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Abstract

Context: Human activity puts our oceans under multiple stresses, whose impacts are

already significantly affecting biodiversity and physicochemical properties.

Consequently, there is an increased international focus on the conservation and

sustainable use of oceans, including the protection of fragile benthic biodiversity

hotspots in the deep sea, identified as vulnerable marine ecosystems (VMEs).

International VME risk assessment and conservation efforts are hampered because we

largely do not know where VMEs are located. VME distribution modelling has

increasingly been recommended to extend our knowledge beyond sparse observations.

Nevertheless, the adoption of VME distribution models in spatial management planning

and conservation remains limited.

Methods: This work critically reviews VME distribution modelling studies, and

recommends promising avenues to make VME models more relevant and impactful for

policy and management decision making.

Results: First, there is an important interplay between the type of VME data used to

build models and how the generated maps can be used in making management decisions,

which is often ignored by model-builders. We encourage scientists towards founding

their models on: (i) specific and quantitative definitions of what constitute a VME, (ii)

site conservation value assessment in relation to VME multi-taxon spatial predictions,

and (iii) explicitly mapping vulnerability.
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Policy implications: Along with the recent increase in both deep-sea biological and

environmental data quality and quantity, these modelling recommendations can lead

towards more cohesive summaries of VME’s spatial distributions and their relative

vulnerability, which should facilitate a more effective protection of these ecosystems, as

has been mandated by numerous international agreements.

Key-words

Biogeography, Environmental impact assessment, Habitat suitability model, Marine

conservation, Marine management, Species distribution model, Vulnerable marine

ecosystems.
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1. Introduction

Deep sea biodiversity is highly diverse, poorly understood (Ramirez-Llodra et al.,

2010; Thurber et al., 2014) but threatened by a combination of multiple stresses as a

result of human activity (M. R. Clark, Althaus, et al., 2016; Danovaro et al., 2017). Since

2006, the UN General Assembly (UNGA) adopted a series of resolutions dedicated to the

protection of fragile benthic biodiversity hotspots in the deep sea, collectively called

vulnerable marine ecosystems (VMEs). Resolution 61/105 (UNGA, 2006, p. 105) calls

upon States and Regional Fisheries Management Organisations / Arrangements

(RFMO/As) to identify areas beyond national jurisdiction where VMEs occur, or are

likely to occur, in order to prevent significant adverse impacts from damaging fishing

practices. In 2009, the Food and Agriculture Organization (FAO) established five criteria

(FAO, 2009) that define VMEs: (i) uniqueness or rareness, (ii) functional significance of

the habitat, (iii) fragility, (iv) life-history of species that makes recovery difficult, (v)

structural complexity. Overall, the vulnerability refers to the likelihood that an

ecosystem will be irreversibly altered by a short-term or chronic disturbance.

Periodic reviews of the implementation of the 61/105 UNGA resolution have

noted systematic failures to properly map VMEs, and judged their protection as
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insufficient (Bell et al., 2019; Gianni et al., 2016; Rogers & Gianni, 2010; Thompson et

al., 2016). VMEs protection is directly hampered by the fact that the vast majority of the

deep-sea has not been sampled (M. R. Clark, Consalvey, et al., 2016), hence its benthic

composition remains mostly unknown (Weaver et al., 2011). Increasing our knowledge

about VMEs, including their spatial distribution, composition, vulnerability and

environmental requirements, is crucial in order to provide a more holistic protection

(Chimienti et al., 2018). Although many studies urged for the application of the highly

precautionary management of deep-sea benthic ecosystems (M. R. Clark, Althaus, et al.,

2016; Watling & Auster, 2017), its implementation in the deep sea remains, to date,

highly limited (Bell et al., 2019; Norse et al., 2012; Thompson et al., 2016). Therefore,

frameworks that can make the best of the data we have (e.g., highlighting where the key

uncertainties lie, improve our VMEs knowledge into poorly sampled areas) are valuable.

