=3 (latency) because this was a high value at which an appropriate range of values were observed in the1027

simulation testing phase, 𝛽=0 because this would be the scenario in which there is no relationship between1028

the response variable and the trials to reverse, and 𝛽=-1 to determine how small of a difference we can1029

detect and with what amount of associated noise (𝜎). Sigma (𝜎) is the standard deviation in the1030

trials to reverse if the trials to reverse is a normal distribution. In all simulations, the mean1031

in the trials to reverse was set to 91. Therefore, a (𝜎) of 14 is 15% noise (14/91). We found1032

that when (𝜎) is larger than 14, we cannot detect even the largest effect of trials to reverse1033

on loci solved or latency because there are some simulations where the estimated regression1034

coefficient crosses zero. When 𝛽=0 we want all of the regression coefficients to cross zero (10 out of 101035
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random repetitions) and when 𝛽 ≠ 0 we want none of the regression coefficients to cross zero (0 out of 101036

random repetitions). We ran the models several times with various parameters to determine at what point1037

this was the case for each combination of parameters.1038

Table M2. Simulation outputs from varying 𝛽, sample size (n), 𝜎, and whether the actual range of multi-1039

access box [MAB] loci solved were 0-2 or 0-4 (we did not know how many loci the grackles would1040

be able to solve before we started collecting data so we ran two simulations. The grackles1041

ended up being able to solve all four loci on both multi-access boxes, therefore we must use1042

only those rows associated with “Range of MAB loci solved” = 0-4). This table is useful for1043

the analyses involving the number of loci solved on the multi-access box, but not the latency1044

to switch to attempting a new locus on the multi-access box, which uses a different (gamma1045

poisson) model.1046

This shows that we would have the power to detect a medium effect (-0.357 in Table M1) with a sample1047

size of 15 if the noise (𝜎) is <15%. We would be unlikely to get a false negative because there were no false1048

negatives in the simulations (i.e., the posterior sample range did not cross zero). With this sample size, when1049

𝛽=0, there are no false positives (i.e., the posterior sample range always included zero). However, we would1050

not be able to detect a weak effect unless the noise (𝜎) was much smaller.1051

Data checking The data will be checked for overdispersion, underdispersion, zero-inflation, and het-1052

eroscedasticity with the DHARMa R package (Hartig, 2019) following methods by Hartig. Note: DHARMa1053

doesn’t support MCMCglmm, therefore we will use the closest supported model: glmer from the R package1054

lme4 (Bates et al., 2015).1055

Determining the threshold: How many reversals are enough? We initially (in 2017) set as the1056

passing criterion: During the data collection period, the number of trials required to reverse a preference will1057

be documented per bird, and reversals will continue until the first batch of birds tested reaches an asymptote1058

(i.e., there are negligible further decreases in the number of trials required to reverse a preference). The1059

number of reversals to reach the asymptote will be the number of reversals that subsequent birds experience.1060

Due to delays in setting up the field site, we were only able to test two grackles in early 2018 (January1061

through April) and, due to randomization, only one (Fajita) was in the experimental condition that involved1062

undergoing the flexibility manipulation (Empanada was in the control condition). While Fajita’s reversal1063

speeds generally improved with increasing serial reversals, she never reached an asymptote (which we defined1064

as passing three consecutive reversals in the same number of trials), even after 38 reversals. These 38 reversals1065

took 2.5 months, which is an impractical amount of time if birds are to participate in the rest of the test1066

battery after undergoing the reversal manipulation (we are permitted to keep them in aviaries for up to three1067

months per bird). Because our objective in this experiment is to manipulate an individual’s flexibility, we1068

decided to revise our serial reversal passing criterion to something more species relevant based on Fajita’s1069

serial reversal performance and the performance of seven grackles in Santa Barbara who underwent only one1070

reversal in 2014 and 2015 (Logan, 2016). The revised serial reversal passing criterion is: passing two1071

sessions in a row at or under 50 trials. 50 trials is fewer trials than any of the nine grackles required1072

to pass their first reversal (range 70-130), therefore it should reflect an improvement in flexibility.1073

Revising the choice criterion and the criterion to pass the control condition Choice criterion:1074

At the beginning of the second bird’s initial discrimination in the reversal learning colored tube experiment1075

(October 2018), we revised the criterion for what counts as a choice from A) the bird’s head needs to pass1076

an invisible line on the table that ran perpendicular to the the tube opening to B) the bird needs to bend its1077

body or head down to look in the tube. Criterion A resulted in birds making more choices than the number1078

of learning opportunities they were exposed to (because they could not see whether there was food in the1079

tube unless they bent their head down to look in the tube) and appeared to result in slower learning. It is1080

important that one choice equals one learning opportunity, therefore we revised the choice criterion to the1081

latter. Anecdotally, this choice matters because the first three birds in the experiment (Tomatillo, Chalupa,1082
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and Queso) learned faster than the pilot birds (Empanada and Fajita) in their initial discriminations and1083

first reversals. Thus, it was an important change to make at the beginning of the experiment.1084

Criterion to pass the control condition: Before collecting experimental data, we set the number of1085

trials experienced by the birds in the control group as 1100 because this is how many trials it would have1086

taken the pilot bird in the manipulated group, Fajita, to pass serial reversals 2-17 according to our revised1087

serial reversal passing criterion. However, after 25 and 17 days (after Tomatillo and Queso’s first reversals,1088

respectively) of testing the first two individuals in the control group it became apparent that 1100 trials1089

is impractical given the time constraints for how long we are permitted to keep each bird temporarily in1090

captivity and would prevent birds from completing the test battery before their release. Additionally, after1091

revising the choice criterion, it was going to be likely that birds in the manipulated group would require1092

fewer than 1100 trials to meet the serial reversal passing criterion. Therefore, reducing the number of trials1093

control birds experience would result in a better match of experience with birds in the manipulated group.1094

