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Abstract 6 

To make credible ecological predictions for terrestrial ecosystems in a changing environment and 7 

increase our understanding of ecological processes, we need plant ecological models that can be 8 

fitted to spatial and temporal ecological data. Such models need to be based on sufficient 9 

understanding of ecological processes to make credible predictions and account for the different 10 

sources of uncertainty. Here, I argue (1) for the use of structural equation models in a hierarchical 11 

framework with latent variables and (2) to specify whether our current knowledge of relationships 12 

among state variables may be categorized primarily as logical (empirical) or causal. Such models will 13 

help us to make continuous progress in our understanding of and ability to predict the dynamics of 14 

terrestrial ecosystems and provide us with local predictions with a known degree of uncertainty that 15 

are useful for generating adaptive management plans. The hierarchical structural equation models I 16 

recommend are analogous to current general epistemological models of how knowledge is obtained.  17 
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Introduction 21 

The climate and environment are changing, and the effects of these changes on ecosystems and 22 

biodiversity are well documented (IPBES 2019). It is becoming increasingly important to develop 23 

credible ecological predictions, but the limits of such a predictive approach are an open question. To 24 

what extent is it possible to predict the future of ecosystems in a changing environment? What 25 

ecological processes are most likely to dominate future ecosystem changes? How fast will ecosystem 26 

changes occur? Here, I focus on the vegetation component of the ecosystem as a dynamic system 27 

that is influenced by climate, interactions among organisms and disturbances as an example of 28 

attempts to develop predictive ecological models in general.  29 

The conceptual framework and study methods of plant ecology, and therefore of plant ecological 30 

models, are embedded in concepts of time and space. One of the few generalizations that we can 31 

make about vegetation is that it is spatially heterogeneous, and the spatial patterns of the 32 

vegetation depend mainly on the environment and historical legacies (Greig-Smith 1979; Ricklefs 33 

2004; Svenning and Skov 2004; von Humboldt and Bonpland 1805). Even in a homogenous 34 

environment, plant species are aggregated at large and small spatial scales. At a larger scale, plant 35 

species are aggregated among sites due to random extinction events and limited possibilities for 36 

colonization (Cordonnier et al. 2006; Leibold et al. 2004; MacArthur and Wilson 1967; Rees et al. 37 

2001). Within sites, plants may be aggregated due to clonal growth, limited seed dispersal and size-38 

asymmetric competition (Herben et al. 2000; Pacala and Levin 1997; Stoll and Weiner 2000). 39 

Dominant plant species may affect the soil and lead to important feedback mechanisms, so the 40 

vegetation and soil may be described as a dynamic system in time and space, where different phases 41 

of the vegetation simultaneously may co-occur in different patches (Watt 1947) or the ecosystem 42 

can develop in a successional pattern. 43 

Moreover, it is a truism that ecological processes occur in time, and they can only be understood 44 

when temporal dynamics are taken into account (Damgaard 2019a; Damgaard and Weiner 2017; 45 

Kratz et al. 2003; Pickett 1989). Generally, environments are non-stationary, and spatial and 46 

temporal variability in ecological systems are of fundamental importance to ecosystem dynamics 47 

(Chesson 2000b; Cushman 2010; Huston 1979). For example, the successional changes in tree-48 

dominated ecosystems are expected to be highly erratic and unpredictable at the local scale due to 49 

variable factors, such as herbivore abundance (Schippers et al. 2014), while often being highly 50 

predictable at a larger scale. Temporal changes in the water level of Atlantic wetlands have been 51 

shown to affect both the nature of interspecific competitive relationships and the overall 52 

importance of competition for regulating population growth (Merlin et al. 2015).  53 
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When studying ecological processes, the ecosystem is a useful conceptual entity that focuses 54 

attention on important system properties (Tansley 1935). For example, Lenton et al. (2021) argue 55 

that self-perpetuating feedback cycles involving biotic as well as abiotic components may be critical 56 

for the stability and long-time success of ecosystems, and Tansley (1935) proposed that stable 57 

ecosystems will outlast unstable ecosystems. Furthermore, when ecosystems are situated near 58 

other ecosystems in a landscape, another level of emergent properties may arise among the 59 

ecosystems at the landscape level (Leibold et al. 2004). For example, environmental variation within 60 

a landscape may lead to a storage effect with coexistence of species that would not otherwise 61 

coexist (Chesson 2000a; Chesson and Warner 1981).  62 

The goal of much ecological research is to understand the underlying causes of observed patterns, 63 

which enables us to make credible ecological predictions. However, an observed ecological pattern 64 

may be caused by several different processes and involve several important contingencies 65 