What we do know about the location of VMEs typically derive from when

VME indicator taxa are caught as a bycatch in fisheries gear (Ardron et al., 2014; Blicher

& Arboe, 2021; Carbonara et al., 2020) or, to a lesser extent are captured by scientific

surveys (Baco et al., 2020; Dautova et al., 2019; Du Preez et al., 2020; Long et al., 2020;

Salinas-de-León et al., 2020). Because the former is destructive and has a limited

sampling ability (Watling & Auster, 2017) and the latter is very expensive, these

techniques are not suitable to be used at large spatial scales. To extend our knowledge

beyond these sparse observations, VME distribution modelling has been increasingly

used (Ardron et al., 2014; Thompson et al., 2016; Vierod et al., 2014). Essentially, VME

distribution modelling aims at predicting the suitability of a location for a VME, based
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on their observed relationship with environmental conditions. By collating all available

information, distribution modelling provides a coherent analysis framework to highlight

unsampled, and often remote, areas that may harbour VME. Apart from very recent

works in the North Atlantic and South Pacific RFMOs (e.g., (ICES, 2019; A. Rowden &

Anderson, 2019)), VME distribution models have yet to realise any substantial impact on

conservation and management measures, and translating modelling insights to

policy-decisions remains relatively limited (Ardron et al., 2014; Bell et al., 2019; Gianni

et al., 2016; A. A. Rowden et al., 2020; Thompson et al., 2016; Vierod et al., 2014). The

main reasons for this are: (i) the overall disagreement about what constitutes a VME, (ii)

the inherent uncertainty of model predictions, especially since most are fitted on highly

imperfect observations from fishery bycatch data, and (iii) model outputs are not always

easily understandable or relevant for environmental managers and conservationists.

In this study, we provide a comprehensive and critical review of VME

distribution modelling and some perspectives to guide future modelling efforts towards a

better integration into policy and management. In particular, we highlight modelling

challenges related to the type of data used to build VME models, which model-builders

need to be aware of in order to appropriately inform user groups (section 2). Besides, we

underline how the lack of quantitative standards of what constitutes a VME limits the

models’ applicability (section 3), and recommend a multi-criteria and -taxa modelling

approach to map the vulnerability of marine ecosystems, to produce VME mappings that

are more cohesive and relevant for environmental managers and conservationists

(section 4).
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2. Connections between the type of VME data and

model use

The interpretability of VME model predictions directly depends on the

underlying data used for model building, meaning the data’s characteristics need to

match their application (Guillera‐Arroita et al., 2015). VME observations mainly come

from two sampling methods: (i) by physical sampling, e.g. bycatch of fishing gear and

scientific benthic survey, or (ii) using underwater imagery, e.g. towed cameras, Remotely

Operated Vehicle or Autonomous Underwater Vehicle. Different gear will have different

selectivity. In this section, we discuss the consequences of using a certain type of data on

the VME modelling and on its interpretability in regard to the FAO guidelines.

The probability of detecting a VME, P, at a given location can be expressed by:

𝑃(0) = (1 − 𝑃𝑝) + 𝑃𝑝(1 − 𝑃𝑠) 

𝑃(> 0) = 𝑃𝑠𝑃𝑝

where P(>0) is the probability of detecting a VME when present, PP is probability of

VME occurrence (which may be expressed as a Poisson distribution), and PS is the

probability of detecting that a VME is present (which may be a function of a number of

variables). VME data may be a function of the full joint Poisson distribution (i.e.,

abundance data), truncated as a joint Bernoulli distribution (i.e., presence / absence data,

P(1) and P(0)), or truncated so that only presence is recorded (i.e., presence-only data as

there is no information on P(0)). As more information is lost (i.e., going from abundance
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to presence-only), model estimation becomes more difficult and the internal variability

of both response and covariate data may be such that robust estimation is no longer

possible.

