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ABSTRACT21

Behavioral flexibility, the ability to adapt behavior to new circumstances, is thought to play an important22

role in a species’ ability to successfully adapt to new environments and expand its geographic range. However,23

flexibility is rarely directly tested in a way that would allow us to determine how flexibility works to predict24

a species’ ability to adapt their behavior to new environments. We use great-tailed grackles (Quiscalus25

mexicanus; a bird species) as a model to investigate this question because they have recently rapidly expanded26

their range into North America. We attempted to manipulate grackle flexibility using shaded (light and dark27

gray) tube reversal learning to determine whether flexibility is generalizable across contexts (multi-access28

box), and what learning strategies grackles employ. We found that flexibility was manipulable: birds in the29

manipulated group took fewer trials to pass criterion with increasing reversal number, and they reversed a30

shade preference in fewer trials by the end of their serial reversals compared to control birds who had only31

one reversal. Birds that passed their last reversal faster were also more flexible (faster to switch between loci)32

and innovative (solved more loci) on a multi-access box. All grackles in the manipulated reversal learning33

group used one learning strategy (epsilon-decreasing) in all reversals, and none used a particular exploration34

or exploitation strategy earlier or later in their serial reversals. Understanding how flexibility causally relates35
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to other traits will allow researchers to develop robust theory about what flexibility is and when to invoke36

it as a primary driver in a given context, such as a rapid geographic range expansion.37

Video summary38

INTRODUCTION39

Behavioral flexibility, the ability to adapt behavior to new circumstances through packaging information and40

making it available to other cognitive processes (see Mikhalevich et al., 2017 for the theoretical background41

on this definition), is thought to play an important role in a species’ ability to successfully adapt to new42

environments and expand its geographic range (e.g., Lefebvre et al., 1997; Sol et al., 2002, 2005, 2007; Sol43

& Lefebvre, 2000). The behavioral flexibility (hereafter referred to as flexibility) of individuals is considered44

an important trait that facilitates the capacity for learning, which is then associated with problem solving45

ability (applying what one has learned about the world to then attempt to access a resource that is not46

readily accessible) (see review in Lea et al., 2020). It is hypothesized that, through flexibility, individuals47

can increase the diversity of their behaviors either via asocial learning (innovativeness) or social learning,48

leading to the establishment of the population in a new area (Wright et al., 2010).49

It is predicted that flexibility should positively relate with innovativeness, the ability to create a new behavior50

or use an existing behavior in a new situation (Griffin & Guez, 2014). However, these predictions are based51

on species-level data and proxies for flexibility and for innovation (e.g., brain size, number of anecdotal52

reports of “novel” foods consumed) when examining such relationships (see Logan et al., 2018). Flexibility is53

rarely directly tested in species that are rapidly expanding their geographic ranges in a way that would allow54

us to determine how flexibility works and predict a species’ ability to adapt their behavior to new areas.55

Those investigations that examine the relationship between flexibility and innovation or problem solving in56

species that are expanding their range show mixed results, with these variables correlating positively (e.g.,57

grey squirrels: Chow et al., 2016), negatively (e.g., Indian mynas: Griffin et al., 2013), or not at all (e.g.,58

stick tool use and string pulling in great-tailed grackles: Logan, 2016). Problem solving in these contexts59

involves experimental assays that do not necessarily require innovativeness to solve (e.g., the ability to solve60

tasks using pre-trained behaviors: Griffin & Guez, 2014). However, none of these experiments manipulated61

flexibility.62

Here, we take the first step to improving our understanding of whether and how flexibility relates to innova-63

tiveness by starting with one population and performing a manipulative experiment on one of the variables to64

determine whether there is an associated change in the other. Once this association is known, future research65

can then investigate whether flexibility and innovativeness are involved in a range expansion. Manipulative66

experiments go beyond correlations to infer a cause and effect relationship between the manipulated variable67

and the variable(s) measured after the manipulation (Hernán & Robins, 2006; McElreath, 2020). A ma-68

nipulative experiment combined with the random assignment of subjects to a condition (manipulated group69

or control group), eliminates many confounds associated with internal and external variation (for example,70

season, motivation, sex, and so on). Such manipulative experiments in behavioral ecology have primarily71

been conducted in laboratory settings because of the increased feasibility, however such experiments are now72

also being conducted in wild settings (e.g., Aplin et al., 2015).73

We focused our study on one population of great-tailed grackles (Quiscalus mexicanus, hereafter grackles),74

a bird species that is flexible (Logan, 2016). While they are originally from Central America, grackles75

have rapidly expanded their geographic range across the US since 1880 (Summers et al., 2023; Wehtje,76

2003). We attempted to manipulate grackle flexibility using serial reversals of a shade (light or dark gray)77

preference to determine whether their flexibility is generalizable across additional experimental contexts78

(touchscreen reversal learning and multi-access box solution switching), whether improving flexibility also79

improves innovativeness (number of loci solved on a multi-access box), and what learning strategies grackles80

employ (Figure 1).81

Reversal learning is a common way of measuring flexibility that has been used for many decades across82

many species, therefore lending itself well to comparative analyses and generalizations (see review in Lea83
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et al., 2020). In this test, an individual learns to prefer the rewarded option, which differs from the non-84

rewarded option in shade/color, shape, space, or another discriminable feature. Once this initial preference is85

formed, the previously non-rewarded option becomes the rewarded option and vice versa, and the preference86

is reversed. Individuals who are faster to reverse their preference are considered more flexible - better able to87

change their behavior when the circumstances change. Serial reversal learning involves continuing to reverse88

the preference back and forth to determine whether individuals learn a “win-stay, lose-shift” rule that, when89

the reward no longer follows the expected option, they should switch to preferring the other option (Spence,90

1936; J. Warren, 1965; J. M. Warren, 1965). Once this rule is learned, it can then be applied to new contexts91

and result in improved performance over individuals who have not learned this rule (J. M. Warren, 1965).92

We randomly assigned individuals to a manipulated or control condition and used serial reversals (for the93

manipulated group) to attempt to manipulate flexibility and determine whether the manipulated individuals94

were then more flexible and more innovative in other contexts.95

If grackle flexibility is manipulable using serial reversals, this would provide us with a useful tool for investi-96

gating the relationship between flexibility and any number of other variables implicated in geographic range97

expansions. It would provide researchers with a way to examine the direct links between, for example, flexi-98

bility and exploration, to determine whether they are connected and in which direction, which could provide99

insights into how populations establish in a new location if cross-population manipulations were conducted.100

If the flexibility manipulation is not successful, this could indicate either that we did not manipulate the101

right aspect of flexibility (e.g., perhaps training them to solve a variety of different types of tasks quickly102

would be more effective) or that grackle flexibility is not a trait that is trainable.103

104

Figure 1. A visual illustration of Hypothesis 1 (A), Hypothesis 2 (B), and Hypothesis 4 (C). Longer black105

arrows indicate slower reversal times, the two yellow circles represent experience with the two yellow tubes106

that both contained food for the control group.107

3



PREREGISTERED HYPOTHESES108

H1: Behavioral flexibility, as measured by reversal learning using colored tubes, is manipulable.109

• Prediction 1: Individuals improve their flexibility on a serial reversal learning task using shaded110

tubes by generally requiring fewer trials to reverse a preference as the number of reversals increases111

(manipulation condition). Their flexibility on this test is manipulated relative to control birds who do112

not undergo serial reversals. Instead, individuals in the control condition are matched to manipulated113

birds for experience (they experience a similar number of trials), but there is no possibility of a114

functional tube preference because both tubes are the same shade (yellow) and both contain food,115

therefore either choice is correct.116

• P1 alternative 1: If the number of trials to reverse a preference does not correlate with or positively117

correlates with reversal number, which would account for all potential correlation outcomes, this sug-118

gests that some individuals may prefer to rely on information acquired previously (i.e., they are slow119

to reverse) rather than relying on current cues (e.g., the food is in a new location) (Griffin & Guez,120

2014; Liu et al., 2016; e.g., Manrique et al., 2013; but see Homberg et al., 2007).121

H2: Manipulating behavioral flexibility (improving reversal learning speed through serial re-122

versals using shaded tubes) improves flexibility (rule learning and/or switching) and innova-123

tiveness in a new context (two distinct multi-access boxes and serial reversals on a touchscreen).124

• P2: Individuals that have improved their flexibility on a serial reversal learning task using shaded125

tubes (requiring fewer trials to reverse a preference as the number of reversals increases) are faster to126

switch between new methods of solving (latency to solve or attempt to solve a new way of accessing127

the food [locus]), and learn more new loci (higher total number of solved loci) on multi-access box128

flexibility tasks, and are faster to reverse preferences in a serial reversal task using a touchscreen than129

individuals in the control group where flexibility has not been manipulated. The positive correlation130

between reversal learning performance using shaded tubes and a touchscreen (faster birds have fewer131

trials) and the multi-access boxes (faster birds have lower latencies) indicates that all three tests132

measure the same ability even though the multi-access boxes require inventing new rules to solve new133

loci (while potentially learning a rule about switching: “when an option becomes non-functional, try134

a different option”) while reversal learning requires switching between two rules (“choose light gray”135

or “choose dark gray”) or learning the rule to “switch when the previously rewarded option no longer136

contains a reward”. Serial reversals eliminate the confounds of exploration, inhibition, and persistence137

in explaining reversal learning speed because, after multiple reversals, what is being measured is the138

ability to learn one or more rules. If the manipulation works, this indicates that flexibility can be139

influenced by previous experience and might indicate that any individual has the potential to move140

into new environments (see relevant hypotheses in preregistrations on genetics (R1) and expansion141

(H1).142

• P2 alternative 1: If the manipulation does not work in that those individuals in the experimental143

condition do not reverse faster than control individuals, then this experiment elucidates whether general144

individual variation in flexibility relates to flexibility in new contexts (two distinct multi-access boxes145

and serial reversals on a touchscreen) as well as innovativeness (multi-access boxes). The prediction146

is the same as in P2, but in this case variation in flexibility is constrained by traits inherent to the147

individual (some of which are tested in McCune KB et al., 2019), which suggests that certain individuals148

will be more likely to move into new environments.149

• P2 alternative 2: If there is no correlation between reversal learning speed (shaded tubes) and the150

latency to solve/attempt a new locus on the multi-access boxes, this could be because the latency151

to solve not only measures flexibility but also innovativeness. In this case, an additional analysis is152

run with the latency to solve as the response variable, to determine whether the fit of the model (as153

determined by the lower AIC value) with reversal learning as an explanatory variable is improved if154
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motor diversity (the number of different motor actions used when attempting to solve the multi-access155

box) is included as an explanatory variable (see Diquelou et al., 2015; Griffin et al., 2016). If the156

inclusion of motor diversity improves the model fit, then this indicates that the latency to solve a157

new locus on the multi-access box is influenced by flexibility (reversal learning speed) and innovation158

(motor diversity).159

• P2 alternative 3: If there is a negative correlation or no correlation between reversal learning speed160

on shaded tubes and reversal learning speed on the touchscreen, then this indicates that it may be161

difficult for individuals to perceive and/or understand images on the touchscreen in contrast with162

physical objects (shaded tubes) (e.g., O’Hara et al., 2015).163

H3: Behavioral flexibility within a context is repeatable within individuals.164

This hypothesis from the original preregistration is now being treated in a separate manuscript (K. McCune165

et al., 2022).166

H4: Individuals should converge on an epsilon-first learning strategy (learn the correct choice167

after one trial) as they progress through serial reversals.168

• P4: Individuals prefer a mixture of learning strategies in the first serial reversals (an epsilon-decreasing169

strategy where individuals explore both options extensively before learning to prefer the rewarded op-170

tion, and an epsilon-first strategy where the correct choice is consistently made after the first trial),171

and then move toward the epsilon-first learning strategy. The epsilon-first strategy works better later172

in the serial reversals where the reward is all or nothing because individuals have learned the environ-173

ment is changing in predictable ways (Bergstrom & Lachmann, 2004): only one option is consistently174

rewarded, and if the reward isn’t in the previously rewarded option, it must be in the other option.175