On 2 November 2018 we set the number of trials control birds experience after their first (and only) reversal1095

to the number of trials it requires the first bird in the manipulated group to pass (the first bird has not1096

passed yet, therefore we do not yet know what this number is). After more individuals in the manipulated1097

group pass, we will update this number to the average number of trials to pass. Note on 16 April 2020:1098

this is what we did for all birds in the control condition, except Mofongo who was a slow participator and1099

would not have finished his test battery by the time it got too hot to keep birds in the aviaries if we used the1100

current average number of trials (420). Instead, we matched him with the fastest bird in the manipulated1101

group (Habanero=290 trials) to make it more likely that Mofongo could get through the rest of the test1102

battery in time.1103

P1: negative relationship between the number of trials to reverse a preference and the number of1104

reversals? Analysis: A Generalized Linear Mixed Model [GLMM; MCMCglmm function, MCMCglmm1105

package; J. D. Hadfield (2010)] will be used with a Poisson distribution and log link using 13,000 iterations1106

with a thinning interval of 10, a burnin of 3,000, and minimal priors (V=1, nu=0) (J. Hadfield, 2014). We1107

will ensure the GLMM shows acceptable convergence [lag time autocorrelation values <0.01; J. D. Hadfield1108

(2010)], and adjust parameters if necessary. We will determine whether an independent variable had an1109

effect or not using the Estimate in the full model.1110

We do not need a power analysis to estimate our ability to detect actual effects because, by definition, the1111

individuals that complete this experiment must get faster at reversing in order to be able to pass the stopping1112

criterion (two consecutive reversals in 50 trials or less). According to previous grackle data (from the pilot1113

and from Santa Barbara), the fastest grackle passed their first reversal in 70 trials, which means that passing1114

our serial reversal stopping criterion would require them to have improved their passing speed.1115

P2: serial reversal improves rule switching and problem solving Note on 14 May 2020: Please1116

see our Alternative Analyses section where we describe that we will conduct this analysis as in the new1117

models in the Ability to detect actual effects section, which will replace the analysis listed below.1118

Analysis: Because the independent variables could influence each other, we will analyze them in a single1119

model. A Generalized Linear Mixed Model [GLMM; MCMCglmm function, MCMCglmm package; J. D.1120

Hadfield (2010)] will be used with a Poisson distribution and log link using 13,000 iterations with a thinning1121

interval of 10, a burnin of 3,000, and minimal priors (V=1, nu=0) (J. Hadfield, 2014). We will ensure the1122

GLMM shows acceptable convergence [lag time autocorrelation values <0.01; J. D. Hadfield (2010)], and1123

adjust parameters if necessary. We will determine whether an independent variable had an effect or not1124

using the Estimate in the full model.1125

To roughly estimate our ability to detect actual effects (because these power analyses are designed for1126

frequentist statistics, not Bayesian statistics), we ran a power analysis in G*Power with the following settings:1127

test family=F tests, statistical test=linear multiple regression: Fixed model (R^2 deviation from zero), type1128

of power analysis=a priori, alpha error probability=0.05. We reduced the power to 0.70 and increased the1129

effect size until the total sample size in the output matched our projected sample size (n=32). The number1130
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of predictor variables was restricted to only the fixed effects because this test was not designed for mixed1131

models. The protocol of the power analysis is here:1132

Input:1133

Effect size f² = 0.411134

� err prob = 0.051135

Power (1-� err prob) = 0.71136

Number of predictors = 51137

Output:1138

Noncentrality parameter � = 13.12000001139

Critical F = 2.58679011140

Numerator df = 51141

Denominator df = 261142

Total sample size = 321143

Actual power = 0.71030961144

This means that, with our sample size of 32, we have a 71% chance of detecting a large effect (approximated1145

at f2=0.35 by Cohen, 1988).1146

We will first determine whether the total loci solved, the latency to solve or attempt at new loci are correlated1147

across the two distinct multi-access boxes. If there is a positive correlation, then we will only use the variables1148

for the plastic multi-access box (for which we will likely have more data), as presented below. If there is no1149

correlation, we will incorporate the total loci solved, the latencies to solve and attempt at new loci for each1150

of the multi-access boxes as independent variables in our model.1151

P2 alternative 2: additional analysis: latency and motor diversity A Generalized Linear Mixed1152

Model [GLMM; MCMCglmm function, MCMCglmm package; J. D. Hadfield (2010)] will be used with a1153

Poisson distribution and log link using 13,000 iterations with a thinning interval of 10, a burnin of 3,000, and1154

minimal priors (V=1, nu=0) (J. Hadfield, 2014). We will ensure the GLMM shows acceptable convergence1155

[lag time autocorrelation values <0.01; J. D. Hadfield (2010)], and adjust parameters if necessary. We will1156

determine whether an independent variable had an effect or not using the Estimate in the full model.1157

To roughly estimate our ability to detect actual effects (because these power analyses are designed for1158

frequentist statistics, not Bayesian statistics), we ran a power analysis in G*Power with the following settings:1159

test family=F tests, statistical test=linear multiple regression: Fixed model (R^2 deviation from zero), type1160

of power analysis=a priori, alpha error probability=0.05. We reduced the power to 0.70 and increased the1161

effect size until the total sample size in the output matched our projected sample size (n=32). The number1162

of predictor variables was restricted to only the fixed effects because this test was not designed for mixed1163

models. The protocol of the power analysis is here:1164

Input:1165

Effect size f² = 0.271166

� err prob = 0.051167

Power (1-� err prob) = 0.71168

Number of predictors = 21169

Output:1170

Noncentrality parameter � = 8.64000001171

44



Critical F = 3.32765451172

Numerator df = 21173

Denominator df = 291174

Total sample size = 321175

Actual power = 0.70474201176

This means that, with our sample size of 32, we have a 70% chance of detecting a medium (approximated1177

at f2=0.15 by Cohen, 1988) to large effect (approximated at f2=0.35 by Cohen, 1988).1178