(Damgaard 2019a; Simberloff 2004; Vellend 2010), and the relationship between process and 66 

pattern may be influenced by time lags of unknown duration (Svenning and Sandel 2013). 67 

Consequently, although there is some level of generality, the quantitative importance of different 68 

ecological processes is generally unknown and expected to differ among sites. The resulting variation 69 

in vegetation dynamics among seemingly comparable sites leads to a level of complexity that limits 70 

our ability to generalize our understanding of the ecological mechanisms underlying observed 71 

patterns. While historical contingencies and variation among apparently similar sites preclude the 72 

generalization of ecological findings, careful local studies of the mechanisms conducted at the 73 

relevant spatial and temporal scales do provide causal information of the factors that determine 74 

important community dynamic features (Simberloff 2004; Weiner 1995).  75 

There is increasing awareness of the limitations of classical community ecological models, e.g. Lotka-76 

Volterra-type competition models, to predict ecosystem effects of a changing environment (Clark et 77 

al. 2020; Damgaard and Weiner 2021; Eigentler 2021; Martyn et al. 2020; Mayfield and Stouffer 78 

2017; Neill et al. 2009; Vellend 2010). For example, it is widely appreciated that frequency-79 

dependent species interactions, in which relatively rare species are favored over more common 80 

species, may play an important role in plant species co-existence and community dynamics in plant 81 

communities (Chisholm and Fung 2020; Connell et al. 1984). Species-specific soil-plant interactions 82 

have received increasing interest as a potentially important and general mechanism for regulating 83 

plant populations by hindering local establishment and growth of conspecific plant species in the 84 

next generation (Aldorfová et al. 2022; Heinen et al. 2020; Mazzoleni et al. 2015a; Mazzoleni et al. 85 

2015b; van der Putten et al. 2013). In an attempt to cope with the ecological complexity, Vellend 86 

(2010) suggested partitioning all ecological processes that result in species abundance changes into 87 
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a logically complete set of disjunct categories: selection, drift, dispersal and speciation (the 88 

nomenclature of these categories may be discussed in an ecological context, but the important 89 

characteristic is that they are logically disjunct and complete). Historically, such a classification 90 

scheme has been successful in evolutionary biology, and Vellend (2010) argued that the reason this 91 

approach has not been used more in ecology is due to universal familiarity with ecological patterns. 92 

For example, since prehistoric time it has been common knowledge that plant growth is reduced 93 

when plants grow close together, and it therefore seems natural to focus on the effects of 94 

competitive interactions rather than introducing a logically complete set of possible processes in 95 

community ecology. 96 

The quantitative scientific exploration of the underlying mechanisms that lead to observed 97 

ecological patterns among ecological state variables in time and space relies on statistical analyses, 98 

but often the investigation meets the obstacle summarized in the well-known phrase “correlation 99 

does not imply causality”. More precisely and in the language of Jaynes (2003), the outcome of a 100 

statistical analysis is the quantification of logic dependencies (see box 1).  101 

 102 

BOX 1 103 

Probability theory: the logic of science 104 

In an inspiring book published after his death, Jaynes (2003) argues that probability theory in a 105 

Bayesian setting may be thought of as a quantitative extension of Aristotelian logic, which enables us 106 

to engage meaningfully in plausible reasoning and provides a method for quantifying our belief in 107 

different hypothesis. From a number of verbal statements of the necessary requirements to a 108 

quantitative system of plausible reasoning, Jaynes develops the foundation of probability theory, 109 

and show that Bayesian statistics is a mathematical consistent tool for quantifying and 110 

communicating our uncertainties of a studied phenomenon (Cox 1946; Jaynes 2003).    111 