• P4 alternative 1: Individuals continue to prefer a mixture of learning strategies, and/or they do not176

converge on the more functional epsilon-first learning strategy, regardless of how many reversals they177

participate in. This pattern could suggest that the grackles do not attend to functional meta-strategies,178

that is, they do not learn the overarching rule (once food is found in the non-preferred tube, one must179

switch to preferring that tube shade), but rather they learn each preference change as if it was new.180

METHODS181

This study is based on a preregistration that received in principle acceptance at PCI Ecology (PDF version),182

which included a description of the analyses we initially planned to perform. In the following, we first outline183

the rationale for any changes from the preregistered methods before describing the methods that were used184

to derive the results presented here.185

Changes after pilot data were collected and before the actual data collection began186

1) We initially (in 2017) set the serial reversal passing criterion as the following. During the data collection187

period, the number of trials required to reverse a preference will be documented per bird, and reversals188

will continue until the first batch of birds tested reaches an asymptote (i.e., there are negligible further189

decreases in the number of trials required to reverse a preference). The number of reversals to reach the190

asymptote will be the number of reversals that subsequent birds experience. Due to delays in setting191

up the field site, we were only able to test two grackles in early 2018 (January through April) and,192

due to randomization, only one (Fajita) was in the experimental condition that involved undergoing193

the flexibility manipulation (Empanada was in the control condition). While Fajita’s reversal speeds194

generally improved with increasing serial reversals, she never reached an asymptote (which we defined195

as passing three consecutive reversals in the same number of trials), even after 38 reversals. These 38196

reversals took 2.5 months, which is an impractical amount of time if birds are to participate in the rest197

of the test battery (multi-access box, detour, causal cognition, go no-go, reversal on a touchscreen)198
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after undergoing the reversal manipulation (we were initially permitted to keep them in aviaries for up199

to three months per bird, which we extended to 6 months per bird in Dec 2018). Because our objective200

in this experiment was to manipulate an individual’s flexibility, we decided to revise our serial reversal201

passing criterion to something more species relevant based on Fajita’s serial reversal performance and202

the performance of seven grackles in Santa Barbara who underwent only one reversal in 2014 and 2015203

(Logan, 2016). The revised serial reversal passing criterion was: passing two reversals in a204

row at or under 50 trials. 50 trials is fewer trials than any of the nine grackles required to pass205

their first reversal (range 70-130), therefore it should reflect an improvement in flexibility.206

Changes at the beginning of data collection207

2) Reversal learning shaded tube choice criterion. At the beginning of the second bird’s initial discrim-208

ination in the reversal learning shaded tube experiment (October 2018), we revised the criterion for209

what counts as a choice from A) the bird’s head needs to pass an invisible line on the table that ran210

perpendicular to the the tube opening to B) the bird needs to bend its body or head down to211

look in the tube (see B demonstrated in Figure 2). Criterion A resulted in birds making more choices212

than the number of learning opportunities they were exposed to (because they could not see whether213

there was food in the tube unless they bent their head down to look in the tube) and appeared to214

result in slower learning. It is important that one choice equals one learning opportunity, therefore we215

revised the choice criterion to the latter. Anecdotally, this choice matters because the first three birds216

in the experiment (Tomatillo, Chalupa, and Queso) learned faster than the pilot birds (Empanada and217

Fajita) in their initial discriminations and first reversals. Thus, it was an important change to make at218

the beginning of the experiment (after testing the two pilot birds and before collecting any data that219

were included in analyses).220

221
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Figure 2. Tzanatl preciosa bending down to look into the dark gray tube.222

3) Criterion to pass the control condition: Before collecting experimental data, we set the number of trials223

experienced by the birds in the control group as 1100 because this is how many trials it would have224

taken the pilot bird in the manipulated group, Fajita, to pass serial reversals 2-17 according to our225

revised serial reversal passing criterion. However, after 25 and 17 days (after Tomatillo and Queso’s226

first reversals, respectively) of testing the first two individuals in the control group, it became apparent227

that 1100 trials is impractical given the time constraints for how long we were permitted to keep each228

bird temporarily in captivity and would prevent birds from completing the test battery before their229

release. Additionally, after revising the choice criterion, it was going to be likely that birds in the230

manipulated group would require fewer than 1100 trials to meet the serial reversal passing criterion.231

Therefore, reducing the number of trials the control birds experience would result in a better match of232

experience with birds in the manipulated group. On 2 November 2018 we set the number of trials233

control birds experience after their first (and only) reversal to the number of trials it requires234

the first bird in the manipulated group to pass (the first bird had not passed yet, therefore we did235

not yet know what this number was). After more individuals in the manipulated group passed, we236

updated this number to the average number of trials to pass. This applied to all birds in the control237

condition, except Mofongo. Mofongo (control condition) was a slow participator and would not have238

finished his test battery by the time it got too hot to keep birds in the aviaries if we used the current239

average number of trials (420). Instead, we matched him with the fastest bird in the manipulated240

group (Habanero=290 trials) to make it more likely that Mofongo could get through the rest of the241

test battery in time.242

Changes in the middle of data collection243

4) 10 April 2019, we discontinued the reversal learning experiment on the touchscreen because244

it appeared to measure something other than what we intended to test and it required a huge time245

investment for each bird (which consequently reduced the number of other tests they were available246

to participate in). This is not necessarily surprising because this was the first time touchscreen tests247

have been conducted in this species, and also the first time (to our knowledge) this particular reversal248

experiment has been conducted on a touchscreen with birds. We based this decision on data from249

four grackles (2 in the flexibility manipulation group and 2 in the flexibility control group; 3 males250

and 1 female). All four of these individuals showed highly inconsistent learning curves and required251

hundreds more trials to form each preference when compared to the performance of these individuals252

on the shaded tube reversal experiment. It appeared that there was a confounding variable with253

the touchscreen such that they were extremely slow to learn a preference as indicated by passing our254

criterion of 17 correct trials out of the most recent 20. We did not include the data from this experiment255

when conducting the cross-test comparisons in the Analysis Plan section of the preregistration. Instead,256

in Supplementary Material 4, we provided summary results for this experiment and, in the Discussion,257

qualitatively compared it with performance on the shaded tube reversal test to explain what might258

have confounded the touchscreen experiment.259

5) 16 April 2019, because we discontinued the touchscreen reversal learning experiment, we added an260

additional but distinct multi-access box task, which allowed us to continue to measure flexibility261

across three different experiments. There are two main differences between the first multi-access box,262

which is made of plastic, and the new multi-access box, which is made of wood. First, the wooden263

multi-access box is a natural log in which we carved out 4 compartments. As a result, the apparatus and264

solving options are more comparable to what grackles experience in the wild, though each compartment265

is covered by a transparent plastic door that requires different behaviors to open. Furthermore, there266

is only one food item available in the plastic multi-access box and the bird could use any of 4 loci267

to reach it. In contrast, the wooden multi-access box has a piece of food in each of the 4 separate268

compartments.269

Updates and changes post data collection, pre-data analysis270
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6) We completed our simulation to explore the lower boundary of a minimum sample size and determined271

that our sample size for the Arizona study site is above the minimum (see details and code272

in Supplementary Material 1; 17 April 2020).273

7) Please see our Alternative Analyses section in the preregistration where we stated that we would274

learn and implement Bayesian models, which resulted in our changing the analysis for P2 and275

that we are replacing this analysis with the new models in the Ability to detect actual effects section276

(Supplementary Material 1; 14 May 2020). We also describe in SM1 that we realized that Condition277

(manipulated or control) does not need to be a variable in our models because our analyses in P1278

demonstrate that the manipulation causally changed reversal speeds, which is the key assumption in279

P2.280

8) We originally planned on testing only adults to have a better understanding of what the species is281

capable of, assuming the abilities we are testing are at their optimal levels in adulthood, and so we282

could increase our statistical power by eliminating the need to include age as an independent variable283

in the models. Because the grackles in Arizona were extremely difficult to catch, we ended up testing284

two juveniles: Taco and Chilaquile. We did not conduct the full test battery with Taco or put him in285

the flexibility manipulation or control groups (he received 1 reversal and then moved on to the next286

test) because he was the first juvenile and we wanted to see whether his performance was different287

from adult performances. His performances were similar to the adults, therefore we decided to put288

Chilaquile in the full test battery. Chilaquile’s performances were also similar to the adults, therefore289

we decided not to add age as an independent variable in the models to avoid reducing our statistical290

power.291

9) We removed experimenter as a random effect from all analyses because the interobserver relia-292

bility scores were so high, indicating there was no difference between experimenters, therefore we could293

keep our models simpler by leaving this variable out.294

10) P2 alternative 2: We used the average latency rather than the number of trials to attempt a295

new locus because this would make the model comparable with the model in P2. Using the number296

of trials was an artifact from a previous version and we had missed updating this. We omitted the297

number of trials to solve a new locus as described in the deviation from the plan in P2 above. We used298

a GLM rather than a GLMM because there was only one data point per bird (note that there would299

have been only one data point per bird in the preregistration as well, but we didn’t realize this until300

after in principle acceptance).301

11) P4 (Aug 2021): The grackles were tested in 10-trial blocks and not 20-trial blocks as in Federspiel et302

al. (2017), which would mean that if there were <20 trials in the last block of a reversal, they would be303

omitted from the analysis. Therefore, we changed the block size to 10 trials and adjusted the sampling304

blocks to 2-9 correct choices, and the acquisition blocks to 9-10 correct choices using significance levels305

in the binomial test as did Federspiel et al. (2017).306

Changes post data collection, mid-data analysis307

12) P2 (April 2020): We realized that the average latency to solve a new locus after solving a different308

locus is confounded with the total number of loci solved because the measure of innovation is included309

in the definition. Therefore, we removed average latency to solve a locus from analyses so that we310

are only examining pure measures of flexibility (average latency to attempt to solve) and innovation311

(total number of loci solved).312

13) P2: Removed aviary batch (random variable) from the original model for P2 (Table SM3: Model 1).313

Batch ended up confounding the analysis because control and manipulated individuals, while randomly314

assigned to these conditions, ended up in particular batches as a result of their willingness to participate315

in tests offered during their time in the aviary (Table SM3: Model 3). Several grackles never passed316

habituation or training such that their first experiment could begin, therefore we replaced these grackles317

in the aviaries with others who were willing to participate. This means that batch did not indicate a318
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particular temporal period. Therefore, we removed batch from the models (post data collection,319

mid-data analysis).320

14) P2: When making the bespoke Bayesian models, we realized that we had previously misinterpreted321

which variable should be the response variable in this analysis. We originally set the number of trials322

to reverse as the response variable, however we should have instead set the number of loci solved as323

the response variable and then planned to conduct a second model with the latency to attempt a new324

locus as the response variable and number of trials as the explanatory variable. This is because a)325

we manipulated the number of trials to reverse, therefore it must be the explanatory variable (Hernán326