We will perform separate models for each multi-access box (plastic and wooden).1179

NOTE (Aug 2021): when attempting to run the below model, we realized the model has to be a GLM and1180

not a GLMM because there is only one data point per bird, so we changed this accordingly.1181

P3a: repeatable within individuals within a context (reversal learning) Analysis: Is reversal1182

learning (colored tubes) repeatable within individuals within a context (reversal learning)? We will obtain1183

repeatability estimates that account for the observed and latent scales, and then compare them with the1184

raw repeatability estimate from the null model. The repeatability estimate indicates how much of the total1185

variance, after accounting for fixed and random effects, is explained by individual differences (ID). We will1186

run this GLMM using the MCMCglmm function in the MCMCglmm package (J. D. Hadfield, 2010) with a1187

Poisson distribution and log link using 13,000 iterations with a thinning interval of 10, a burnin of 3,000, and1188

minimal priors [V=1, nu=0; J. Hadfield (2014)]. We will ensure the GLMM shows acceptable convergence1189

[i.e., lag time autocorrelation values <0.01; J. D. Hadfield (2010)], and adjust parameters if necessary.1190

NOTE (Aug 2021): our data checking process showed that the distribution of values of the data (number of1191

trials to reverse) in this model was not a good fit for the Poisson distribution because it was overdispersed1192

and heteroscedastic. However, when log-transformed the data approximate a normal distribution and pass1193

all of the data checks, therefore we used a Gaussian distribution for our model, which fits the log-transformed1194

data well.1195

To roughly estimate our ability to detect actual effects (because these power analyses are designed for1196

frequentist statistics, not Bayesian statistics), we ran a power analysis in G*Power with the following settings:1197

test family=F tests, statistical test=linear multiple regression: Fixed model (R^2 deviation from zero), type1198

of power analysis=a priori, alpha error probability=0.05. The number of predictor variables was restricted1199

to only the fixed effects because this test was not designed for mixed models. We reduced the power to 0.701200

and increased the effect size until the total sample size in the output matched our projected sample size1201

(n=32). The protocol of the power analysis is here:1202

Input:1203

Effect size f² = 0.211204

� err prob = 0.051205

Power (1-� err prob) = 0.71206

Number of predictors = 11207

Output:1208

Noncentrality parameter � = 6.72000001209

Critical F = 4.17087681210

Numerator df = 11211

Denominator df = 301212

Total sample size = 321213
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Actual power = 0.70837631214

This means that, with our sample size of 32, we have a 71% chance of detecting a medium effect (approximated1215

at f2=0.15 by Cohen, 1988).1216

P3a alternative: was the potential lack of repeatability on colored tube reversal learning due1217

to motivation or hunger? Analysis: Because the independent variables could influence each other1218

or measure the same variable, I will analyze them in a single model: Generalized Linear Mixed Model1219

[GLMM; MCMCglmm function, MCMCglmm package; J. D. Hadfield (2010)] with a binomial distribution1220

(called categorical in MCMCglmm) and logit link using 13,000 iterations with a thinning interval of 10, a1221

burnin of 3,000, and minimal priors (V=1, nu=0) (J. Hadfield, 2014). We will ensure the GLMM shows1222

acceptable convergence [lag time autocorrelation values <0.01; J. D. Hadfield (2010)], and adjust parameters1223

if necessary. The contribution of each independent variable will be evaluated using the Estimate in the full1224

model. NOTE (Apr 2021): This analysis is restricted to data from their first reversal because this is the1225

only reversal data that is comparable across the manipulated and control groups.1226

To roughly estimate our ability to detect actual effects (because these power analyses are designed for1227

frequentist statistics, not Bayesian statistics), we ran a power analysis in G*Power with the following settings:1228

test family=F tests, statistical test=linear multiple regression: Fixed model (R^2 deviation from zero), type1229

of power analysis=a priori, alpha error probability=0.05. We reduced the power to 0.70 and increased the1230

effect size until the total sample size in the output matched our projected sample size (n=32). The number1231

of predictor variables was restricted to only the fixed effects because this test was not designed for mixed1232

models. The protocol of the power analysis is here:1233

Input:1234

Effect size f² = 0.311235

� err prob = 0.051236

Power (1-� err prob) = 0.71237

Number of predictors = 41238

Output:1239

Noncentrality parameter � = 11.47000001240

Critical F = 2.66843691241

Numerator df = 41242

Denominator df = 321243

Total sample size = 371244

Actual power = 0.71132161245

This means that, with our sample size of 32, we have a 71% chance of detecting a large effect (approximated1246

at f2=0.35 by Cohen, 1988).1247

P3b: individual consistency across contexts Analysis: Do those individuals that are faster to reverse1248

a color preference also have lower latencies to switch to new options on the multi-access box? Do those1249

individuals that are faster to reverse a color preference also have lower latencies to switch to new options1250

on the multi-access box? A Generalized Linear Mixed Model [GLMM; MCMCglmm function, MCMCglmm1251

package; (J. D. Hadfield, 2010) will be used with a Poisson distribution and log link using 13,000 iterations1252

with a thinning interval of 10, a burnin of 3,000, and minimal priors (V=1, nu=0) (J. Hadfield, 2014). We1253

will ensure the GLMM shows acceptable convergence [lag time autocorrelation values <0.01; J. D. Hadfield1254