(Guillera‐Arroita et al., 2015) provide a clear overview of how data characteristics

determine how the predictions from species distribution models should be (but often are

not) interpreted. Building on (Guillera‐Arroita et al., 2015), Fig. 1 illustrates how model

interpretation varies depending on the type of estimates yielded by the model, i.e. rank

suitability, relative likelihood, true probability of occurrence, or density, which is in turn

influenced by the data type. In simple terms, when Ps decreases, our confidence in being

able to have reliable Presence-Absence data decreases. Rank suitability estimation

provides a ranked order of suitable sites for harbouring a VME, which is not

proportional to the actual probability of occurrence, i.e. does not indicate how suitable a

site is for harbouring a VME, with PS unreliable. In contrast to rank suitability, the

relative likelihood is proportional to the probability of occurrence Pp. Both rank suitability

and relative likelihood can be used to discriminate sites, i.e. distinguish between

occupied and unoccupied sites better than random. However, to estimate the relative

likelihood is not sufficient for comparing across multiple modelled taxa or habitats and /

or regions. In order to estimate the true probability of occurrence for a VME, models

need to be fitted on presence-absence data with reliable detectability of taxa Ps

(Guillera‐Arroita et al., 2015). Further, when abundance data are available, the model can

estimate density or percentage cover of indicator taxa.
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Figure 1. Influence of the VME data characteristics on the interpretability of the

model’s predictions. The probability of detectability Ps directly impacts the

characteristics of the model predictions, and therefore their interpretability.

Abbreviations: ind.: individuals ; occ.: occurrence ; Prob.: probability ; Rel.: Relative ;

suitab.: suitability ; VME: Vulnerable Marine Ecosystem.

Fishing gears have generally a low catchability for benthic organisms, especially

for small, fragile and brittle VME taxa (Auster et al., 2011; Watling & Auster, 2017).

Fishing gears are typically designed to catch or attract motile species, as opposed to

providing representative samples of VME indicator taxa: PS is small and unreliable.

Moreover, there is a lack of consistency across fisheries management regarding data
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collection of VME indicator taxa (Thompson et al., 2016). As a result, taxa may be

present (and impacted) by fishing gears, but not all are necessarily caught, brought to the

surface and / or reported (Du Preez et al., 2020; Knudby et al., 2013; Watling & Auster,

2017). Therefore, VME data acquired with fishing gear is widely considered as

“Presence-only” data (i.e., no “true absence” data, P(0), available) with highly imperfect

detection (i.e., PS << 1). With poor confidence in estimating PS, we are marginalising

over PS to give a relative measure (see Fig. 1). Besides fisheries bycatch data, some

scientific physical sampling gear have been specifically designed for benthic ecosystems,

such as benthic sleds, yielding “Presence-absence” or “Abundance” data with reliable

benthic species detectability Ps (Williams et al., 2015). However, physical sampling gear

only allows indicator taxa collection, since the identification of habitats generally

requires direct observation, e.g. via imagery. Although VME data to date have been

largely collected with physical sampling gear, these aforementioned restrictions, both on

model predictions and the modelled biotic entity, impact the interpretation against the

FAO criteria. Further, because physical sampling methods can permanently impact

individuals and assemblages, these methods should be avoided for sampling vulnerable

ecosystems (Williams et al., 2015).

Underwater imagery allows sampling the seafloor with a reliable detectability of

most taxa PS (Long et al., 2020; Williams et al., 2015). It is generally considered that

“Presence-absence” data can be derived from these images since most VME taxa are

sessile or with a limited mobility. This kind of data can be used to create models that are:

(i) discriminative (i.e., occupied vs. unoccupied sites), (ii) well-calibrated (i.e., exact
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probability, not relative), and (iii) comparable among VME entities and / or regions (see

Fig. 1). Importantly, habitat identification and / or accurate VME taxa abundance can be

extracted from images (Williams et al., 2015), which is important for addressing the

FAO criteria. Underwater imagery allows finer model resolution, e.g. 25 m2 in (A. A.

Rowden et al., 2017). Nevertheless, imagery scientific surveys in the deep sea are rare

which restricts the scale of those datasets compared to the ones derived from fishing

vessels.
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3. Limited translation of the FAO criteria into

modelling

The FAO guidelines are (intentionally) generic and non quantitative, which

makes their interpretation prone to expert-subjectivity (Howell et al., 2011; Watling &

Auster, 2017). The UNGA explicitly left to the RFMO/As the responsibility to refine the

VME definition relatively to their jurisdiction, which has led to differing interpretations

by model-builders and experts in separate RFMO/As (Bell et al., 2019; Long et al., 2020;

Thompson et al., 2016). While the original rationale for the UNGA resolutions was to

halt the impact to structurally complex, habitat forming, slow growing and brittle

assemblages of deep sea benthos, the lack of agreement as to what “vulnerability” means

and what a VME is, has been a huge and unproductive time sink.