Moreover, just as a true statement in the language of Aristotelian logic does not imply a causal 112 

mechanism, logical dependencies expressed in the extended quantitative logic of probability theory 113 

do not imply causal dependencies (Jaynes 2003). Logic is the general science of all possible 114 

relationships between objects, whereas causality is a specific type of ordered relationship that we 115 

hypothesize for the world to make sense.   116 

The notion of an extended quantitative logic sensu Jaynes (2003) provides important insights into 117 

the nature of plausible reasoning and how we do science; scientific discoveries are most often made 118 

by generalization from an observed pattern using the induction principle, and extended quantitative 119 
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logic shows why this is indeed possible and works in practice. By observing a number of white swans 120 

we may say something intelligent about the probability that the next swan we observe is white.  121 

Therefore, I have chosen here to use the term “logical dependency” instead of “(statistical) 122 

association” or “correlation”, which are more commonly used in the relevant literature. More 123 

practically, the use of the concept of extended quantitative logic and Bayesian statistics impose us to 124 

estimate the uncertainties of our predictions. 125 

 126 

The distinction between logical and causal dependencies is subtle and not always clear, but 127 

important nonetheless. Logical dependencies are investigated using probability theory by calculating 128 

the plausibility of different hypotheses when knowledge is limited, and even though it is assumed 129 

that the calculated probabilities are determined by causal dependencies, the calculation of such 130 

probabilities may be decoupled from causal dependencies. For example, if we want to know if a 131 

plant experienced competition from a neighboring plant at day t, when we know that the plant 132 

experienced competition at a later day 𝑡 + 𝜏, then we may calculate the probability P (competition 133 

at day t | competition at day 𝑡 + 𝜏). Such calculations allow us to make ecological predictions, even 134 

though the estimated relationship is not a causal dependence, since the outcome at a later day 135 

cannot influence the outcome at an earlier day. It can also be shown that the accumulation of new 136 

causally-independent data may lead to logical dependencies when investigating the plausibility of 137 

multiple hypotheses (Jaynes 2003).  138 

Logical and causal dependencies are not distinct entities, but form a continuum from almost pure 139 

logical (statistical) relationships to primarily causal relationships, and often the development of a 140 

credible causal hypothesis, i.e. scientific knowledge, goes through a process of collecting relevant 141 

data and investigating data by increasingly refined steps of inductive reasoning (Jaynes 2003). The 142 

distinction is further complicated by unmeasured confounding factors that affect observed 143 

independent variables. These confounding factors may lead to "spurious correlations" or omitted 144 

variable bias (Gelman and Hill 2007). The effect of the confounding factors could potentially be 145 

teased out in an analysis of instrument variables or using structural equation models (Grace 2021; 146 

Rinella et al. 2020), and causal independence may be inferred from randomized experimental 147 

manipulations or controlled manipulations using the logical do-operator introduced by Pearl (Lindley 148 

2002; Pearl 2009). However, many important ecological processes operate at such large spatial and 149 

temporal scales that experimental manipulations are impossible (Shipley 2016), although it may be 150 

possible in some cases to combine the information from manipulated experiments and large-scale 151 

observational studies (Benedetti-Cecchi et al. 2018).  152 
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Structural equation models 153 

The combined effect of both logical and causal dependencies among state variables at the 154 

ecosystem level can be effectively modelled using structural equation models, where the observed 155 

logical dependencies are modeled using hypothesized causal relationships that often are specified as 156 

a directed acyclic graph (Grace et al. 2010; Grace et al. 2012; Shipley 2016; Wright 1921). The 157 

hypothesized causal relationships summarize the domain knowledge of the relevant ecological 158 

process and may be obtained using differential equation models or general assumptions of mass 159 

conservation. However, it is important to note that typically the causal relationships in structural 160 

equation models are assumed to be linear functions (but see Grace et al. 2012). This means that 161 

structural equation models normally do not compare the likelihood of different functional forms of 162 

the dependencies among the observed state variables, i.e. the nature of the ecological processes 163 

that link the observed variables is not investigated. For example, in a typical structural equation 164 

model of the possible dependencies between the observed growths of two plant species, it is not 165 

addressed whether the growth data may be adequately explained by Lotka-Volterra type of 166 

interspecific competition or whether it is relevant to assume some additional form of frequency-167 

dependency (e.g. Clark et al. 2020; Damgaard and Weiner 2021). This insensitivity to the underlying 168 

processes that link the measured ecological state variables in the hypothesized causal network may 169 