& Robins, 2006); and b) they should be split into two models, one each for average latency and327

number of loci solved, because of a and because these are two very different relationships that328

should be considered in their own models. We also realized that Condition (manipulated or control)329

does not need to be a variable in any of our models because our analyses in P1 demonstrate that the330

manipulation causally changed reversal speeds, which is the key assumption in P2.331

Changes post data collection, post-data analysis332

15) We present the results from different hypotheses in separate articles: this one, K. McCune et al. (2022),333

and Lukas et al. (2022).334

Sample335

Grackles were caught in the wild in Tempe, Arizona, USA for individual identification (colored leg bands336

in unique combinations). Some individuals (34: 13 in the control group (they receive 1 reversal; only 11337

completed the experiment) and 10 in the flexibility manipulation (they receive multiple reversals; only 8338

completed the experiment), and 11 who did not participate enough to enter the experiments) were brought339

temporarily into aviaries for testing, and then released back to the wild.340

Data collection stopping rule341

We stopped testing birds after we completed two full aviary seasons because the sample size was above342

the minimum suggested boundary of 15 (to detect a medium effect size) based on model simulations (see343

Supplementary Material 1).344

Summary of testing protocols (Figure 3)345

• Reversal learning with shaded tubes: One light gray and one dark gray tube were placed such that346

the openings were not visible (shades were pseudorandomized for side). One shade always contained a347

food reward. The individual had the opportunity to choose to look inside one tube per trial. Once the348

individual chose correctly on 17 out of the most recent 20 trials, they were considered to have a shade349

preference, and then the food was always placed in the previously non-rewarded shade and the same350

passing criterion was used to determine their reversal learning performance. Individuals were randomly351

placed in the manipulated condition (serial reversals until they passed two consecutive reversals in 50352

trials or less) or the control condition (receive only one reversal and then a similar number of total353

trials to the manipulated individuals, but with two yellow tubes, both of which always had food).354

• Plastic multi-access box: This was a puzzlebox made of plexiglas and plastic, which contained one355

piece of food on a post in the center of the box. The box was placed in the aviary for up to 15 minutes356

per trial. Each plexiglas wall had one option (locus) for retrieving the food, but each option required357

a different method for obtaining the food. The individual had the opportunity to attempt (touch, but358

not obtain the food) or solve a locus. Once a locus was used successfully three times to get the food, it359

was considered solved and rendered non-functional in subsequent trials. The experiment ended when360

an individual solved all four loci or if they did not interact with or successfully solve a locus in three361

consecutive trials.362
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• Wooden multi-access box: This was a puzzlebox carved from a log to have four loci containing a363

food item. Each locus required a different motor action to solve. Three loci were covered with a plastic364

door on a hinge and one locus was a drawer that must be pulled out. Trials lasted for up to 15 minutes.365

The passing criterion and experiment ending criteria were the same as for the plastic multi-access box.366

• Reversal learning of shapes on a touchscreen: This is the same experimental design as with the367

shaded tubes, except it was carried out on a touchscreen computer where the individual was presented368

with two white symbols that differed in shape (pentagon or diamond). Touching the screen over the369

rewarded shape resulted in food dropping from a food hopper into a dish accessible to the grackle,370

while touching the screen over the non-rewarded shape resulted in no food and a longer inter-trial371

interval.372

373

Figure 3. The experimental apparatuses: reversal learning using dark gray and light gray tubes (A) or two374

different shapes on a touchscreen (B), and the plastic (C) and wooden (D) multi-access boxes (MAB). The375

plastic MAB has four loci that all provide access to one piece of food and each locus has a distinct way of376

being opened: open the window (left side), pull the string (top side), push the shovel (right side), or twist377

the shovel (bottom side). The wooden MAB has four loci, each containing food and each locus has a distinct378

way of being opened: swing open flap (locus B), pull out drawer (locus C), push in flap (locus D), or lift up379

flap (locus A).380

Open materials381

• Design files for the plastic multi-access box: 3D printer files and laser cutter files382
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• Testing protocols for all experiments: shaded tube reversal learning, plastic multi-access box, wooden383

multi-access box, and touchscreen reversal learning384

Open data385

Data are publicly available at the Knowledge Network for Biocomplexity (C. Logan et al., 2023).386

Randomization and counterbalancing387

H1: Subjects were randomly assigned to the manipulated or control group. In the reversal learning trials,388

the rewarded option is pseudorandomized for side (and the option on the left is always placed first). Pseudo-389

randomization consisted of alternating location for the first two trials of a session and then keeping the same390

shade on the same side for at most two consecutive trials thereafter. A list of all 88 unique trial sequences for391

a 10-trial session, following the pseudorandomization rules, was generated in advance for experimenters to392

use during testing (e.g., a randomized trial sequence might look like: LRLLRRLRLR, where L and R refer to393

the location, left or right, of the rewarded tube). Randomized trial sequences were assigned randomly to any394

given 10-trial session using a random number generator (random.org) to generate a number from 1-88. The395

only exception to this randomization was when an individual exhibited a side bias (choosing one side 4 or396

more trials in a row). In these cases, we stopped the current random numbers for side and started putting the397

rewarded shade on the non-preferred side as much as possible while still following the pseudorandomization398

rules until the individual stopped exhibiting a side bias.399

ANALYSES400

Analyses were conducted in R (current version 4.1.2, R Core Team, 2017), using several R packages: kable-401

Extra (Zhu, 2021), MCMCglmm (Hadfield, 2010), MuMIn (Bartoń, 2020), rethinking (McElreath, 2020),402

stan (Stan Development Team, 2020), formatR (Xie, 2019), Rstudioapi (Ushey et al., 2020), rcpp (Eddel-403

buettel & François, 2011), ggplot2 (Wickham, 2016), knitr (Xie, 2013, 2017, 2018), dplyr (Wickham et al.,404

2021), cmdstanr (Gabry & Češnovar, 2021), cowplot (Wilke, 2017), reactable (Lin, 2020), DHARMa (Hartig,405

2019), and lme4 (Bates et al., 2012; Bates et al., 2015).406

Unregistered analyses: We conducted unregistered interobserver reliability analyses on the video and live407

coding of the response variables. Scores indicated that the response variables are repeatable to a high or408

extremely high degree given our instructions and training for coders (see Supplementary Material 2).409

Data checking410

The data were checked for overdispersion, underdispersion, zero-inflation, and heteroscedasticity with the411

DHARMa R package (Hartig, 2019).412

P1: Negative relationship between the number of trials to reverse a preference and the number413

of reversals?414

Analysis: Response variable: Number of trials to reverse a preference. We use a sliding window to look415

at the most recent 10 trials for a bird, regardless of when the testing sessions occurred. Explanatory416

variable: reversal number. Random variables: batch (batch is a test cohort, consisting of 8 birds being417

tested simultaneously and there were multiple batches included in the analysis) and ID (random effect418

because there were repeated measures on the same individuals). A Generalized Linear Mixed Model (GLMM,419

MCMCglmm function, MCMCglmm package, Hadfield, 2010) was used with a Poisson distribution and log420

link using 300,000 iterations with a thinning interval of 500, a burnin of 90,000, and minimal priors (V=1,421

nu=0) (Hadfield, 2014). We ensured the GLMM showed acceptable convergence (lag time autocorrelation422

values <0.01, Hadfield, 2010), and adjusted parameters as necessary.423

We did not need a power analysis to estimate our ability to detect actual effects because, by definition, the424

individuals that complete this experiment must get faster at reversing in order to pass the stopping criterion425

(two consecutive reversals in 50 trials or less). According to previous grackle data (from the pilot birds, and426
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from Santa Barbara Logan, 2016), the fastest grackle passed their first reversal in 70 trials, which means427

that passing our serial reversal stopping criterion would require them to have improved their passing speed.428

Unregistered analyses: We evaluated whether the individuals in both conditions (manipulated and con-429

trol) required a similar number of trials to pass their first reversal (dependent variable: trials to reverse in430

first reversal, explanatory variable: condition, random variables: ID and batch; Table 1), and their last rever-431

sal (dependent variable: trials to reverse in last reversal, explanatory variable: condition, random variables:432

ID and batch; Table 3).433

P2: Serial reversal improves rule switching and innovativeness434

Analyses: One model was run per response variable: average latency to attempt to solve a new locus after435

solving a different locus, and total number of loci solved. Explanatory variable: Number of trials to reverse436

a preference in the last reversal.437

The model for the number of loci solved takes the form of:438

𝑙𝑜𝑐𝑖𝑠𝑜𝑙𝑣𝑒𝑑𝑖,𝑗 ~ Binomial(4, 𝑝) [likelihood],439

logit(p) ~ 𝛼 + 𝛽trials𝑖,𝑗 [model],440

where 𝑙𝑜𝑐𝑖𝑠𝑜𝑙𝑣𝑒𝑑𝑖,𝑗 is the number of loci solved on the multi-access box, 4 is the total number of loci on the441

multi-access box, 𝑝 is the probability of solving any one locus across the whole experiment, 𝛼 is the intercept,442

𝛽 is the expected amount of change in 𝑙𝑜𝑐𝑖𝑠𝑜𝑙𝑣𝑒𝑑𝑖,𝑗 for every one unit change in 𝑡𝑟𝑖𝑎𝑙𝑠𝑖,𝑗, and 𝑡𝑟𝑖𝑎𝑙𝑠𝑖,𝑗 is the443

number of trials to reverse a shade preference. See Supplementary Material 1 for more model details.444

The model for the latency to switch options takes the form of:445

𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑗 ~ gamma-Poisson(𝜆𝑖,𝑗, 𝜙) [likelihood],446

log(𝜆𝑖,𝑗) ~ 𝛼 + 𝛽trials𝑖,𝑗 [model],447

where 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑗 is the average latency to attempt a new locus on the multi-access box, 𝜆𝑖 is the rate448

(probability of attempting a locus in each second) per bird (and we take the log of it to make sure it is449

always positive; birds with a higher rate have a smaller latency), 𝜙 is the dispersion of the rates across birds,450

𝛼 is the intercept for the rate, 𝛽 is the expected amount of change in the rate of attempting to solve in451

any given second for every one unit change in trials, and trials is the number of trials to reverse a shade452

preference. Note that a gamma-Poisson distribution is also known as negative binomial. See Supplementary453

Material 1 for more model details.454

Note: As originally planned, we replaced the GLMs and GLMMs in May 2020 with more powerful models455

after learning how to make bespoke Bayesian models from McElreath (2016). We made these models before456

analyzing the actual data (14 May 2020).457

Unregistered analysis: Because the wooden multi-access box was added after in principle recommendation,458

we conducted an unregistered analysis to determine whether the plastic and wooden multi-access box results459

correlated with each other, which would indicate that these tests are interchangeable. We found that they460

did not statistically significantly correlate with each other on either variable measured: the average latency461

to attempt a new locus (switching; Pearson’s r=0.74, 89% confidence level=0.02-0.95, t=2.18, df=4, p=0.09,462

n=6) or the total number of loci solved (problem solving; Pearson’s r=0.51, 89% confidence level=0.03-0.80,463

t=1.86, df=10, p=0.09, n=12). Therefore, while the performance on the two multi-access boxes might not464

be completely independent as indicated by the high r values, the two boxes appear not to be completely465

interchangeable either as indicated by the lack of statistical significance and high uncertainty in the r values.466

We therefore analyzed the plastic and wooden multi-access boxes separately.467

Post-data collection, we added an additional unregistered analysis comparing first versus last reversal perfor-468

mance for the individuals in the manipulated group (see r code chunk “posthoc_conditionalimprovement”469

at the rmd for model details).470
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P2 alternative 2: Additional analysis: latency and motor diversity471