3.1. Lack of consensus about how to model a VME

In distribution modelling studies, VMEs have most often been considered as

either assemblages dominated by a single indicator taxon or co-dominated by multiple

indicator taxa. Within these two categories, different modelling approaches have been

proposed, each with different implications for identifying VMEs using the FAO criteria.

Fig. 2 illustrates the different approaches based on how VMEs have been defined by

model-builders.
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Figure 2. VME definition used in distribution modelling. VMEs can be modelled

either considering them as an assemblage either dominated by a single taxon (top), or

co-dominated by multiple taxa (bottom). In the first case, the modelling uses the

indicator taxon distribution (e.g., cold-water coral Lophelia pertusa), or the assemblage

dominated by this taxon (e.g., coral reef). When using the multiple taxa approach, the

assemblage is modelled with either the “Assemble then Predict” or the “Predict then

Assemble” approach.
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When VMEs are defined as an assemblage dominated by a single indicator taxon,

two approaches are usually employed: either by modelling the distribution of the

indicator taxon, as a proxy for the associated assemblage, or by modelling the

distribution of the assemblage itself (see Fig. 2, top panel). Most studies model the

distribution of the VME indicator taxon instead of the associated assemblage. However,

the occurrence of a VME indicator taxon alone is not sufficient to properly identify a

VME (FAO, 2009; Howell et al., 2011; Watling & Auster, 2017), as it does not provide

evidence of a habitat with important functional significance, see FAO “functionality”

criterion. The distribution of a VME assemblage often represents only a small subset of

the distribution of its associated dominating indicator taxon, especially when the

assemblage requires environmental factors that are more restrictive than for the

occurrence of the taxon. For instance, (Howell et al., 2011) model and compare the

distribution of a cold-water coral (Lophelia pertusa, VME indicator taxon) vs. the reef it

forms (assemblage forming a VME habitat), and show that the predicted area of high

suitability for the taxon is much broader than for the assemblage (7.17% vs. 0.56% of the

studied area). To model VMEs using assemblage data is however limited by the scarce

availability of this data type, since it generally requires underwater imagery sampling (see

section 2), and by the lack of consensus around the quantitative definition of VME

assemblages, e.g. composition or density of taxa (A. A. Rowden et al., 2020).

When VMEs are defined as an assemblage of multiple indicator taxa, there are

two components to the modelling approach: defining the assemblage (“Assemble”) and

making predictions (“Predict”). These generally occur separately and can be in either
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order, i.e. “Assemble first then Predict” or “Predict first then Assemble”, as defined in

(Ferrier & Guisan, 2006), see Fig. 2 bottom panel. The “Assemble first then Predict” aims

at predicting the occurrence of predefined benthic assemblages, e.g. circalittoral vertical

rocky walls with Caryophyllia cyathus and Corallium rubrum in (Torriente et al., 2019).

These assemblages can be defined by: (i) prior knowledge, e.g. biotopes known to occur

in the area of interest (Bo et al., 2021), (ii) expert judgement using phylogenetic and

functional diversity metrics, or (iii) cluster and ordination analysis (Barrio Froján et al.,

2016; Torriente et al., 2019). Importantly, this approach cannot provide insights on

environmental requirements of each taxon and can lead to an artificially wide niche

description (Brewin et al., 2020; Yesson et al., 2012). The “Predict first then Assemble”

approach models and predicts the spatial distribution of each VME taxon before

assembling model outputs. It allows assemblage characterisation, e.g. species

composition and their environmental requirements (Hill et al., 2020). For instance, (J.