(2010)], and adjust parameters if necessary. We will determine whether an independent variable had an1255

effect or not using the Estimate in the full model.1256
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To roughly estimate our ability to detect actual effects (because these power analyses are designed for1257

frequentist statistics, not Bayesian statistics), we ran a power analysis in G*Power with the following settings:1258

test family=F tests, statistical test=linear multiple regression: Fixed model (R^2 deviation from zero), type1259

of power analysis=a priori, alpha error probability=0.05. We reduced the power to 0.70 and increased the1260

effect size until the total sample size in the output matched our projected sample size (n=32). The number1261

of predictor variables was restricted to only the fixed effects because this test was not designed for mixed1262

models. The protocol of the power analysis is here:1263

Input:1264

Effect size f² = 0.211265

� err prob = 0.051266

Power (1-� err prob) = 0.71267

Number of predictors = 11268

Output:1269

Noncentrality parameter � = 6.72000001270

Critical F = 4.17087681271

Numerator df = 11272

Denominator df = 301273

Total sample size = 321274

Actual power = 0.70837631275

This means that, with our sample size of 32, we have a 71% chance of detecting a medium effect (approximated1276

at f2=0.15 by Cohen, 1988).1277

P4: learning strategies (for birds in the manipulated group only) Analysis: Learning strategies1278

will be identified by matching them to the two known approximate strategies of the contextual, binary1279

multi-armed bandit: epsilon-first and epsilon-decreasing (McInerney, 2010; as in Logan, 2016).1280

From Logan (2016) (emphasis added):1281

The following equations refer to the different phases involved in each strategy:1282

Equation 1 (exploration phase):1283

𝜖𝑁

Equation 2 (exploitation phase):1284

(1 − 𝜖)𝑁

N is the number of trials given, and epsilon,1285

𝜖

, represents the subject’s uncertainty about the location of the reward, starting at complete1286

uncertainty (𝜖 = 1) at the beginning of the experiment and decreasing rapidly as individuals gain1287

experience with the task (exploration phase where the rewarded [option] is chosen below or at1288

chance levels) and switch to the exploitative phase (the rewarded [option] is chosen significantly1289

above chance levels). Because the [subjects] needed to learn the rules of the task, they necessarily1290

had an exploration phase. The epsilon-first strategy involves an exploration phase followed1291

by an entirely exploitative phase. The optimal strategy overall would be to explore one color in1292
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the first trial and the other color in the second trial, and then switch to an exploitative strategy1293

(choose the rewarded [option] significantly above chance levels). In this case there would be1294

no pattern [in the learning curve] in the choices [during] the exploration phase because it would1295

consist of sampling each [option] only once. In the epsilon-decreasing strategy, subjects would1296

start by making some incorrect choices and then increase their choice of the rewarded [option]1297

gradually as their uncertainty decreases until they choose the rewarded [option] significantly1298

above chance levels. In this case, a linear pattern emerges [in the learning curve] during the1299

exploration phase.1300

We will then quantitatively determine to what degree each bird used the exploration versus exploitation1301

strategy using methods in (Federspiel et al., 2017) by calculating the number of 20-trial blocks where birds1302

were choosing “randomly” (6-14 correct choices; called sampling blocks; akin to the exploration phase in our1303

preregistration) was divided by the total number of blocks to reach criterion per bird. This ratio was also1304

calculated for “acquisition” blocks where birds made primarily correct choices (15-20 correct choices; akin to1305

the exploitation phase in our preregistration). These ratios, calculated for each bird for their serial reversals,1306

quantitatively discern the exploration from the exploitation phases.1307

NOTE (Aug 2021): the grackles were tested in 10-trial blocks and not 20-trial blocks as in Federspiel et al.1308

(2017), which would mean that if there were <20 trials in the last block of a reversal, they would be omitted1309

from the analysis. Therefore, we changed the block size to 10 trials and adjusted the sampling blocks to 2-91310

correct choices, and the acquisition blocks to 9-10 correct choices using significance levels in the binomial1311

test as did Federspiel et al. (2017).1312

Alternative Analyses We anticipate that we will want to run additional/different analyses after reading1313

McElreath (2016). We will revise this preregistration to include these new analyses before conducting the1314

analyses above.1315

14 May 2020: After reading McElreath (2018) and taking McElreath’s stats course, we changed a couple1316

of things about the analysis plan in this preregistration (before we analyzed any of our data). These are the1317

changes we made:1318

1) Ability to detect actual effects: We added two simulations and hypothesis-specific models for P2. One1319

examines the relationship between the number of loci solved on the multi-access box and the number1320

of trials to reverse a preference. The other examines the latency to attempt another locus on the1321

multi-access box and the number of trials to reverse a preference.1322

2) P2: serial reversal improves rule switching and problem solving: In conducting point 1, we realized that1323

we had misinterpreted which variable should be the response variable in this analysis. We originally set1324

the number of trials to reverse as the response variable, however we should have instead set the number1325

of loci solved as the response variable and then planned to conduct a second model with the latency1326

to attempt a new locus as the response variable and number of trials as the explanatory variable. This1327

is because a) we manipulated the number of trials to reverse, therefore it must be the explanatory1328

variable; and b) they should be split into two models because of a and because these are two very1329

different relationships that should be considered in their own models. We also realized that Condition1330

(manipulated or control) does not need to be a variable in any of our models because the manipulated1331

birds have, by definition, faster reversal speeds. For these reasons, when we conduct the P2 analysis in1332

this preregistration, we will use the custom models we made in point 1 above rather than the planned1333

MCMCglmm model.1334

F. ETHICS1335

This research is carried out in accordance with permits from the:1336

1) US Fish and Wildlife Service (scientific collecting permit number MB76700A-0,1,2)1337

48



2) US Geological Survey Bird Banding Laboratory (federal bird banding permit number 23872)1338

3) Arizona Game and Fish Department (scientific collecting license number SP594338 [2017], SP6062671339

[2018], and SP639866 [2019])1340

4) Institutional Animal Care and Use Committee at Arizona State University (protocol number 17-1594R)1341