be critical for the ecological predictions that are made using a fitted structural equation model. For 170 

example, if frequency-dependency plays a role in interspecific competitive interactions, then more 171 

species can coexist (Chisholm and Fung 2020).  172 

Consequently, when specifying structural equation models it is important to model the underlying 173 

ecological mechanisms in more detail than is usually done and to apply hypothesized mechanistic 174 

functional relationships among state variables, e.g. by assuming that plant growth decreases with 175 

the relative frequency of the plant species in a non-linear way (Damgaard and Weiner 2021), or by 176 

replacing linear relationships with sigmoid growth functions, which are known to capture population 177 

ecological mechanisms at a sufficiently high level of aggregation to allow statistical treatment 178 

(Damgaard 2005; Damgaard and Weiner 2008). In this way, logical dependencies in structural 179 

equation models may be replaced by dependencies of a more causal nature, and in my opinion, the 180 

adopted terminology of logical and causal dependencies used here highlights this overall ecological 181 

research agenda. Clark et al. (2020) warn against the use of process models of relatively high 182 

complexity due to the risk of overfitting, but if frequency-dependency or feedback cycles are 183 

important ecosystem features, then such a level of model complexity is needed in order to make 184 

credible ecological predictions.  185 
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Grace et al. (2010), Shipley (2016) and others have made similar arguments concerning the use of 186 

structural equation models for making stronger inferences and better predictions in ecology. Here, I 187 

add to these points (1) the separation of logical from causal relationships in the analysis, thus 188 

making (2) the link to Jaynes’s epistemological framework more direct. 189 

Usually, there is sizeable variation in the measured independent variables due to measurement and 190 

sampling errors in ecological studies (Muff et al. 2015; Yanai et al. 2018). Such measurement errors 191 

are typically not taken into account in ecological and environmental modelling, where measured 192 

independent variables are treated as if they are constant entities. This is unfortunate, since it has 193 

been shown that even unbiased and normally distributed sampling and measurement errors may 194 

lead to important model and prediction bias, a phenomenon known as "regression dilution" (Carroll 195 

et al. 2006; Damgaard 2020b; Damgaard and Weiner 2021; Detto et al. 2019). Another typical 196 

problem in the analysis of ecological experiments is the use of the language of the experimental 197 

design, e.g. “control” and “treatment”, as orthogonal fixed independent factors, although there is 198 

often large variation and covariation among the variables that are manipulated in the experiment, 199 

e.g. soil humidity and temperature, which are the real independent variables of interest in the study 200 

and the ones on which inferences and conclusions are based (Damgaard et al. 2018).  201 

How can we best improve the empirical modelling of plant ecological processes in space and time in 202 

order to make credible ecological predictions? Following the suggestion by Clark (2005; 2007) and 203 

several others, I argue for combining structural equation models (Grace et al. 2010; Pearl 2009; 204 

Shipley 2016) with the flexibility of hierarchical models with latent variables in a Bayesian setting for 205 

investigating logical and causal plant ecological dependencies in a coherent way and, at the same 206 

time, model the different sources of uncertainty (Clark 2007; Damgaard 2019b). 207 

Hierarchical models 208 

The use of hierarchical models with latent variables allows us to partition and model the different 209 

sources of uncertainty (Clark 2005; 2007; Wikle 2003). For example, in an empirical study of 210 

competitive plant growth there may be i) sampling and measurement errors when determining the 211 

size of plants at different times using non-destructive measuring methods, ii) structural uncertainty 212 

in the form of competitive interactions, e.g. whether frequency-dependent competitive effects play 213 

a role or not and iii) the possible confounding effects of unmeasured variables on individual plant 214 

performance at both an early and later growth stage due to spatial variation in soil nutrients, 215 

pathogens and other factors (Fig. 1). 216 
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The effect of sampling and measurement uncertainty is accounted for in hierarchical models by 217 

introducing latent variables that model the true, but unknown, value of different state variables 218 

(Clark 2007; Gelman and Hill 2007). The logical link between the latent variables and the 219 

corresponding observed data depends on the type of data and the measurement method. For 220 

example, in a study where plant biomass is measured destructively and it is known that the variance 221 

increases with the mean, then it may be appropriate to model the observed biomass by a gamma 222 

distribution with latent variables as mean parameters and a common scale parameter expressing the 223 

relationship between the mean and the variance. In a multi-species study of pin-point plant cover 224 

data, it may be appropriate to model the observed number of pin-point hits by a reparametrized 225 