W. Chu et al., 2020) combined predictions from individual models developed for each

cold-water corals and sponges group to identify areas as suitable assemblage for multiple

biogenic habitat-forming species. In VME studies, the individual taxon predictions have

mostly been assembled based on a prior beliefs about how assemblages are structured

(e.g. grouping by higher taxonomic level (Yesson et al., 2012) or functionality (Davies &

Guinotte, 2011)), which may not reflect real distribution patterns or confer a limited

ecological interpretability (Jansen et al., 2018).
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3.2. Lack of quantitative standards of what constitutes a VME

To identify a VME in accordance with the FAO guidelines, the five criteria need

to be encoded into the modelling approach. However, most VME distribution modelling

studies focused on predicting suitable locations for VME indicator taxa, which provides

an incomplete assessment according to the multi-criteria guidelines. Nevertheless, the

translation of the FAO criteria into modelling terms remains unclear, especially for the

“functionality” and “structural complexity” criteria. The “functionality” of an ecosystem

cannot be easily modelled given the current FAO VME definition and the available

knowledge of these remote ecosystems. The “structural complexity” of a habitat can

potentially be assessed if abundance data with excellent detectability is available, e.g. by

characterising the density and / or the morphologies of the biotic and abiotic features.

The FAO guidelines do not specify what constitutes a “significant concentration”

(Auster et al., 2011; A. A. Rowden et al., 2020; Vierod et al., 2014). A quantitative criteria

is needed to distinguish dense aggregations of VME taxa that form a “structurally

complex habitat” from low frequency occurrences of VME indicator taxa. Most

RFMO/As have established operational definitions based on thresholds of VME

indicator taxa caught as fisheries bycatch (Bell et al., 2019), which then triggers

precautionary management actions, e.g. CCAMLR conservation measure CM 22-07

(CCAMLR, 2013). However, the relevance of these operational encounter thresholds has

been questioned (Ardron et al., 2014; Auster et al., 2011; Geange et al., 2020; Watling &

Auster, 2017) because they (i) have undergone limited scientific validation and, (ii) are
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not taxon specific, and therefore do not take into account the differential catchability of

taxa and their differential vulnerability, distribution or life history characteristics. In

addition, VME extent is operationally defined in many RFMO/As by an arbitrary

distance around the location where a certain amount of VME indicator taxa has been

encountered, e.g. CCAMLR conservation measure CM 22-07 (CCAMLR, 2013), often

without further scientific investigation. Further work is then needed to establish

quantitative references, scientifically validated, of what constitutes a VME, both in terms

of taxon abundance and VME extent.
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4. Making VME distribution models more relevant for

conservation and management decisions

VME distribution models have had limited impact on conservation and

management measures to date, partly because their outputs cannot be directly assessed

against the FAO criteria and because quantitative standards of what constitutes a VME

are lacking. To tackle these issues, our recommendations for the future generation VME

models are three fold: VME identification from models should (i) be ruled by a specific

and quantitative definition of what constitutes a VME, (ii) assess the entire ecosystem

conservation value instead of focusing on a single indicator taxon distribution, and (iii)

model the vulnerability of an area instead of its suitability to harbour a vulnerable

species.

4.1. Establish a quantitative and more specific definition of

VMEs

The FAO VME identification guidelines are policy-oriented and their translation

into modelling is not straightforward, see section 3.2. There is a need for VME

identification criteria which are both model-oriented and user-specific. Therefore, we

recommend early and iterative communication between model-users and -builders to

converge on quantitative VME identification criteria that are suitable to the user’s need.
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To find a multi-country and multi-stakeholder consensus is often challenging.

Therefore, the involvement of as many parties as possible during the different steps of

the modelling process increases the likelihood of models’ acceptance and of a successful

spatial management planning outcome (Ardron et al., 2014; A. A. Rowden et al., 2019).