5) University of Cambridge ethical review process (non-regulated use of animals in scientific procedures:1342

zoo4/17 [2017])1343

G. AUTHOR CONTRIBUTIONS1344

Logan: Hypothesis development, protocol development, data collection, data analysis and interpretation,1345

write up, revising/editing, materials/funding.1346

Blaisdell: Prediction revision, assisted with programming the reversal learning touchscreen experiment,1347

protocol development, data interpretation, revising/editing.1348

Johnson-Ulrich: Prediction revision, programming, data collection, data interpretation, revising/editing.1349

Lukas: Hypothesis development, simulation development, data interpretation, revising/editing.1350

MacPherson: Data collection, data interpretation, revising/editing.1351

Seitz: Prediction revision, programmed the reversal learning touchscreen experiment, protocol development,1352

data interpretation, revising/editing.1353

Sevchik: Data collection, revising/editing.1354

McCune: Added MAB log experiment, protocol development, data collection, data interpretation, revis-1355

ing/editing, materials.1356

H. FUNDING1357

This research is funded by the Department of Human Behavior, Ecology and Culture at the Max Planck Insti-1358

tute for Evolutionary Anthropology (2017-current), and by a Leverhulme Early Career Research Fellowship1359

to Logan (2017-2018).1360

I. CONFLICT OF INTEREST DISCLOSURE1361

We, the authors, declare that we have no financial conflicts of interest with the content of this article. CJ1362

Logan is a Recommender and on the Managing Board at PCI Ecology.1363

J. ACKNOWLEDGEMENTS1364

We thank our PCI Ecology recommender, Aurelie Coulon, and reviewers, Maxime Dahirel and Andrea1365

Griffin, for their feedback on this preregistration; Kevin Langergraber for serving as our ASU IACUC PI;1366

Ben Trumble and Angela Bond for logistical support; Melissa Wilson for sponsoring our affiliations at1367

Arizona State University and lending lab equipment; Kristine Johnson for technical advice on great-tailed1368

grackles; Arizona State University School of Life Sciences Department Animal Care and Technologies for1369

providing space for our aviaries and for their excellent support of our daily activities; Julia Cissewski for1370

tirelessly solving problems involving financial transactions and contracts; Sophie Kaube for logistical support;1371

Richard McElreath for project support; Aaron Blackwell and Ken Kosik for being the UCSB sponsors of1372

the Cooperation Agreement with the Max Planck Institute for Evolutionary Anthropology; Tiana Lam,1373

Anja Becker, and Brynna Hood for interobserver reliability video coding: Sawyer Lung for field support;1374

Alexis Breen for coding multi-access box videos; and our research assistants: Aelin Mayer, Nancy Rodriguez,1375

Brianna Thomas, Aldora Messinger, Elysia Mamola, Michael Guillen, Rita Barakat, Adriana Boderash,1376

Olateju Ojekunle, August Sevchik, Justin Huynh, Jennifer Berens, Amanda Overholt, Michael Pickett, Sam1377

49



Munoz, Sam Bowser, Emily Blackwell, Kaylee Delcid, Sofija Savic, Brynna Hood, Sierra Planck, and Elise1378

Lange.1379

K. REFERENCES1380

Auersperg, A. M. I., Bayern, A. M. P. von, Gajdon, G. K., Huber, L., & Kacelnik, A. (2011). Flexibility in1381

problem solving and tool use of kea and New Caledonian crows in a multi access box paradigm. PLOS1382

ONE, 6(6), e20231. https://doi.org/10.1371/journal.pone.00202311383

Bartoń, K. (2020). MuMIn: Multi-model inference. https://CRAN.R-project.org/package=MuMIn1384

Bates, D., Maechler, M., & Bolker, B. (2012). lme4: Linear mixed-effects models using S4 classes (2011). R1385

package version 0.999375-42.1386

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4.1387

Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i011388

Bergstrom, C. T., & Lachmann, M. (2004). Shannon information and biological fitness. Information Theory1389

Workshop, 2004. IEEE, 50–54.1390

Blaisdell, A. P., & Cook, R. G. (2005). Integration of spatial maps in pigeons. Animal Cognition, 8(1), 7–16.1391

Blaisdell, A., Seitz, B., Rowney, C., Folsom, M., MacPherson, M., Deffner, D., & Logan, C. J. (2021). Do1392

the more flexible individuals rely more on causal cognition? Observation versus intervention in causal1393

inference in great-tailed grackles (version 5 of this preprint has been peer reviewed and recommended by1394

peer community in ecology [https://doi.org/10.24072/pci.ecology.100076]). https://doi.org/10.31234/osf.1395

io/z4p6s1396

Bussey, T. J., Padain, T. L., Skillings, E. A., Winters, B. D., Morton, A. J., & Saksida, L. M. (2008).1397

The touchscreen cognitive testing method for rodents: How to get the best out of your rat. Learning &1398

Memory, 15(7), 516–523.1399

Bürkner, P.-C., Gabry, J., Kay, M., & Vehtari, A. (2020). Posterior: Tools for working with posterior1400

distributions. Earthquake Spectra, R Package Version 0.1, 3.1401

Chow, P. K. Y., Lea, S. E., & Leaver, L. A. (2016). How practice makes perfect: The role of persistence,1402

flexibility and learning in problem-solving efficiency. Animal Behaviour, 112, 273–283. https://doi.org/1403

10.1016/j.anbehav.2015.11.0141404

Cohen, J. (1988). Statistical power analysis for the behavioral sciences 2nd edn. Erlbaum Associates,1405

Hillsdale.1406

Cook, R. G., Geller, A. I., Zhang, G.-R., & Gowda, R. (2004). Touchscreen-enhanced visual learning in rats.1407