Dirichlet-multinomial distribution, in which the latent variables are the relative mean cover of the 226 

different species and where the expected inter-specific spatial aggregation at the plot level is 227 

modelled by a parameter (Damgaard 2015; 2018). 228 

When fitting fine-grained ecological data, it is relevant to examine how well different process 229 

models are supported by the data (e.g. Clark et al. 2020; Damgaard and Weiner 2021) by estimating 230 

the expected out-of-sample prediction error of the different functional models using the Watanabe-231 

Akaike or other information criteria (Gelman et al. 2014), although the predictive performance of a 232 

model may be a poor measure of whether the correct causal relationships has been specified (Arif 233 

and MacNeil 2022).  234 

In the absence of prior knowledge and when modelling spatial and temporal vegetation data on 235 

relatively large scales, it may be a useful strategy to keep it simple and model changes using logically 236 

complete sets of ecological process categories such as those suggested by Vellend (2010), of which 237 

selection at the community level is the most important category. Alternatively, it may be attractive 238 

to model some of the processes that are not of immediate interest by flexible non-parametric 239 

models if there is a real concern that some of the hypothesized functional relationships may be 240 

misspecified (Walker 2013). 241 

In more complicated ecological models, it is important to specify whether the hypothesized 242 

dependencies among the state variables may be categorized as primarily logical or causal. In any 243 

case, when using relatively simple models it becomes increasingly important to quantify the 244 

uncertainties and restrain from making predictions outside the spatial and temporal domain of the 245 

data. For example, in a spatial and temporal comprehensive, but coarse-grained, study of vegetation 246 

changes in wet heathlands and how these changes were affected by the environment, changes in 247 

cover of selected species were modelled by simple linear models, thus ignoring any higher-order 248 

community dynamic effects (Damgaard 2019b). Instead, care was taken to partition spatial and 249 
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temporal effects and different sources of uncertainty in a hierarchical model, which enabled short-250 

term ecological predictions that may be used for generating local adaptive management plans 251 

(Damgaard 2020a). In this particular case, spatial and temporal effects were separated by assuming 252 

that the state of plant communities in the first year of the sampled time series was controlled by 253 

spatial processes, which included the effects of the environment, as well as historical legacies, 254 

contingencies and succession history at the site level prior to initiating sampling. The temporal 255 

processes were then modelled in a state-space model based on the observed yearly changes in 256 

vegetation cover during the sampling period (Fig. 2). In ecological systems with significant among-257 

site dispersal, it may be relevant to model the effect of the dispersal in spatial and temporal 258 

diffusion models (e.g. Wikle 2003).  259 

Ideally, the possible confounding effects of unmeasured variables should be investigated using an 260 

instrument variable analysis (Gelman and Hill 2007; Rinella et al. 2020). However, this is often not 261 

possible and, instead, we may account for possible confounding effects of unmeasured variables by 262 

modeling the unexplained covariance between the observed variables, such as the unexplained 263 

covariance between early and later growth stages (Fig. 1).   264 

It is noteworthy that the treatment of measurement errors and causal dependencies in structural 265 

equation models in a hierarchical setting mimics general epistemological models (see Box 2) and, 266 

consequently, provides a general recipe for how to link models with data and causal hypotheses into 267 

a mathematical framework.  268 

 269 

BOX 2 270 

General epistemological models  271 

From a more general epistemological point of view, hierarchical models with latent variables mirror 272 

well-known theoretical philosophical models of how knowledge of the world is obtained. Kant (1781) 273 

suggested that there is a fundamental division between a world of phenomena (“Das ding an sich”) 274 

and the observer. When the observer senses a certain phenomenon (the object), a representation of 275 

the object transcends into the mind of the observer and starts to make sense (a posteriori 276 

knowledge). In this process, the representation of the object is merged with several sources of 277 

relevant a priori knowledge, such as the concepts of causality, space and time.  278 