Analyses: We ran one model per response variable: average latency to attempt a new locus on the multi-472

access boxes, and number of trials to solve (meet criterion) a new locus on the multi-access boxes. Explana-473

tory variables: Number of trials to reverse a preference in the last reversal that an individual participated474

in, the number of different motor actions used when attempting to solve the multi-access boxes (motor475

diversity). A General Linear Model (GLM; glm function) was used with a Poisson distribution and log link.476

P4: Learning strategies (for birds in the manipulated group only)477

Analysis 1 (qualitative): Learning strategies were identified by matching them to the two known approx-478

imate strategies of the contextual, binary multi-armed bandit: epsilon-first and epsilon-decreasing (McIn-479

erney, 2010; as in Logan, 2016). We used the criterion for the epsilon-first strategy of learning the correct480

choice after one trial and then choosing correctly thereafter. Other patterns were classified as the epsilon-481

decreasing strategy where individuals gradually increase their number of successes as the number of trials482

increases. This method of qualitative inspection of learning curves is standard for this type of learning strat-483

egy assessment (McInerney, 2010). The variable for visual inspection was the proportion of correct choices484

in a non-overlapping sliding window of 4-trial bins across the total number of trials required to reach the485

criterion of 17/20 correct choices per individual.486

Analysis 2 (quantitative): We then quantitatively determined to what degree each bird used the explo-487

ration versus exploitation strategy using methods in Federspiel et al. (2017) by calculating the number of488

10-trial blocks where birds were choosing “randomly” (2-9 correct choices; called sampling blocks; akin to489

the exploration phase above) and dividing it by the total number of blocks to reach criterion per bird. This490

ratio was also calculated for “acquisition” blocks where birds made primarily correct choices (9-10 correct491

choices; akin to the exploitation phase above). These ratios, calculated for each bird for their serial reversals,492

quantitatively discern the exploration from the exploitation phases.493

RESULTS494

Although 22 grackles completed their initial shaded tube discrimination, only 20 grackles participated in495

one or more reversal (Table SM5). The rest of the tests began only after a bird’s reversal experiment was496

complete (C. Logan et al., 2023).497

P1: Reversal speed gets faster with serial reversals498

The birds in the manipulated group required a similar number of trials during their first reversal (R1 me-499

dian=75 trials) as the birds in the control group needed during their first and only reversal (R1 median=70500

trials) (see unregistered analysis in Table 1). The manipulated birds improved during the reversal manip-501

ulation to a median of 40 trials in their last reversal: there was a significant negative correlation between502

the number of trials to reverse (average=71 trials, standard deviation (sd)=28, Table 2) and the reversal503

number for those grackles in the flexibility manipulation condition (n=9, which included Memela who did504

not pass the manipulation condition of passing two consecutive reversals in 50 trials or less; Figure 4).505

Table 1. Unregistered analysis: the number of trials to reverse in the first reversal is similar between the506

manipulated and control groups.507

Posterior
mean

Lower 89
percentile

compatibility
interval (5.5%)

Upper 89
percentile

compatibility
interval
(94.5%)

Effective
sample size

pMCMC Significance
code: **=0.01

Intercept 4.29 4.12 4.46 420 <0.002 **
Manipulation
Condition

-0.08 -0.27 0.11 420 0.46

508

509

Table 2. In the manipulated birds, the number of trials to reverse decreases with increasing reversal number.510
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Posterior
mean

Lower 89
percentile

compatibility
interval (5.5%)

Upper 89
percentile

compatibility
interval
(94.5%)

Effective
sample size

pMCMC Significance
code: **=0.01

Intercept 4.44 4.31 4.62 420 <0.002 **
Reverse
Number

-0.06 -0.10 -0.03 420 <0.002 **

511

512
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Figure 4. Individuals in the manipulated condition (who received serial reversals) linearly decreased their514

reversal passing speeds with increasing reversal number (n=9 grackles).515

Unregistered analysis 1: There was additionally a difference between manipulated and control reversal516

speeds when comparing their last reversals (Figure 5; for the control birds, their last reversal was their first517

reversal; Table 3). This analysis includes 19 grackles (8 manipulated condition - only those who actually518

passed the manipulation, 11 control condition) who had an overall average of 62 trials in their last reversal519

(sd=32).520
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Figure 5. Individuals in the manipulated condition (who received serial reversals) passed their last reversal522

in fewer trials than individuals in the control condition (who only received 1 reversal). n=19 grackles:523

11=control, 8=manipulated.524

Table 3. Individuals in the manipulated condition pass their last reversal in fewer trials than control525

individuals.526

Posterior
mean

Lower 89
percentile

compatibility
interval (5.5%)

Upper 89
percentile

compatibility
interval
(94.5%)

Effective
sample size

pMCMC Significance
code: **=0.01

Intercept 4.28 4.08 4.48 420 <0.002 **
Reverse
Number

-0.51 -0.81 -0.22 420 0.010 **

527

528

Unregistered analysis 2: A pooled model of performance across all reversals estimates that birds can529

expect to improve by about 30 trials (89% percentile interval (PI): 25-36; Table SM3: Model 15) after530

completing the serial reversals. While all manipulated birds improved, those birds that were already fast to531

reverse in their first reversal improved less than the birds that required many trials to reverse in their first532

reversal (posterior peak indicates a correlation of +0.64, with highest posterior density intervals (HPDI) all533

positive, between the first reversal value and the improvement achieved by the last reversal; Table SM3:534

Model 16). However, the birds who were the fastest in the first reversal, were also the fastest in the last535

reversal, but the difference between the slower and faster reversers is reduced (Figure 6).536

15



537

Figure 6. All eight manipulated birds (8 panels on the left) needed fewer trials to reverse in their last538

reversal than in their first. Their improvement depended on their starting value, with steeper slopes for539

those birds that needed more trials to reverse in the first reversal (blue = observed values and changes,540

black = model estimates). However, birds who needed more trials in the first reversal did not completely541

catch up, such that the birds that needed more trials in their first reversal also needed more trials in their542

last reversal relative to other grackles. The panel on the right shows the observed values (which were almost543

exactly the same as the model estimates) for the control birds who received only one reversal. The letters544

in the columns for the control birds are the first letter of their name (from left to right: Taquito, Adobo,545

Tapa, Yuca, Taco, Fideo, Queso, Pizza, Tomatillo, Marisco, Mofongo).546

P2: Serial reversals improve rule switching and innovativeness on the MAB547

To determine whether the serial reversal manipulation affected flexibility generally, we compared three548

measures of performance (the number of trials to reverse a preference in the first and last shade reversal,549

performance of the manipulated group relative to the control group) to the speed of solution switching on550

two multi-access boxes. Furthermore, we assessed whether flexibility measured through these serial reversals551

related to innovativeness by comparing performance to the number of loci solved on the multi-access boxes.552

The results for each of these comparisons are described in detail below and an overview is provided in Figure553

7.554

16



555

Figure 7. Overview of the results from the P2 analyses with the multi-access boxes (plastic and wooden).556

An effect of natural variation in flexibility on performance on the multi-access box tasks would result in557

correlations in the first reversal. An effect of the flexibility manipulation would result in a change in corre-558

lations from the first to last reversals. Individuals are more flexible if they require fewer trials to pass the559

serial reversals, more flexible in a new context if they have shorter latencies to switch to a new locus on the560

multi-access box, and are more innovative if they solve more loci on the multi-access box. A plus sign (+)561

indicates that the two abilities are positively correlated, a minus sign (-) that they are negatively correlated,562

and a 0 indicates no correlation between the two abilities (note that the correlation between the variables563

that reflect the abilities for innovativeness have the opposite sign because individuals with more flexibility564

need fewer trials in the reversal learning experiment). The asterisk (*) indicates that a small sample size565

decreases the reliability of this result. The number in each cell indicates which model in Table SM3 shows566

the model outputs for this result.567

Rule switching: Latency to attempt a new locus on the multi-access box (plastic) ~ trials to568

reverse569

Grackles that were faster to reverse a preference in their last reversal (average=52 trials, sd=23), where570

grackles in the control condition received only one reversal which served as their first and last reversal, were571

also faster to attempt to solve a new locus on the plastic multi-access box (after just having passed criterion572
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on a different locus; average=208 seconds, sd=226; Figure 8a; Table SM3: Model 9; n=11 grackles: 6 in573

manipulated condition, 5 in control condition; 6 subjects completed this experiment but solved 0 loci or 1574

locus and so did not have switching times). We also found that individuals in the flexibility manipulation575

had faster switch latencies than those in the control condition (Table SM3: Model 10). Lastly, there was a576

positive correlation between the number of trials to reverse in the first reversal (average=70 trials, sd=21)577

and the average switch latency on the plastic multi-access box (Table SM3: Model 11). A correlation was578

determined to be present if the compatibility interval for the slope (b) in the model output did not cross579

zero (Table SM3). This criterion was used throughout the analyses for P2.580

581

Figure 8. The average latency (seconds) to attempt to solve a different locus after having previously582

successfully solved a locus on a) the plastic multi-access box (MAB) is positively correlated with the number583

of trials to pass their last reversal (n = 11 grackles), but on b) the wooden MAB it is not correlated with584

the number of trials to pass their last reversal (n = 11 grackles). Additionally, the probability of solving a585

locus on c) the plastic MAB is negatively correlated with the number of trials to pass their last reversal (n586

= 15 grackles), but on d) the wooden MAB it is not correlated with the number of trials to pass their last587

reversal (n = 12 grackles, estimate of slope includes zero). Shading represents the 89 percentile compatibility588

intervals and darker shading indicates relationships that were found.589
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Rule switching: Latency to attempt a new locus on the multi-access box (wooden) ~ trials to590

reverse (unregistered analysis)591

There was no correlation between the number of trials to reverse a preference in their last reversal (av-592

erage=60 trials, sd=38) and the latency to attempt to solve a new locus on the wooden multi-access box593

(after just having passed criterion on a different locus; average=463 seconds, sd=481; Figure 8b; Table SM3:594

Model 12; n=11 grackles: 5 in manipulated condition, 6 in control condition; Diablo also completed this595

experiment and solved 1 locus, but did not attempt another locus after that, thus he does not have any596

switching times to analyze). We additionally found that there was no difference in the average latency to597

switch between individuals in the flexibility manipulation and those in the control condition (Table SM3:598

Model 13). There was a negative correlation between the number of trials to reverse in the first reversal599

(average=73 trials, sd=34) and the average switch latency on the multi-access box (Table SM3: Model 14).600

Innovativeness: Number of loci solved on the multi-access box (plastic) ~ trials to reverse601

Grackles that were faster to reverse a preference in their last reversal (average=62 trials, sd=34) solved602

more loci on the plastic multi-access box (average=2 loci, sd=1.6; Figure 8c; Table SM3: Model 2; n=15603

grackles: 6 in manipulated condition, 9 in control condition; this number excludes Mole and Habanero who604

were, due to experimenter error, given the fully put together box during habituation and could have learned605

how to solve the loci at that time). There was no correlation between the number of loci solved and which606

reversal condition a grackle was randomly assigned to (Table SM3: Model 4). There was also no correlation607

between the number of trials to reverse in the first reversal (average=75 trials, sd=31) and the number of608

loci solved on the multi-access box (Table SM3: Model 5).609

Innovativeness: Number of loci solved on the multi-access box (wooden) ~ trials to reverse610

(unregistered analysis)611

The compatibility interval for the estimate for the association (mean beta -0.41) between the number of612

loci solved on the wooden multi-access box (average=3.2, sd=1.3) and the number of trials to reverse a613

preference in their last reversal (average=59 trials, sd=38) crossed zero (Figure 8d; Table SM3: Model614