Behavior Research Methods, Instruments, & Computers, 36(1), 101–106.1408

Diquelou, M. C., Griffin, A. S., & Sol, D. (2015). The role of motor diversity in foraging innovations: A1409

cross-species comparison in urban birds.1410

Drayton, L. A., & Santos, L. R. (2014). Insights into intraspecies variation in primate prosocial behavior:1411

Capuchins (cebus apella) fail to show prosociality on a touchscreen task. Behavioral Sciences, 4(2),1412

87–101.1413

Eddelbuettel, D., & François, R. (2011). Rcpp: Seamless R and C++ integration. Journal of Statistical1414

Software, 40(8), 1–18. https://doi.org/10.18637/jss.v040.i081415

Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using g* power1416

3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https:1417

//doi.org/10.3758/BRM.41.4.11491418

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* power 3: A flexible statistical power analysis1419

program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.1420

https://doi.org/10.3758/BF031931461421

50

https://doi.org/10.1371/journal.pone.0020231
https://CRAN.R-project.org/package=MuMIn
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.31234/osf.io/z4p6s
https://doi.org/10.31234/osf.io/z4p6s
https://doi.org/10.31234/osf.io/z4p6s
https://doi.org/10.1016/j.anbehav.2015.11.014
https://doi.org/10.1016/j.anbehav.2015.11.014
https://doi.org/10.1016/j.anbehav.2015.11.014
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.3758/BRM.41.4.1149
https://doi.org/10.3758/BRM.41.4.1149
https://doi.org/10.3758/BRM.41.4.1149
https://doi.org/10.3758/BF03193146


Federspiel, I. G., Garland, A., Guez, D., Bugnyar, T., Healy, S. D., Güntürkün, O., & Griffin, A. S. (2017).1422

Adjusting foraging strategies: A comparison of rural and urban common mynas (acridotheres tristis).1423

Animal Cognition, 20(1), 65–74.1424

Gabry, J., & Češnovar, R. (2021). Cmdstanr: R interface to ’CmdStan’.1425

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in bayesian1426

workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 389–402.1427

Gamer, M., Lemon, J., Gamer, M. M., Robinson, A., & Kendall’s, W. (2012). Package ‘irr.’ Various1428

Coefficients of Interrater Reliability and Agreement.1429

Greggor, A. L., Berger-Tal, O., Blumstein, D. T., Angeloni, L., Bessa-Gomes, C., Blackwell, B. F., St Clair,1430

C. C., Crooks, K., Silva, S. de, Fernández-Juricic, E., & others. (2016). Research priorities from animal1431

behaviour for maximising conservation progress. Trends in Ecology & Evolution, 31(12), 953–964.1432

Griffin, A. S., & Guez, D. (2014). Innovation and problem solving: A review of common mechanisms.1433

Behavioural Processes, 109, 121–134. https://doi.org/10.1016/j.beproc.2014.08.0271434

Griffin, A. S., Guez, D., Federspiel, I., Diquelou, M., & Lermite, F. (2016). Invading new environments:1435

A mechanistic framework linking motor diversity and cognition to establishment success. Biological1436

Invasions and Animal Behaviour, 26e46.1437

Griffin, A. S., Guez, D., Lermite, F., & Patience, M. (2013). Tracking changing environments: Innovators1438

are fast, but not flexible learners. PloS One, 8(12), e84907.1439

Hadfield, J. (2014). MCMCglmm course notes. http://cran.r-project.org/web/packages/MCMCglmm/1440

vignettes/CourseNotes.pdf1441

Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed models: The MCM-1442

Cglmm R package. Journal of Statistical Software, 33(2), 1–22. http://www.jstatsoft.org/v33/i02/1443

Hartig, F. (2019). DHARMa: Residual diagnostics for hierarchical (multi-level / mixed) regression models.1444

http://florianhartig.github.io/DHARMa/1445

Hlavac, M. (2018). Stargazer: Well-formatted regression and summary statistics tables. Central European1446

Labour Studies Institute (CELSI). https://CRAN.R-project.org/package=stargazer1447

Homberg, J. R., Pattij, T., Janssen, M. C., Ronken, E., De Boer, S. F., Schoffelmeer, A. N., & Cuppen, E.1448

(2007). Serotonin transporter deficiency in rats improves inhibitory control but not behavioural flexibility.1449

European Journal of Neuroscience, 26(7), 2066–2073.1450

Hutcheon, J. A., Chiolero, A., & Hanley, J. A. (2010). Random measurement error and regression dilution1451

bias. Bmj, 340, c2289. https://doi.org/10.1136/bmj.c22891452

Isden, J., Panayi, C., Dingle, C., & Madden, J. (2013). Performance in cognitive and problem-solving tasks1453

in male spotted bowerbirds does not correlate with mating success. Animal Behaviour, 86(4), 829–838.1454

Jolly, C. J., Kelly, E., Gillespie, G. R., Phillips, B., & Webb, J. K. (2018). Out of the frying pan: Rein-1455

troduction of toad-smart northern quolls to southern kakadu national park. Austral Ecology, 43(2),1456

139–149.1457

Kangas, B. D., & Bergman, J. (2017). Touchscreen technology in the study of cognition-related behavior.1458

Behavioural Pharmacology, 28(8), 623. https://doi.org/10.1097/FBP.00000000000003561459

Lajeunesse, M. J., Koricheva, J., Gurevitch, J., & Mengersen, K. (2013). Recovering missing or partial data1460

from studies: A survey of conversions and imputations for meta-analysis. Handbook of Meta-Analysis in1461

Ecology and Evolution, 195–206.1462

Lefebvre, L., Whittle, P., Lascaris, E., & Finkelstein, A. (1997). Feeding innovations and forebrain size in1463

birds. Animal Behaviour, 53(3), 549–560. https://doi.org/10.1006/anbe.1996.03301464