In a hierarchical model, data corresponds to Kant’s phenomena, and the latent variables and their 279 

relationships correspond to the transcended representation of the objects in the mind of the 280 

observer. Similarly, Wittgenstein (1922) described how we make mental pictures of objects and how 281 
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these pictures are models of reality. He suggested that the relationship among the different picture 282 

elements corresponds to the relationship among the objects and, thus, provides a representation of 283 

the structure of the reality. For example, in proposition 2.15 he writes: “That the elements of the 284 

picture are combined with one another in a definite way, represents that the things are so combined 285 

with one another. This connection of the elements of the picture is called its structure, and the 286 

possibility of this structure is called the form of representation of the picture.”  (Wittgenstein 1922). 287 

This description is almost a definition of hierarchical structural models where the “pictures” 288 

corresponds to quantitative latent variables, although the latter is a more restricted concept.  289 

Discussion 290 

It is important to partition and model the different types of observed variance, and hierarchical 291 

models are often the best tool for this purpose. For example, in a relatively fine-grained study of 292 

plant competitive growth of Festuca ovina and Agrostis capillaris it was concluded that the inclusion 293 

of frequency-dependence and measurement error improved model performance greatly, but taking 294 

possible unmeasured variables into account did not. Furthermore, when sampling and measurement 295 

errors were taken into account, the resulting ecological prediction differed qualitatively from the 296 

corresponding non-hierarchical models without latent variables (Damgaard and Weiner 2021). In a 297 

study of tree fecundity Clark et al. (2004) found that random variation among individual trees and 298 

among years dominated the variation in tree fecundity. If this random variation was omitted from 299 

the analysis, parameter estimates would have been biased and led to qualitatively erroneous 300 

conclusions. They also found that estimated random variation could partly explain the observed 301 

pattern of coexistence among the tree species.  302 

The current poor performance of ecological predictions is probably due to the relatively low quantity 303 

and quality of spatial and temporal ecological data. The increasing use of advanced technology in 304 

ecological monitoring, such as drones and satellites, may allow us to make better predictions. As 305 

fine-grained plant growth data at increasing spatial scales become available, it may be feasible to fit 306 

structural equation models, in which different hypothesized species interaction processes are 307 

statistically compared. By increasing the resolution of spatial and temporal ecological data, it should 308 

become possible to increase both prediction precision and accuracy. At the limit of better and better 309 

local data and increasingly detailed understanding of the ecological processes, the increase in 310 

predictive performance may reach a boundary. If the intrinsic boundary of ecological predictive 311 

performance is low due to historical or other contingencies, it may be necessary to rethink our 312 

current strategy of adaptive management of ecosystems based on ecological predictions in nature 313 

conservation. 314 
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For some ecosystems that operate on relatively small temporal and spatial scales, such as microbial 315 

decomposer systems, it may be possible to perform manipulative experiments that allow us to test 316 

and validate complete causal hypotheses of the system dynamics. However, the relevant temporal 317 

and spatial scales of most ecosystems are so large that a purely experimental approach is not 318 

feasible, so in our modelling of ecosystem processes we must recognize that our current ecosystem 319 

knowledge is incomplete and not be overconfident in hypothesized causal mechanisms. 320 

Consequently, ecological models with both causal and logical dependencies will be needed in the 321 

attempt to make ecological predictions. The goal of ecology as a science, however, is to increase our 322 

mechanistic understanding of the different processes that determine the abundances and 323 

distributions of species, and thereby enable us to convert assumed logical dependencies into more 324 

causal dependencies among state variables in our structural equation models. The current state of 325 

structural equation models in plant ecology, where many dependencies are strictly based on logical 326 

and statistical arguments, will act as a guide into where knowledge is missing and suggest future 327 

research agendas. Moreover, it is important to capture the causal mechanisms at a sufficiently high 328 

level of aggregation to allow statistical treatment of available ecological data in a structural equation 329 

model. It is not necessary, or even desirable, to model all the known mechanistic details, such as 330 

modelling every single birth and death event using individual based models. 331 

In my opinion, the image of plant ecology as a “soft” science, which plays a disproportionally small 332 

role in political decisions, hinges on our failure as a scientific community to make credible 333 

predictions where uncertainties are quantified. Currently, the majority of plant ecological 334 

predictions, from local management plans of natural habitats to global assessments of biodiversity, 335 

are broad verbal statements without any attempts to quantify the uncertainty of the predictions. To 336 

communicate credibility of the verbal predictions, a common practice is to call on the consensus of 337 

experts. For example, in a report from IPBES (2019) 150 selected experts extracted the content of 338 

more than 15,000 scientific publications to make a global assessment of biodiversity, and the 339 

obtained conclusions, including the recommended actions, were approved at a plenary meeting. 340 