6; n=12 grackles: 6 in manipulated condition, 6 in control condition). This could mean that there is no615

association, however simulations in Supplementary Material 1 showed that we would not be able to reliably616

distinguish whether a small effect is different from zero with our sample size (with a simulated beta of -1 and617

a sd in the number of trials >10, the compatibility interval of the estimate crossed zero in all simulations;618

Table SM1.2). We did find a correlation between the number of loci solved and which reversal condition a619

grackle was randomly assigned to, indicating the reversal manipulation appears to have affected performance620

on the wooden multi-access box. The model estimates that manipulated birds solved on average 1.2 more621

loci than birds in the control condition (Table SM3: Model 7, wooden; 89% compatibility intervals=0.34-622

2.14; n=12 grackles: 6 in manipulated condition, 6 in control condition). However, there is no association623

between the number of trials to reverse in the first reversal (average=74 trials, sd=34) and the number of624

loci solved on the multi-access box (Table SM3: Model 8, wooden).625

P2 alternative 2 (additional analysis): Latency and motor diversity626

Because there was no correlation between the number of trials to reverse in the last reversal and the latency to627

attempt a different locus on the wooden multi-access box, we conducted this additional analysis to determine628

whether the model fit was improved when adding the number of motor actions as an explanatory variable.629

Adding the number of motor actions (wooden: average=13, sd=4) did not improve the model fit when630

examining the relationship between the latency to switch loci on the wooden multi-access box (average=463,631

sd=481) and the number of trials to reverse in the last reversal (average=60, sd=38) because the Akaike632

weights were similar for both models (n=11 grackles: 5 in the manipulated group, 6 in the control group;633

Table 4).634

Table 4. Adding the number of motor actions used to the analysis of the average latency to attempt a635

new option on the wooden multi-access box and the number of trials to reverse in the last reversal does not636
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improve the model fit. Each row represents one model that includes different independent variables (motor637

actions and/or trials last reversal).638

Intercept Motor
actions

(wooden)

Trials last
reversal

df log
likelihood

AICc delta weight

463.2 NA NA 2 -83.025 171.6 0.00 0.674
934.6 -35.28 NA 3 -82.477 174.4 2.83 0.164
665.8 NA -3.362 3 -82.631 174.7 3.14 0.140
1250.0 -40.68 -4.040 4 -81.850 178.4 6.82 0.022

639

640

P4: Serial reversal learning strategy641

Analysis 1 (qualitative): Using the criterion for the epsilon-first strategy of learning the correct choice642

after one trial and then choosing correctly thereafter, no grackle in this study used this strategy in any643

reversal. All grackles used an epsilon-decreasing strategy in all reversals (Figure 9 and Supplementary644

Material 6). We use Burrito’s figures to illustrate the epsilon-decreasing strategy (Figure 9): the proportion645

of trials he gets correct wanders up and down (epsilon-decreasing) until an asymptote at 0.8 is reached and646

held.647
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648

Figure 9. Burrito’s proportion of trials correct by trial number and reversal showing the epsilon-decreasing649

learning strategy where options are explored before forming a preference.650

Analysis 2 (quantitative): We additionally quantitatively determined to what degree each bird used651

the exploration versus exploitation strategy using methods in Federspiel et al. (2017) by calculating the652

number of 10-trial blocks where birds were choosing “randomly” (2-9 correct choices; called sampling blocks;653

akin to the exploration strategy) divided by the total number of blocks to reach criterion per bird. This654
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ratio was also calculated for “acquisition” blocks where birds made primarily correct choices (9-10 correct655

choices; akin to the exploitation strategy). There was no correlation between exploration (sampling ratio) or656

exploitation (acquisition ratio) and reversal number (sampling: reversal estimate=-0.09, SE=0.11, z=-0.86,657

p=0.39; acquisition: reversal estimate=0.00, SE=0.00, z=-0, p=1.00), indicating that the grackles did not658

use a particular strategy earlier or later in their serial reversals.659

DISCUSSION660

We conducted a controlled experiment to evaluate whether serial reversal learning affected flexibility and661

innovativeness in new contexts. We found that the number of trials to reverse decreased with increasing662

reversal number, and, when examining last reversals, there was a difference between the manipulated and663

control groups. This indicates that the flexibility manipulation was effective in that it improved reversal664

learning speeds, suggesting that these individuals shifted toward a “win-stay, lose-shift” rule to learn to665

reverse faster after more experience with reversing (Spence, 1936; J. Warren, 1965; J. M. Warren, 1965).666

The manipulated individuals who increased their reversal learning speed, were then apparently able to apply667

this to a new context, which resulted in better performance when compared with control individuals who668

did not have the opportunity to learn. Previous research has also exploited the fact that most individuals669

can learn to learn and have used serial reversals to show that such experience usually improves performance670

when transferring to reversals involving different stimuli (e.g., visual vs. spatial, visual vs. visual in a new671

combination) (Rayburn-Reeves et al., 2013; Schusterman, 1962; J. Warren, 1965, 1966).672

While performance differed between the two multi-access boxes, the serial reversal flexibility manipulation673

did affect flexibility in a new context, as well as innovativeness (Figure 7). Grackles that were faster to674

reverse a preference in their first and last reversals, and those in the manipulated condition, were also faster675

to attempt to solve a new locus on the plastic multi-access box. Similarly, the flexibility manipulation676

affected innovativeness because grackles in the manipulated condition solved on average 1.2 more loci on677

the wooden multi-access box than those birds in the control condition and there was a negative correlation678

between the number of loci solved on the plastic multi-access box and the number of trials to reverse in679

the last reversal. That our results were not consistent across first reversal, last reversal, and condition680

(Figure 7) on the two different multi-access boxes could be due to the small sample sizes because even in681

the control group there were several individuals who solved their first and only reversal in very few trials.682

Because of the variation in our small sample (Taquito was by far the slowest to reverse a preference), we683

conducted a validation check to determine whether removing a bird from the data set changed the model684

results. Removing either Taquito or a random bird from the data set changed the conclusions for one of the685

three models (Model 2, but not Models 6 or 12). This change in results after removing a data point indicates686

that we should be less confident in the conclusion that individuals who are faster to reverse a preference in687

their last reversal also solved more loci on the plastic multi-access box. However, it did not matter whether688

we removed Taquite, the slowest performer, or a random bird, indicating that this outlier did not drive the689

results but rather that the result is constrained by our small sample size. In the cases where there was no690

correlation between loci solved and reversal performance, it is possible that the effect size was too small691

for us to have the power to detect (Figure 7). Furthermore, the lack of correlation between the number of692

trials to reverse in the first reversal and the number of loci solved on either multi-access box indicates that693

flexibility is not an inherently utilized tool, but one that is shaped by experience. If it was an inherently694

utilized tool, the variation in the number of trials to complete first reversals would likely have resulted in a695

correlation with the number of loci solved.696

Our results are in contrast with previous research on the correlation between flexibility performance on serial697

reversals and innovation: Indian mynas that were faster to reverse, were slower to innovate (Griffin et al.,698

2013). However, the Griffin et al. (2013) investigation was designed to evaluate the correlation between699

the variables and not whether manipulating flexibility using serial reversals influenced innovativeness. This700

difference could explain the differing results because correlational research can become noisy if there are701

unmeasured variables, which is something that a manipulation can help reduce. Other potential reasons702

for the difference in results could include using different experimental designs, and/or different serial re-703

versal passing criteria (Griffin et al., 2013 used a preset number of reversals that resulted in a maximum704
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of four reversals), inherent species differences, or needing a larger sample size to help reduce noise in a705

non-manipulative experiment.706

None of the flexibility manipulated individuals converged on using an epsilon-first learning strategy (learn707

the correct choice after one trial) as they progressed through serial reversals. All used the epsilon-decreasing708

strategy (explore options before forming a preference) throughout their reversals. Additionally, no grackle709

used a particular exploitation or exploration strategy earlier or later in their reversals. Learning theory on710

serial reversal experiments predicts that all individuals in the manipulated group shifted toward the “win-711

stay, lose-shift” rule because their reversal speeds improved (Spence, 1936; J. Warren, 1965; J. M. Warren,712

1965). In contrast, learning theory on multi-armed bandit (a paradigm often used in reversal learning)713

decision making has a stricter criterion, predicting that the optimal strategy is to maximize the cumulative714

reward, which, in this case would result in individuals using the epsilon-first learning strategy immediately715

after the first trial (McInerney, 2010). Both learning theories consider one trial learning the optimal solution.716

Perhaps these wild-caught grackles relied solely on the epsilon-decreasing strategy because these individuals717

are used to an environment where information about the probability of what the optimal options are varies718

(McInerney, 2010). Therefore, maximizing information gain via continued exploration of the available options719

is likely of more use in the less predictable environment in the wild. Other investigations of the exploitation720

vs. exploration learning strategies involved in reversal learning have found that these strategies can vary by721

individual and relate to differences in reversal performance. For example, urban common mynas were slower722

to reverse a preference than rural mynas because they spent more time exploring their options (Federspiel et723

al., 2017). Perhaps we found no such differences in the grackles because all of the individuals we tested came724

from an urban area. If a rural population of grackles could be found, it would be interesting to compare725

learning strategy use between rural and urban individuals.726

Why did performance on a touchscreen vary so drastically from a traditional approach?727

We assumed that reversal learning performance using shape on the touchscreen would directly compare728

to and be interchangeable with reversal learning performance using shaded tubes. However, it quickly729

became clear that the touchscreen experiment may have been asking a different question compared with730

the traditional reversal learning approach using physical objects. Unfortunately, we did not have the time731

to explore what might have caused the differences between the two tests, but we speculate below. We732

conclude that these two methods, the traditional physical object and the touchscreen, do not measure the733

same construct in this species and with this reversal learning experiment.734

One possible explanation for the difference between the two experiments is that grackles might require more735

trials to learn to discriminate between shapes than between shades. Shapes are known to require a few more736

trials for a preference to develop (e.g., Shaw et al., 2015: mean=40 trials shade, mean=55 trials shape in737

toutouwai; Isden et al., 2013: mean=6 trials shade, mean=10 trials shape in spotted bowerbirds), however738

grackles required hundreds more trials to learn shapes, therefore this explanation seems unlikely. Moreover,739

grackles may not have understood how the touchscreen worked and therefore it was the apparatus that740

interfered with their performance, yet grackles successfully completed a go no-go inhibition task using the741

same touchscreen apparatus (Logan et al., 2021). The go no-go task similarly used two different white742

shapes (wavy lines or a heart), but the shapes were presented sequentially rather than simultaneously (as743

in the reversal touchscreen experiment). Given this difference between the two touchscreen experiments, it744

is possible that the grackles found touching the screen in the reversal experiment rewarding in and of itself745

because something happened whenever they made a response. That is, if they touched the correct stimulus,746

they received food; if they touched the incorrect stimulus, the screen went blank immediately. This is in747

contrast with the go no-go experiment where the stimulus stayed on the screen for a set amount of time after748

an incorrect choice. Another potential reason for the difference between performances on the two touchscreen749

experiments was that making the incorrect choice in the reversal experiment was not costly enough. In the750

reversal touchscreen experiment, they could get through many trials, receiving some rewards, in a short751

amount of time. Consequently, there was potentially not enough incentive to learn quickly, thus explaining752

the differences in learning speeds between the two reversal experiments.753

We are not the first group to attempt to transfer a traditional lab or field task to a touchscreen apparatus754
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(e.g., Drayton & Santos, 2014). Despite some of the challenges associated with touchscreen apparatuses,755

other attempts to transfer tasks to a touchscreen have been more successful (e.g., Blaisdell & Cook, 2005;756