Lin, G. (2020). Reactable: Interactive data tables based on ’react table’. https://CRAN.R-project.org/1465

package=reactable1466

51

https://doi.org/10.1016/j.beproc.2014.08.027
http://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf
http://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf
http://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf
http://www.jstatsoft.org/v33/i02/
http://florianhartig.github.io/DHARMa/
https://CRAN.R-project.org/package=stargazer
https://doi.org/10.1136/bmj.c2289
https://doi.org/10.1097/FBP.0000000000000356
https://doi.org/10.1006/anbe.1996.0330
https://CRAN.R-project.org/package=reactable
https://CRAN.R-project.org/package=reactable
https://CRAN.R-project.org/package=reactable


Liu, Y., Day, L. B., Summers, K., & Burmeister, S. S. (2016). Learning to learn: Advanced behavioural1467

flexibility in a poison frog. Animal Behaviour, 111, 167–172.1468

Logan, C. J. (2016). Behavioral flexibility in an invasive bird is independent of other behaviors. PeerJ, 4,1469

e2215.1470

Logan, C. J., Avin, S., Boogert, N., Buskell, A., Cross, F. R., Currie, A., Jelbert, S., Lukas, D., Mares, R.,1471

Navarrete, A. F., & others. (2018). Beyond brain size: Uncovering the neural correlates of behavioral1472

and cognitive specialization. Comparative Cognition & Behavior Reviews.1473

Logan, C. J., Blaisdell, A., Johnson-Ulrich, Z., Lukas, D., MacPherson, M., Seitz, B., Sevchik, A., & McCune,1474

K. B. (2021). Reversal learning and multi-access box data for great-tailed grackles. Knowledge Network1475

for Biocomplexity, Data package.1476

Logan, C. J., Blaisdell, A., Johnson-Ulrich, Z., Lukas, D., MacPherson, M., Seitz, B., Sevchik, A., & McCune,1477

K. B. (2021). Reversal learning and multi-access box data for great-tailed grackles. Knowledge Network1478

for Biocomplexity, Data package.1479

Logan, C. J., McCune, K., MacPherson, M., Johnson-Ulrich, Z., Rowney, C., Seitz, B., Blaisdell, A., Deffner,1480

D., & Wascher, C. (2021). Are the more flexible great-tailed grackles also better at behavioral inhibition?1481

https://doi.org/10.31234/osf.io/vpc391482

Logan, CJ, McCune, KB, Chen, N, & Lukas, D. (2020). Implementing a rapid geographic range expansion1483

- the role of behavior and habitat changes. In Principle Acceptance by PCI Ecology of the Version on 61484

Oct 2020. http://corinalogan.com/Preregistrations/gxpopbehaviorhabitat.html1485

Manrique, H. M., Völter, C. J., & Call, J. (2013). Repeated innovation in great apes. Animal Behaviour,1486

85(1), 195–202. https://doi.org/10.1016/j.anbehav.2012.10.0261487

McCune, KB, MacPherson, M, Rowney, C, Bergeron, L, Folsom, M, & Logan, C. (2019). Is behavioral flexi-1488

bility linked with exploration, but not boldness, persistence, or motor diversity? In Principle Acceptance1489

by PCI Ecology of the Version on 27 Mar 2019. http://corinalogan.com/Preregistrations/g_exploration.1490

html1491

McElreath, R. (2016). Statistical rethinking: A bayesian course with examples in r and stan. CRC Press.1492

https://doi.org/10.1201/97813153724951493

McElreath, R. (2018). Statistical rethinking: A bayesian course with examples in r and stan. Chapman;1494

Hall/CRC.1495

McElreath, R. (2020). Rethinking: Statistical rethinking book package.1496

McInerney, R. E. (2010). Multi-armed bandit bayesian decision making. Univ. Oxford, Oxford, Tech. Rep.1497

Mikhalevich, I., Powell, R., & Logan, C. (2017). Is behavioural flexibility evidence of cognitive complexity?1498

How evolution can inform comparative cognition. Interface Focus, 7(3), 20160121. https://doi.org/10.1499

1098/rsfs.2016.01211500

Moseby, K. E., Cameron, A., & Crisp, H. A. (2012). Can predator avoidance training improve reintroduction1501

outcomes for the greater bilby in arid australia? Animal Behaviour, 83(4), 1011–1021.1502

O’Hara, M., Huber, L., & Gajdon, G. K. (2015). The advantage of objects over images in discrimination1503

and reversal learning by kea, nestor notabilis. Animal Behaviour, 101, 51–60.1504

R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical1505

Computing. https://www.R-project.org1506

Revelle, W. (2014). Psych: Procedures for psychological, psychometric, and personality research. North-1507

western University, Evanston, Illinois, 165, 1–10.1508

Revelle, W. (2017). Psych: Procedures for psychological, psychometric, and personality research. North-1509

western University. https://CRAN.R-project.org/package=psych1510

52

https://doi.org/10.31234/osf.io/vpc39
http://corinalogan.com/Preregistrations/gxpopbehaviorhabitat.html
https://doi.org/10.1016/j.anbehav.2012.10.026
http://corinalogan.com/Preregistrations/g_exploration.html
http://corinalogan.com/Preregistrations/g_exploration.html
http://corinalogan.com/Preregistrations/g_exploration.html
https://doi.org/10.1201/9781315372495
https://doi.org/10.1098/rsfs.2016.0121
https://doi.org/10.1098/rsfs.2016.0121
https://doi.org/10.1098/rsfs.2016.0121
https://www.R-project.org
https://CRAN.R-project.org/package=psych


Ross, A. K., Letnic, M., Blumstein, D. T., & Moseby, K. E. (2019). Reversing the effects of evolutionary1511

prey naiveté through controlled predator exposure. Journal of Applied Ecology, 56(7), 1761–1769.1512

Sawa, K., Leising, K. J., & Blaisdell, A. P. (2005). Sensory preconditioning in spatial learning using a touch1513

screen task in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 31(3), 368.1514