Unlike the occurrence or abundance of a species which are absolute measures,

vulnerability is relative and qualitative, i.e. it is a spectrum, from hardy and resilient to

fragile and vulnerable, and dependent on a specific threat, specific region, etc. To ensure

an adequate and precise interpretation of the model’s outputs, VME distribution models

should be based on criteria that are specific and a priori clearly communicated to

model-users. In particular, vulnerability criteria should be defined relative to specific

threat (e.g., fishing vs. deep sea mining) and to the characteristics of the VME data

available for modelling (e.g., model cut-off values should take into account the

detectability of the sampling method used to collect the training data). For regional

models, the VME policy-oriented criteria defined by some RFMO/As for their area of

jurisdiction constitute a relevant starting point. For instance, CCAMLR considers the

motility and the larval dispersal as additional VME criteria, as relevant aspects for the

Southern Ocean context and the longline fishery (CCAMLR, 2009). To date, VMEs have

been mainly modelled in regard to the fishing threat. For applications not only focusing

on fisheries management, the seven criteria developed by the Convention on Biological

Diversity to identify Ecologically or Biologically Significant Areas (EBSA) should be

taken into consideration (Dunn et al., 2014). As shown by (Ardron et al., 2014), the

EBSA identification criteria complement the FAO VME criteria with the assessment of
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the area naturalness (or ecosystem intactness, i.e., lack of or low level of human induced

disturbance or degradation), the biological productivity and diversity (see

(Gonzalez-Mirelis et al., 2021)).

Establishing quantitative-based criteria of what constitutes a VME is needed to

impede subjectivity in VME identification. To reach a consensual definition of an

ecosystem vulnerability, the establishment of cut-off values, data driven and scientifically

validated, is needed (Geange et al., 2020; Kenchington et al., 2014; A. A. Rowden et al.,

2020). To this end, (A. A. Rowden et al., 2020) model the relationships between the

density of a habitat-forming taxon and the number of other epifauna taxa, i.e. correlation

between the amount of structurally complex habitat and the associated species richness.

This analysis facilitates the translation of the subjective “Structural complexity” FAO

criterion into a quantitative model-oriented criterion by determining percentage cover

thresholds that are representative of structurally complex habitats. Such methodology

has the potential to operationalise FAO’s criteria while providing distribution models

with a data-driven and scientifically-validated reference to identify VMEs.

4.2. Assess site conservation value in relation to VME multi-taxa

spatial predictions

While most VME modelling studies focus on the distribution of a single indicator

taxon, epibenthic community composition analyses would provide a more relevant

assessment of both the ecological functionality and structural complexity of an
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ecosystem, as per key FAO VME criteria. Therefore, we recommend to model the full

list of VME taxa instead of focusing on a single taxon or habitat, and to assess the

conservation value of the predicted hotspots by characterising the whole epibenthic

community in relation to the predicted VME taxa distributions.

To model the distribution of multiple species, approaches with joint responses

among the species, such as Hierarchical Modelling of Species Communities (Tikhonov et

al., 2020), Species Archetype Model (Dunstan et al., 2011; Hui et al., 2013) or Regions of

Common Profiles model (Foster et al., 2013), should be investigated as they can directly

reveal VME’ community structure (J. W. F. Chu et al., 2019). Besides the assemblage

approaches commonly used in the VME literature (see bottom panel of Fig. 2), future

studies could consider the “Analyse simultaneously” approach which simultaneously

correlates biological with environmental data to generate regions containing relative

homogenous and distinct assemblages within a single model (Hill et al., 2020).

Once hotspots of VME taxa are identified, the ecological value of a site can be

evaluated in respect to the biodiversity and productivity of the entire epibenthic

community, e.g. by computing the total epibenthic megafauna richness and abundance

(Dunstan et al., 2012; Gonzalez-Mirelis et al., 2021). The total epibenthic megafauna

richness and abundance can arguably be used as relevant quantitative indicators to assess

the “structural complexity” and “functionality” FAO criteria (Gonzalez-Mirelis et al.,

2021). Further, since biodiversity and productivity are part of the EBSA identification

process, their quantification in VME distribution studies supports a better incorporation
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of VME protection within management tools across sectoral authorities and

international agreements.