Kangas & Bergman, 2017; Sawa et al., 2005). We maintain that touchscreens have the potential to be an757

incredibly useful tool for studying comparative cognition in some systems (for reviews and methods, see758

Bussey et al., 2008; Cook et al., 2004; Kangas & Bergman, 2017; Logan et al., 2021; Seitz et al., 2021; Wolf759

et al., 2014).760

Conclusion761

We demonstrate that it is possible to manipulate flexibility, using a paradigm such as reversal learning, to762

examine its direct link with other traits. This opens up many opportunities for future research to better763

understand what flexibility is and whether and how it is causally related to other behaviors or forms of764

cognition. Understanding how flexibility causally relates to other traits will allow researchers to develop765

robust theory about the mechanisms and functional impact of flexibility, and when to invoke it as a primary766

driver in a given context, such as a rapid geographic range expansion. Indeed, we are already in the process767

of testing the latter hypothesis by conducting cross-population research on great-tailed grackles to test768

whether a population on the range edge is more flexible (Logan CJ et al., 2020). That we were able to769

manipulate flexibility, which had causal effects on flexible behavior in a different context (multi-access box)770

as well as a different cognitive ability (innovativeness), demonstrates that flexibility manipulations could771

be useful in training individuals of other species in how to be more flexible. This could have important772

implications for threatened and endangered taxa (such as informing the choice of individuals for captive773

breeding or introduction programs where individuals or their offspring are released into novel areas), as well774

as for habituating zoo animals or other managed populations to novelty. If such a flexibility manipulation775

was successful, it could then change their behavior in this and other domains, giving them a better chance of776

succeeding in human modified environments. This is the focus of our new research program, ManyIndividuals,777

where we manipulate flexibility using serial reversals in the wild in species that are successful and at risk778

and determine whether the manipulation improves their success in human modified environments (Logan et779

al., 2022).780

ETHICS781

This research is carried out in accordance with permits from the:782

1) US Fish and Wildlife Service (scientific collecting permit number MB76700A-0,1,2)783

2) US Geological Survey Bird Banding Laboratory (federal bird banding permit number 23872)784

3) Arizona Game and Fish Department (scientific collecting license number SP594338 [2017], SP606267785

[2018], and SP639866 [2019])786

4) California Department of Fish andWildlife (scientific collecting permit number S‐192100001‐19210‐001)787

5) Institutional Animal Care and Use Committee at Arizona State University (protocol number 17-1594R)788

6) Institutional Animal Care and Use Committee at the University of California Santa Barbara (protocol789

number 958)790

7) University of Cambridge ethical review process (non-regulated use of animals in scientific procedures:791

zoo4/17 [2017])792

AUTHOR CONTRIBUTIONS793

Logan: Hypothesis development, protocol development, data collection, data analysis and interpretation,794

write up, revising/editing, materials/funding.795

Lukas: Hypothesis development, simulation development, data interpretation, revising/editing.796

Blaisdell: Prediction revision, assisted with programming the reversal learning touchscreen experiment,797

protocol development, data interpretation, revising/editing.798

24



Johnson-Ulrich: Prediction revision, programming, data collection, data interpretation, revising/editing.799

MacPherson: Data collection, data interpretation, revising/editing.800

Seitz: Prediction revision, programmed the reversal learning touchscreen experiment, protocol development,801

data interpretation, revising/editing.802

Sevchik: Data collection, revising/editing.803

McCune: Added MAB log experiment, protocol development, data collection, data interpretation, revis-804

ing/editing, materials.805

FUNDING806

This research is funded by the Department of Human Behavior, Ecology and Culture at the Max Planck Insti-807

tute for Evolutionary Anthropology (2017-current), and by a Leverhulme Early Career Research Fellowship808

to Logan (2017-2018).809

CONFLICT OF INTEREST DISCLOSURE810

We, the authors, declare that we have no financial conflicts of interest with the content of this article. CJ811

Logan and D Lukas are Recommenders at PCI Ecology, and Logan used to be on the Managing Board812

(2018-2022).813

ACKNOWLEDGEMENTS814

We thank our PCI Ecology recommender, Aurelie Coulon, and reviewers, Maxime Dahirel, Andrea Griffin,815

and Aliza le Roux for their feedback on the preregistration and post-study manuscripts; Kevin Langergraber816

for serving as our ASU IACUC PI; Ben Trumble and Angela Bond for logistical support; Melissa Wilson817

for sponsoring our affiliations at Arizona State University and lending lab equipment; Kristine Johnson818

for technical advice on great-tailed grackles; Arizona State University School of Life Sciences Department819

Animal Care and Technologies for providing space for our aviaries and for their excellent support of our820

daily activities; Julia Cissewski for tirelessly solving problems involving financial transactions and contracts;821

Sophie Kaube for logistical support; Richard McElreath for project support; Aaron Blackwell and Ken Kosik822

for being the UCSB sponsors of the Cooperation Agreement with the Max Planck Institute for Evolution-823

ary Anthropology; Tiana Lam, Anja Becker, and Brynna Hood for interobserver reliability video coding:824

Sawyer Lung for field support; Alexis Breen for coding multi-access box videos; and our research assistants:825

Aelin Mayer, Nancy Rodriguez, Brianna Thomas, Aldora Messinger, Elysia Mamola, Michael Guillen, Rita826

Barakat, Adriana Boderash, Olateju Ojekunle, August Sevchik, Justin Huynh, Jennifer Berens, Amanda827

Overholt, Michael Pickett, Sam Munoz, Sam Bowser, Emily Blackwell, Kaylee Delcid, Sofija Savic, Brynna828

Hood, Sierra Planck, and Elise Lange.829

25



SUPPLEMENTARY MATERIAL 1: Ability to detect actual effects830

To begin to understand what kinds of effect sizes we will be able to detect given our sample size limitations831

and our interest in decreasing noise by attempting to measure it, which increases the number of explanatory832

variables, we used G*Power (v.3.1, Faul et al., 2007, 2009) to conduct power analyses based on confidence833

intervals. G*Power uses pre-set drop down menus and we chose the options that were as close to our834

analysis methods as possible (listed in each analysis below). Note that there were no explicit options for835

GLMs (though the chosen test in G*Power appears to align with GLMs) or GLMMs or for the inclusion of836

the number of trials per bird (which are generally large in our investigation), thus the power analyses are only837

an approximation of the kinds of effect sizes we can detect. We realize that these power analyses are not fully838

aligned with our study design and that these kinds of analyses are not appropriate for Bayesian statistics839

(e.g., our MCMCglmm below), however we were unaware of better options at that time. Additionally, it is840

difficult to run power analyses because it is unclear what kinds of effect sizes we should expect due to the841

lack of data on this species for these experiments.842

To address the power analysis issues, we ran simulations on our Arizona data set before conducting any843

analyses in this preregistration.844

Planned: We will first run null models (i.e., dependent variable ~ 1 + random effects), which will allow us845

to determine what a weak versus a strong effect is for each model. Then we will run simulations based on846

the null model to explore the boundaries of influences (e.g., sample size) on our ability to detect effects of847

interest of varying strengths. If simulation results indicate that our Arizona sample size is not larger than848

the lower boundary, we will continue these experiments at the next field site until we meet the minimum849

suggested sample size.850

• Implementation of the plan: Simulations were conducted in April 2020 (pre-data analysis) following851

procedures in McElreath (2018). This meant that there were no null models because the simulations852

using the full models are used to determine whether one can detect differences between effect sizes.853

We first constructed a hypothesis-appropriate mathematical model to identify the parameter bound-854

aries (beta, sigma) that produce simulated data within the range of values expected for this species in the855

reversal learning and multi-access box experiments. Values for reversal learning using color tubes (mean,856

standard deviation, and range of number of trials to reverse a color preference) were taken from previously857

published data on great-tailed grackles (Logan, 2016). We were unsure of whether the grackles would be able858

to solve any options on the multi-access box because this experiment had never been done on this species859

before, so, in the simulation (described next), we ran versions where grackles solved between 0 and 4 options860

and other versions where they solved between 0 and 2 options (out of 4 options maximum). The model is861

as follows:862

𝑡𝑖,𝑗 ~ Normal(𝜇, 𝜎) [likelihood],863

𝜇 ~ 𝛼 + 𝛽𝑥 [linear model],864

𝛼 ~ Normal(91,21) [𝛼 prior],865

𝛽 ~ Normal(0,0.5) [𝛽 prior],866

𝜎 ~ Uniform(0,40) [𝜎 prior],867

where 𝑡𝑖,𝑗 is the number of trials to reverse a preference (with fewer trials indicating faster reversal and thus868

more flexibility), 𝜇 is the population average trials to reverse, 𝜎 is the population standard deviation for869

trials to reverse, 𝛼 is the intercept, 𝛽 is the expected amount of change in 𝑡𝑖,𝑗 for every one unit change in870

𝑥, and 𝑥 is the number of options solved on the multi-access box. We used a normal distribution for 𝑡𝑖,𝑗, 𝛼,871

and 𝛽 because they are (or are based on) sums with large means (see Figure 10.6 in McElreath, 2016). We872

plugged in data from the Santa Barbara grackles (Logan, 2016): 91=average number of trials to reverse a873

preference (standard deviation=21 trials). The 𝛽 prior uses 0 as the mean and 0.5 as the standard deviation874

as a place to start and may need to be adjusted as the data are simulated. We chose a uniform distribution875

for 𝜎 because it constrains 𝜎 to have a positive probability of the standard deviation being between 0 and 40876
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trials (range of the number of trials to reverse a preference: 39-130, therefore 130 trials minus the average877

number of trials (91), which is about 40).878

We translated the simulation output into effect sizes and examined what kind of effect size we could879

detect (Table SM1.1). For each 𝛽, we calculated the effect size as in Lajeunesse et al. (2013; Box 13.3 in880

Lajeunesse et al., 2013: linear regression):881

𝑟 = 𝛽 (𝑆𝐷𝑥𝑖,𝑗 / 𝑆𝐷𝑦𝑖,𝑗) = 𝛽 (1.5 / 21),882

where 𝑟 is the Pearson product moment correlation and 𝑆𝐷 is the standard deviation. For the standard883

deviation of 𝑥𝑖,𝑗 (number of loci solved on the multiacccess box), we estimated a possible value of 1.5. For884

the standard deviation of 𝑦𝑖,𝑗 (trials to reverse), we used 21 from the Santa Barbara grackle data (Logan,885

2016). We then calculated the effect sizes and 𝑅2 values for each value of 𝛽.886

Table SM1.1. The connection between 𝛽 and effect sizes (𝑆𝐷𝑥𝑖,𝑗=standard deviation of 𝑥𝑖,𝑗, which is the887

number of loci solved; 𝑆𝐷𝑦𝑖,𝑗=standard deviation of 𝑦𝑖,𝑗, which is the number of trials to reverse).888

Beta SDx SDy Effect size R-squared
-5 1.5 21 -0.357 0.128
-1 1.5 21 -0.071 0.005
0 1.5 21 0.000 0.000

889

890

We then used the simulations to run models on simulated data to estimate the measurement error associated891

with varying sample size, 𝛽, and the range of multi-access box loci solved or latency to attempt a new locus892

(Table SM1.2). Before running the models, we decided that a model would detect an effect if 89% of the893

posterior sample was on the same side of zero (following McElreath, 2018). We ran the simulation with894