Seitz, B. M., McCune, K., MacPherson, M., Bergeron, L., Blaisdell, A. P., & Logan, C. J. (2021). Using1515

touchscreen equipped operant chambers to study animal cognition. Benefits, limitations, and advice.1516

PloS One, 16(2), e0246446.1517

Shaw, R. C., Boogert, N. J., Clayton, N. S., & Burns, K. C. (2015). Wild psychometrics: Evidence for1518

‘general’cognitive performance in wild new zealand robins, petroica longipes. Animal Behaviour, 109,1519

101–111.1520

Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P., & Lefebvre, L. (2005). Big brains, enhanced cognition,1521

and response of birds to novel environments. Proceedings of the National Academy of Sciences of the1522

United States of America, 102(15), 5460–5465. https://doi.org/10.1073/pnas.04081451021523

Sol, D., & Lefebvre, L. (2000). Behavioural flexibility predicts invasion success in birds introduced to new1524

zealand. Oikos, 90(3), 599–605. https://doi.org/10.1034/j.1600-0706.2000.900317.x1525

Sol, D., Székely, T., Liker, A., & Lefebvre, L. (2007). Big-brained birds survive better in nature. Proceedings1526

of the Royal Society of London B: Biological Sciences, 274(1611), 763–769.1527

Sol, D., Timmermans, S., & Lefebvre, L. (2002). Behavioural flexibility and invasion success in birds. Animal1528

Behaviour, 63(3), 495–502.1529

Stan Development Team. (2020). RStan: The R interface to Stan. http://mc-stan.org/1530

Tetzlaff, S. J., Sperry, J. H., & DeGregorio, B. A. (2019). Effects of antipredator training, environmental1531

enrichment, and soft release on wildlife translocations: A review and meta-analysis. Biological Conser-1532

vation, 236, 324–331.1533

Ushey, K., Allaire, J., Wickham, H., & Ritchie, G. (2020). Rstudioapi: Safely access the RStudio API.1534

https://CRAN.R-project.org/package=rstudioapi1535

Wehtje, W. (2003). The range expansion of the great-tailed grackle (quiscalus mexicanus gmelin) in north1536

america since 1880. Journal of Biogeography, 30(10), 1593–1607. https://doi.org/10.1046/j.1365-2699.1537

2003.00970.x1538

West, R., Letnic, M., Blumstein, D. T., & Moseby, K. E. (2018). Predator exposure improves anti-predator1539

responses in a threatened mammal. Journal of Applied Ecology, 55(1), 147–156.1540

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://1541

ggplot2.tidyverse.org1542

Wickham, H., François, R., Henry, L., & Müller, K. (2021). Dplyr: A grammar of data manipulation.1543

https://CRAN.R-project.org/package=dplyr1544

Wilke, C. (n.d.). Cowplot: Streamlined plot theme and plot annotations for ‘ggplot2.’ R package version1545

0.9. 2; 2017. URL Https://CRAN. R-Project. Org/Package= Cowplot.1546

Wolf, J. E., Urbano, C. M., Ruprecht, C. M., & Leising, K. J. (2014). Need to train your rat? There is an1547

app for that: A touchscreen behavioral evaluation system. Behavior Research Methods, 46(1), 206–214.1548

Xie, Y. (2013). Knitr: A general-purpose package for dynamic report generation in r. R Package Version,1549

1(7).1550

Xie, Y. (2017). Dynamic documents with r and knitr. Chapman; Hall/CRC.1551

Xie, Y. (2018). Knitr: A comprehensive tool for reproducible research in r. In Implementing reproducible1552

research (pp. 3–31). Chapman; Hall/CRC.1553

Xie, Y. (2019). formatR: Format r code automatically. https://CRAN.R-project.org/package=formatR1554

53

https://doi.org/10.1073/pnas.0408145102
https://doi.org/10.1034/j.1600-0706.2000.900317.x
http://mc-stan.org/
https://CRAN.R-project.org/package=rstudioapi
https://doi.org/10.1046/j.1365-2699.2003.00970.x
https://doi.org/10.1046/j.1365-2699.2003.00970.x
https://doi.org/10.1046/j.1365-2699.2003.00970.x
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=formatR


Zhu, H. (2021). kableExtra: Construct complex table with ’kable’ and pipe syntax. https://CRAN.R-1555

project.org/package=kableExtra1556

54

https://CRAN.R-project.org/package=kableExtra
https://CRAN.R-project.org/package=kableExtra
https://CRAN.R-project.org/package=kableExtra

	ABSTRACT
	Video summary
	INTRODUCTION
	HYPOTHESES
	ASSOCIATED PREREGISTRATION
	DEVIATIONS FROM THE PREREGISTRATION

	RESULTS
	P1: reversal speed gets faster with serial reversals
	P2: serial reversals improve rule switching and problem solving on the MAB
	P2 alternative 2 (additional analysis): latency and motor diversity
	P3a: reversal is repeatable within individuals within a context
	P3b: not repeatable across contexts
	P4: serial reversal learning strategy
	Post-hoc, unregistered exploratory analyses to investigate the effect the flexibility manipulation had on performance

	DISCUSSION
	The flexibility manipulation worked
	Serial reversals affected performance on both multi-access boxes
	Repeatability of flexibility and reversal learning strategies
	Why did performance on a touchscreen vary so drastically from a traditional approach?
	Conclusion

	METHODS
	A. STATE OF THE DATA
	B. PARTITIONING THE RESULTS
	D. METHODS
	E. ANALYSIS PLAN
	F. ETHICS
	G. AUTHOR CONTRIBUTIONS
	H. FUNDING
	I. CONFLICT OF INTEREST DISCLOSURE
	J. ACKNOWLEDGEMENTS
	K. REFERENCES