The use of abundance data extracted from underwater imagery is preferable for

conducting the community-oriented modelling described above. Imagery-based

abundance data provides a significantly more reliable, comprehensive and

non-destructive characterisation of benthic communities than other sampling methods

(see section 2). Besides, the visual assessment allowed by images is more compelling for

non-specialists such as policy-makers. Rapid advances in imaging technologies have

recently reduced costs and thus increased underwater imagery coverage (Morato et al.,

2018). Further, there has been a substantial global effort to make these images publicly

available, e.g. MAREANO video database (Buhl-Mortensen et al., 2015). To increase the

spatial and environmental coverage of the training dataset, we encourage model-builders

to collate all available data that have been already acquired across the studied region,

even when not annotated yet (Etnoyer et al., 2018). Noteworthy recent efforts have been

made to standardise protocols for VME identification (Baco-Taylor et al., 2020) and

marine reference catalogues (Horton et al., 2021; Howell et al., 2019), both from

underwater imagery. While indicator taxa are often defined with a low taxonomic

resolution by RFMO/As, the use of images opens the door to higher resolution

identifications, which can provide a finer characterisation of ecosystems. In addition,

taxonomic groups can be split based on morphological characteristics, e.g. using

morpho-taxonomic labels (Gonzalez-Mirelis et al., 2021), or functional traits in order to

further appraise the ecosystem vulnerability, e.g. “Fragility” FAO criterion. All in all, the
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increase of both quantity and quality of abundance data is likely to underpin the next

generation VME distribution models.

4.3. Model the vulnerability of marine ecosystems

Most published VME distribution models have focused on mapping the occurrence

of indicator taxa, which only provides a partial assessment of the entire ecosystem

vulnerability. VMEs should instead be identified on the basis of the full suite of

vulnerability criteria outlined in the FAO Guidelines (Gianni et al., 2016). Therefore, we

recommend future studies to model the vulnerability of an area, rather than its suitability

to harbour an indicator taxon. To map the vulnerability of an area, (Morato et al., 2018)

propose weighting the VME taxa abundance data by taxa-specific scores for each of the

five FAO criteria. This multi-criteria assessment method results in the mapping of a

single composite metric, the “VME index”, which represents where a particular location

lies on the vulnerability spectrum. Some drawbacks are however inherent to such

composite score calculation (Ardron et al., 2014), such as sometimes leading to

prioritizing sites harbouring a large number of taxa with low vulnerability, over a habitat

dominated by a highly vulnerable taxon. Nevertheless, this methodology has been

adopted by the International Council for the Exploration of the Sea (ICES) in the

North-East Atlantic (ICES, 2019), and has been recently used to generate the “North

Atlantic Ocean basin-scale VME index dataset” (Morato et al., 2020). Building on

(Morato et al., 2018) method, (Burgos et al., 2020) map the “VME index” beyond

observed sites using the predictions of VME taxa distribution models. Avenues of
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improvement include: (i) to use joint-distribution modelling approaches, as detailed in

section 4.2, and (ii) to derive vulnerability scores for each taxa from imagery-based

analyses that are less prone to expert subjectivity because data-driven and

scientifically-validated, see section 4.1.
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5. Conclusion

Distribution modelling will have an increasingly important role to play in

underpinning the next generation of targeted VME management and conservation

measures. VME distribution modelling will benefit from the recent increase in both

VME data quality and quantity, but several challenges will need to be addressed to make

modelling efforts relevant and impactful. First, it is crucial that model-builders

understand the connection between the type of data used to build models and what such

models are able to estimate to ensure they are appropriate for the intended application.

Second, a limitation in the general applicability of VME models occurs because

quantitative standards of what constitutes a VME are lacking. We strongly recommend

that scientists and RFMO/As work towards generating quantitative definitions and

modelling approaches that i) consider the whole ecosystem instead of focusing on a

single indicator taxon, and ii) model the vulnerability of an area instead of just its

suitability to harbour a vulnerable species. To this end, the combination of models that

simultaneously quantify the distribution of a suite of VME taxa with a tailored VME

index that considers multiple aspects of the FAO criteria appears a promising way

forward. The present work comes at a critical time where there is increased international

focus on the sustainable use of oceans, particularly in Areas Beyond National

Jurisdiction. International negotiations in Convention on Biological Diversity and

Biodiversity Beyond National Jurisdiction are reaching a stage of maturity where having
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a science- and data-based framework is important, wherein VME distribution modelling

has a key role to play.
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