𝛽=5 because this was a high value at which an appropriate range of values were observed in the simulation895

testing phase, 𝛽=0 because this would be the scenario in which there is no relationship between the response896

variable and the trials to reverse, and 𝛽=-1 to determine how small of a difference we can detect and with897

what amount of associated noise (𝜎). Sigma (𝜎) is the standard deviation in the trials to reverse if the898

trials to reverse is a normal distribution. In all simulations, the mean in the trials to reverse was set to 91.899

Therefore, a (𝜎) of 14 is 15% noise (14/91). We found that when (𝜎) is larger than 14, we cannot detect900

even the largest effect of trials to reverse on loci solved or latency because there are some simulations where901

the estimated regression coefficient crosses zero. When 𝛽=0 we want all of the regression coefficients to cross902

zero (10 out of 10 random repetitions) and when 𝛽 ≠ 0 we want none of the regression coefficients to cross903

zero (0 out of 10 random repetitions). We ran the models several times with various parameters to determine904

at what point this was the case for each combination of parameters.905

Table SM1.2. Simulation outputs from varying 𝛽, sample size (n), 𝜎, and whether the actual range of906

multi-access box [MAB] loci solved were 0-2 or 0-4 (we did not know how many loci the grackles would be907

able to solve before we started collecting data so we ran two simulations. The grackles ended up being able to908

solve all four loci on both multi-access boxes, therefore we must use only those rows associated with “Range909

of MAB loci solved” = 0-4). We ran the simulation with 𝛽 at -5 because this was what ended up generating910

an appropriate range of values in the parameter testing phase, at 0 because this would be the scenario in911

which there is no relationship between trials to reverse and number of multi-access box loci solved, and -1912

to determine how small of a difference we can detect with what amount of associated error (𝜎). When 𝛽913

= 0 we want all of the regression coefficients to cross zero (10/10) and when 𝛽 ≠ 0 we want none of the914

regression coefficients to cross zero (0/10). We used the simulations to determine at what point this was the915

case for each combination of parameters. This table is useful for the analyses involving the number of loci916

solved on the multi-access box, but not the latency to switch to attempting a new locus on the multi-access917

box, which uses a different (gamma poisson) model.918
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Beta n Sigma Regression
coefficient crosses
zero

Regression
coefficient

Range of MAB
loci solved

-5 15 15 1/10 -5.90 0-4
-5 15 14 0/10 -5.11 0-4
-5 15 12 0/10 -4.79 0-4
-5 15 10 0/10 -4.31 0-4
-5 10 10 1/10 -4.35 0-4
-5 10 9 0/10 -5.26 0-4
-5 8 10 1/10 -5.35 0-4
-5 8 9 0/10 -4.22 0-4
-5 8 8 0/10 -3.08 0-4
-5 8 8 1/10 -4.74 0-2
-5 8 7 3/10 -6.74 0-2
-5 8 5 0/10 -3.08 0-2
-5 10 9 3/10 -4.51 0-2
-5 10 7 1/10 -7.67 0-2
-5 10 6 2/10 -5.16 0-2
-5 10 5 1/10 -4.57 0-2
-5 10 4 0/10 -5.02 0-2
-5 15 14 2/10 -3.07 0-2
-5 15 13 5/10 1.68 0-2
-5 15 10 5/10 -8.20 0-2
-5 15 8 3/10 -4.01 0-2
-5 15 6 0/10 -6.03 0-2
-5 15 7 1/10 -8.06 0-2
0 15 14 10/10 -3.23 0-2
0 15 14 10/10 0.43 0-4
-1 15 14 10/10 -1.53 0-4
-1 15 10 10/10 -0.73 0-4
-1 15 5 3/10 0.19 0-4
-1 15 3 1/10 0.18 0-4
-1 15 2 0/10 -1.07 0-4
-1 15 2 3/10 -1.67 0-2
-1 15 1 1/10 -1.12 0-2

919

920

This shows that we would have the power to detect a medium effect (-0.357 in Table SM1.1) with a sample921

size of 15 if the noise (𝜎) is <15%. We would be unlikely to get a false negative because there were no false922

negatives in the simulations (i.e., the posterior sample range did not cross zero). With this sample size, when923

𝛽=0, there are no false positives (i.e., the posterior sample range always included zero). However, we would924

not be able to detect a weak effect unless the noise (𝜎) was much smaller.925

Simulation and model: number of loci solved on the multi-access box ~ trials to reverse926

The model takes the form of:927

𝑙𝑜𝑐𝑖𝑠𝑜𝑙𝑣𝑒𝑑𝑖,𝑗 ~ Binomial(4, 𝑝) [likelihood],928

logit(𝑝) ~ 𝛼[batch] + 𝛽𝑡𝑟𝑖𝑎𝑙𝑠𝑖,𝑗 [model],929

where 𝑙𝑜𝑐𝑖𝑠𝑜𝑙𝑣𝑒𝑑𝑖,𝑗 is the number of loci solved on the multi-access box, 4 is the total number of loci on the930

multi-access box, 𝑝 is the probability of solving any one locus across the whole experiment, 𝛼 is the intercept931

and each batch gets its own, 𝛽 is the expected amount of change in 𝑙𝑜𝑐𝑖𝑠𝑜𝑙𝑣𝑒𝑑𝑖,𝑗 for every one unit change932

in 𝑡𝑟𝑖𝑎𝑙𝑠𝑖,𝑗, and 𝑡𝑟𝑖𝑎𝑙𝑠𝑖,𝑗 is the number of trials to reverse a shade preference.933

Expected values for the number of loci solved on the multi-access box were set to either 2 or 0 (out of934

4 loci maximum) because we were unsure of whether the grackles would be able to solve any loci on the935

multi-access box because this experiment had never been done on this species before. Expected values for936

reversal learning using shaded tubes (mean, standard deviation, and range of number of trials to reverse a937

shade preference) were based on previously published data on great-tailed grackles (Logan, 2016). This data938

indicates that the average number of trials to reverse a preference is 91 and the standard deviation is 21. In939
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our model, the variation in the actual data is reflected by both the population standard deviation and the940

expected amount of change related to the explanatory variable. After running simulations, we identified the941

following distributions and priors to be the most likely for our expected data:942

𝛼 ~ Normal(4,10) [𝛼 prior],943

𝛽 ~ Normal(0,5) [𝛽 prior].944

We used normal distributions for 𝛼 and 𝛽 because they are (or are based on) sums with large means (see945

Figure 10.6 in McElreath, 2018). For the 𝛽 prior, we had no expectation about whether the relationship946

would be positive or negative, therefore we centered it on 0 (the mean).947

Simulation and model: latency to attempt a new locus on the multi-access box ~ trials to948

reverse949

For the average latency to attempt a new locus on the multi-access box as it relates to trials to reverse (both950

are measures of flexibility), we simulated data and set the model as follows:951

𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑗 ~ gamma-Poisson(𝜆𝑖,𝑗, 𝜙) [likelihood],952

log(𝜆𝑖,𝑗) ~ 𝛼[batch] + 𝛽𝑡𝑟𝑖𝑎𝑙𝑠𝑖,𝑗 [model],953

where 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑗 is the average latency to attempt a new locus on the multi-access box, 𝜆𝑖 is the random954

probability of attempting a locus in each second per bird (and we take the log of it to make sure it is always955

positive; birds with a higher rate have a smaller latency), 𝜙 is the dispersion of the rates across birds, 𝛼 is956

the intercept for the rate per batch, 𝛽 is the expected amount of change in the rate of attempting to solve957

in any given second for every one unit change in 𝑡𝑟𝑖𝑎𝑙𝑠𝑖,𝑗, and 𝑡𝑟𝑖𝑎𝑙𝑠𝑖,𝑗 is the number of trials to reverse a958

shade preference.959

Expected values for the latency to attempt a new locus on the multi-access box was set to between 1-2700960

sec because the experiment ends for a bird if they do not obtain the food in 3 consecutive trials, and each961

trial can last up to 15 min (trials end at 10 min unless the individual is on the ground at the 10 min mark,962

in which case they are given an extra 5 min to interact). Because we did not have prior data for this species963

on this test, we set the mean to 300 sec, which is half way through a usual 10 min trial because it seems964

likely that if a bird is going to attempt another locus, it will likely do so at the next opportunity, especially965

after being successful in the previous trial. Expected values for reversal learning using shaded tubes are the966

same as above. After running simulations, we identified the following to be the most likely distributions and967

priors for our expected data:968

𝜙 ~ 1/𝑒𝑥𝑝(1) [𝜙 prior],969

𝛼 ~ Normal(300,50) [𝛼 prior],970

𝛽 ~ Normal(0,5) [𝛽 prior].971

We used a gamma-Poisson distribution for 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖,𝑗 because it constrains the values to be positive and to972

primarily occur sooner rather than later, which is what we expect from the grackles (based on data from New973

Caledonian crows and kea in Auersperg et al., 2011). For 𝜙, we used an exponential distribution because it974

is standard for this parameter. We used normal distributions for 𝛼 and 𝛽 because they are (or are based on)975

sums with large means (see Figure 10.6 in McElreath, 2018). For the 𝛽 prior, we had no expectation about976

whether the relationship would be positive or negative, therefore we centered it on 0 (the mean).977
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SUPPLEMENTARY MATERIAL 2: Interobserver reliability of dependent vari-978

ables (unregistered analyses)979

To determine whether experimenters coded the dependent variables in a repeatable way, hypothesis-blind980

video coders were first trained in video coding the dependent variable, and then they coded at least 20% of981

the videos in the reversal (tubes) and multi-access box experiments. We randomly chose a subset of all of982

the birds who participated in each experiment using random.org:983

• Reversal 6/20 grackles (30% with half from the control group): Chalupa, Avocada, Diablo, Fideo,984

Tomatillo, Adobo985

• Multi-access box plastic 3/15 grackles (20%): Habanero, Queso, Chalupa986

• Multi-access box log 3/12 grackles (25%): Diablo, Adobo, Yuca987

Video coders then analyzed all videos from these birds. The experimenter’s data was compared with the988

video coder data using the intra-class correlation coefficient (ICC) to determine the degree of bias in the989

regression slope (Hutcheon et al. (2010), using the irr package in R: Gamer et al. (2012)). Note that the990

data in columns from coders 1 and 2 in the data sheets were aligned based on similar numbers between991

coders to prevent disagreements near the top of the data sheet from misaligning all subsequent entries.992

INTEROBSERVER RELIABILITY TRAINING993

To pass interobserver reliability (IOR) training, video coders needed an ICC score of 0.90 or greater to994

ensure the instructions were clear and that there was a high degree of agreement across coders (see R code995

comments for details).996

Alexis Breen (compared with experimenter’s live coding):997

• Multi-access box: correct choice unweighted Cohen’s Kappa=0.90 (confidence boundaries=0.77-1.00,998

n=33 data points)999

• Multi-access box: locus solved unweighted Cohen’s Kappa=0.90 (confidence boundaries=0.76-1.00,1000

n=33 data points)1001

Note: Breen was not a hypothesis-blind video coder. She contributed to extensive video coding across1002

the whole project, however, for interobserver reliability analyses, her data were always compared with a1003

hypothesis-blind coder’s data.1004

Anja Becker (compared with experimenter’s live coding):1005

• Reversal: correct choice ICC=1.00 (confidence boundaries=1.00-1.00, n=25 data points)1006

Tiana Lam (compared with experimenter’s live coding):1007

• Multi-access box: correct choice ICC=0.90 (confidence boundaries=0.77-1.00, n=33 data points)1008

• Multi-access box: locus solved unweighted Cohen’s Kappa=0.95 (confidence boundaries=0.84-1.00,1009

n=33 data points)1010

Brynna Hood (compared with experimenter’s live coding):1011

• Multi-access log: correct choice unweighted Cohen’s Kappa=1.00 (confidence boundaries=1.00-1.00,1012

n=29 data points)1013

• Multi-access log: locus solved unweighted Cohen’s Kappa=1.00 (confidence boundaries=1.00-1.00,1014

n=29 data points)1015
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INTEROBSERVER RELIABILITY1016

Interobserver reliability scores (minimum 20% of the videos) were as follows:1017

Brynna Hood (compared with experimenter’s live coding):1018

• Multi-access log: correct choice unweighted Cohen’s Kappa=0.91 (confidence boundaries=0.76-1.00,1019

n=39 data points)1020

• Multi-access log: locus solved unweighted Cohen’s Kappa=1.0 (confidence boundaries=1.0-1.00, n=391021

data points)1022

Tiana Lam (compared with experimenter’s live coding):1023

• Multi-access box: correct choice unweighted Cohen’s Kappa=0.83 (confidence boundaries=0.73-0.92,1024

n=102 data points)1025

• Multi-access box: locus solved unweighted Cohen’s Kappa=0.90 (confidence boundaries=0.830-0.97,1026

n=102 data points)1027

Anja Becker (compared with experimenter’s live coding):1028

• Reversal: correct choice ICC=0.99 (confidence boundaries=0.98-0.99, n=3280 data points)1029

These scores indicate that the dependent variables are repeatable to a high or extremely high degree given1030

our instructions and training1031
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SUPPLEMENTARY MATERIAL 3: Prediction 2 model outputs1032

Table SM3. Model outputs for the number of loci solved and the latency to switch loci after passing1033

criterion on a different locus on the plastic (models 1-5 and 9-11) and wooden (models 6-8 and 12-14)1034

multi-access boxes, and for the pairwise comparisons explaining the changes caused by the manipulation1035

(Models 15-16). SD=standard deviation, the 89% prediction intervals are shown, n_eff=effective sample1036

size, Rhat4=an indicator of model convergence (1.00 is ideal), a=the intercept (a[batch] is the intercept for1037

each batch), b=the slope of the relationship between loci solved or average switch latency and the number1038

of trials to pass the reversal. See Supplementary Material 1 for details on model specifications.1039
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Mean SD Lower 89 percentile
compatibility

interval (5.5%)

Upper 89 percentie
compatibility

interval (94.5%)

n_eff Rhat4

MODEL 1 (last
reversal): loci solved
plastic ~ a[batch] +
b*trials
a[1] 0.04 0.46 -0.70 0.78 2304 1.00
a[2] 0.29 0.36 -0.30 0.87 2456 1.00
a[3] -0.78 0.55 -1.65 0.08 2510 1.00
b -0.22 0.25 -0.63 0.18 2364 1.00
MODEL 2 (last
reversal): loci solved
plastic ~ a + b*trials
a -0.02 0.24 -0.40 0.35 1466 1.00
b -0.46 0.31 -0.97 -0.01 1383 1.00
MODEL 3 (last
reversal): trials ~
a[batch]
a[1] 0.09 0.37 -0.48 0.69 2095 1.00
a[2] -0.21 0.29 -0.68 0.25 1715 1.00
a[3] 0.25 0.39 -0.38 0.86 2161 1.00
sigma 1.03 0.21 0.75 1.39 2049 1.00
MODEL 4: loci
solved ~ a[condition]
a[1] control -0.11 0.32 -0.62 0.40 1311 1.00
a[2] manipulated 0.15 0.39 -0.46 0.80 1222 1.00
MODEL 5 (first
reversal): loci solved
plastic ~ a + b*trials
a 0.00 0.24 -0.37 0.39 1208 1.00
b -0.44 0.30 -0.94 0.02 1273 1.00
MODEL 6 (last
reversal): loci solved
wooden ~ a +
b*trials
a 1.06 0.27 0.63 1.50 1255 1.00
b 0.41 0.43 -0.21 1.13 1107 1.00
MODEL 7: loci
solved ~ a[condition]
a[1] control -0.45 0.40 -1.10 0.18 1161 1.00
a[2] manipulated 0.77 0.41 0.13 1.44 1302 1.00
MODEL 8 (first
reversal): loci solved
wooden ~ a +
b*trials
a 0.11 0.26 -0.30 0.52 1221 1.00
b -0.50 0.35 -1.09 0.04 1234 1.00
MODEL 9 (last
reversal): avg switch
latency plastic ~ a +
b*trials
a 4.93 0.30 4.45 5.41 1235 1.01
b 0.46 0.29 0.00 0.92 1363 1.00
phi 0.93 0.35 0.44 1.55 1476 1.00
MODEL 10: avg
switch latency
plastic ~ a[condition]
a[1] manipulated 4.07 0.39 3.46 4.68 1027 1.00
a[2] control 5.18 0.39 4.50 5.76 1006 1.00
phi 0.91 0.41 0.37 1.63 925 1.01
MODEL 11 (first
reversal): avg switch
latency plastic ~ a +
b*trials
a 4.93 0.29 4.46 5.39 1488 1.00
b 0.46 0.28 0.02 0.93 1211 1.00
phi 0.94 0.36 0.44 1.60 1447 1.00
MODEL 12 (last
reversal): avg switch
latency wooden ~ a
+ b*trials
a 5.75 0.28 5.28 6.18 1049 1.00
b -0.41 0.32 -0.86 0.15 1281 1.01
phi 1.04 0.42 0.48 1.77 1456 1.00
MODEL 13: avg
switch latency
wooden ~
a[condition]
a[1] control 5.31 0.42 4.61 5.95 701 1.00
a[2] manipulated 5.34 0.44 4.61 6.00 620 1.01
phi 0.66 0.32 0.25 1.25 806 1.00
MODEL 14 (first
reversal): avg switch
latency wooden ~ a
+ b*trials
a 5.71 0.26 5.28 6.12 1109 1.00
b -0.50 0.28 -0.89 -0.01 1308 1.00
phi 1.08 0.41 0.53 1.80 1347 1.00
MODEL 15
(improvement):
trials ~ a[bird] +
b[bird]*reversal
b_bar -30.30 3.51 -35.65 -24.65 109 1.00
sigma_bar 2.13 2.93 0.17 9.77 9 1.00
sigma 6.54 2.42 0.23 9.41 10 1.00
MODEL 16
(improvement):
trials ~ a[reversal] +
b[bird,reversal]
rho 0.34 0.39 -0.40 0.85 2452 1.00

1040

1041
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SUPPLEMENTARY MATERIAL 4: Reversal learning experiments: discrimi-1042

nating shapes on the touchscreen compared with shade using tubes1043

In the tube experiment, it took four grackles an average of 40 trials (sd=12) in the initial discrimination1044

phase to learn to prefer a shade, while it took the same individuals an average of 390 trials (sd=59) to learn1045

to prefer a shape using the touchscreen (Queso, Mole, Habanero, and Tapa). The two individuals who were1046

faster to learn in the tube experiment were slower to learn in the touchscreen experiment. For the reversal,1047

it took three of these individuals (Queso, Mole, and Habanero) an average of 80 trials (sd=14) to reverse1048

their shaded tube preference, and an average of 362 trials (sd=111) to reverse their shape preference on the1049

touchscreen (Tapa had to be released back to the wild before finishing the experiment, but was on trial 6291050

in reversal one of the touchscreen experiment at the time of release. In the tube experiment, she was also1051

the slowest of the four to reverse at 100 trials). All three individuals were about equally fast at the reversal1052

in the tube experiment, while their reversal learning speeds differed on the touchscreen. The touchscreen1053

training data and a summary of the training process is detailed in Seitz et al. (2021).1054
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SUPPLEMENTARY MATERIAL 5: Summarized results per bird1055
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Table SM5. Summarized results per bird in the reversal learning (tube and touchscreen) and multi-access box (plastic and wooden) experiments.1056

“Reversals to pass” indicates how many serial reversals it took a bird to pass criterion (passing two consecutive reversals in 50 trials or less) if they1057

were in the flexibility manipulation condition. X indicates the bird attempted, but did not pass that experiment. Note: Tapa did not finish the MAB1058

log experiment; Marisco’s MAB log experiment ended too early due to experimenter error (timed out on 2 consecutive sessions, not 3); Mole and1059

Habanero: do not count MAB plastic number of options solved because they were given the box fully put together for habituation due to experimenter1060

error; Taco was the first juvenile we tested and we did not put him in the flexibility experiment: he received 1 reversal and moved on to his next test,1061

therefore he was essentially a control bird without the matched yellow tube experience.1062

Bird Batch Sex Trials to
learn

(tube)

Trials to
first

reversal
(tube)

Trials to
last

reversal
(tube)

Reversals
to pass

Total
loci

solved
(MAB
plastic)

Total
loci

solved
(MAB

wooden)

Average
latency

to
attempt

new
locus

(MAB
plastic)

Average
latency

to
attempt

new
locus

(MAB
wooden)

Trials to
learn

(touch-
screen)

Trials to
first
reversal
(touch-
screen)

Motor
actions
(MAB
plastic)

Motor
actions
(MAB

wooden)

Tomatillo 1 M 40 50 50 Control 3 317 13
Queso 1 M 50 70 70 Control 1 88 330 460 8
Tapa 1 F 30 100 100 Control 4 685 450 (629+) 12
Yuca 3 F 40 80 80 Control 4 4 132 77 13 16
Marisco 3 M 40 50 50 Control 1 2 208 3 7
Pizza 3 M 50 60 60 Control 0 1 1482 0 8
Mofongo 4 M 20 40 40 Control 3 4 502 630 13 14
Taquito 4 M 90 160 160 Control 0 4 100 11 10
Chalupa 1 F 50 90 50 8 0 6
Mole 1 M 30 70 50 7 4 4 356 1173 431 307 14 15
Habanero 1 M 50 80 40 6 4 28 350 290 15
Diablo 3 M 20 80 40 8 2 1 25 10 2
Burrito 3 M 40 60 23 8 3 4 76 391 17 18
Adobo 3 M 50 100 50 6 4 4 31 79 16 18
Chilaquile 3 JM 30 40 30 6 4 4 44 170 19 11
Pollito 4 M 40 60 40 8 0 3 668 0 11
Taco 3a JM 50 80 80 (Control) 1 4 117 2 19
Memela 1 F 50 60 80 X (11+)
Fideo 2 M 60 70 70 Control
Avocada 1 F 50 100 100 Control
Huachinago3 M 70 Control
Guacamole 4 M 30

1063

1064
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SUPPLEMENTARY MATERIAL 6: Prediction 4 learning strategy figures1065

Below are figures for the proportion of trials correct by trial number and reversal for each bird.1066

1067

Figure SM6.1. Adobo’s proportion of trials correct by trial number and reversal.1068
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1069

Figure SM6.2. Chalupa’s proportion of trials correct by trial number and reversal.1070
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1071

Figure SM6.3. Chilaquile’s proportion of trials correct by trial number and reversal.1072
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1073

Figure SM6.4. Diablo’s proportion of trials correct by trial number and reversal.1074
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1075

Figure SM6.5. Habanero’s proportion of trials correct by trial number and reversal.1076
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1077

Figure SM6.6. Memela’s proportion of trials correct by trial number and reversal.1078
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1079

Figure SM6.7. Mole’s proportion of trials correct by trial number and reversal.1080

43



1081

Figure SM6.8. Pollito’s proportion of trials correct by trial number and reversal.1082
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