How is such a process even possible and what is the role of the assembled ecological data in the 341 

15,000 scientific publications in reaching a consensus for the recommended actions? No body of 342 

even distinguished experts can grasp the complexity of ecosystem dynamics in a changing 343 

environment and fairly assess the wealth of relevant spatial and temporal data in round-table and 344 

panel discussions. When good data are available, it would be better to apply a quantitative 345 

modelling approach, where the uncertainty of the effects of the recommended actions may be 346 

assessed in a systematic way. The results of the quantitative analyses can then be interpreted by 347 

experts for decision makers. 348 
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Figures 352 

Fig. 1. : Hierarchical model of competitive plant growth from plants at an early and later growth 353 

stage. The true, but unknown, plant size at the early and later growth stage is modelled by latent 354 

variables (squares) and denoted 𝑋, 𝑌, respectively. The latent variables are logically linked to the 355 

observed data (circles), which are denoted 𝑥, 𝑦, respectively, with the corresponding latent variables 356 

as mean values. The sampling and measurement uncertainty are modelled with 𝜎𝑥 and 𝜎𝑦, 357 

respectively. The competitive growth process is modelled by the structural function, 𝐹, which 358 

depends on 𝑋 and possibly on some measured environmental variables 𝑧𝑚.  The effect of 359 

unmeasured variables affecting both earlier and later growth stages is modelled by 𝜎𝑥𝑦 as the part of 360 

the covariance between the early and later growth stages that is not explained by the independent 361 

factors in the structural model.  362 

 363 

 364 

  365 
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Fig. 2. Outline of a structural equation model where the spatial and temporal processes are 366 

separated. The spatial variation in vegetation cover in 2007 is modelled by nitrogen deposition 367 

(Ndep), soil pH (pH), soil type and precipitation (Precipit.). The yearly change in vegetation cover 368 

from 2007 to 2014 (only a single yearly change is shown in the figure) is modelled by all the former 369 

variables as well as grazing. The square boxes are latent variables and the oval boxes are data. The 370 

full black arrows denote spatial processes, the dotted black arrows denote temporal processes and 371 

the grey arrows denote the modelling of sampling and measurement error (Damgaard 2019b). 372 

 373 

  374 



15 

References 375 

Aldorfová A, Dostálek T, Münzbergová Z. 2022. Effects of soil conditioning, root and shoot litter 376 
addition interact to determine the intensity of plant–soil feedback. Oikos. 2022(6):e09025. 377 

Arif S, MacNeil MA. 2022. Predictive models aren't for causal inference. Ecol Lett. 25(8):1741-1745. 378 
Benedetti-Cecchi L, Bulleri F, Dal Bello M, Maggi E, Ravaglioli C, Rindi L. 2018. Hybrid datasets: 379 

Integrating observations with experiments in the era of macroecology and big data. Ecology. 380 
99(12):2654-2666. 381 

Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu C. 2006. Measurement error in nonlinear models: A 382 
modern perspective. Boca Raton: CRC. 383 

Chesson P. 2000a. General theory of competitive coexistence in spatially-varying environments. 384 
Theoretical Population Biology. 58(3):211-237. 385 

Chesson P. 2000b. Mechanisms of maintenance of species diversity. Annual Review of Ecology and 386 
Systematics. 31:343-366. 387 

Chesson PL, Warner RR. 1981. Environmental variability promotes coexistence in lottery competitive 388 
systems. Am Nat. 117(6):923-943. 389 

Chisholm RA, Fung T. 2020. Janzen-connell effects are a weak impediment to competitive exclusion. 390 
Am Nat. 196(5):649-661. 391 

Clark AT, Ann Turnbull L, Tredennick A, Allan E, Harpole WS, Mayfield MM, Soliveres S, Barry K, 392 
Eisenhauer N, de Kroon H et al. 2020. Predicting species abundances in a grassland 393 
biodiversity experiment: Trade-offs between model complexity and generality. J Ecol. 394 
108(2):774-787. 395 

Clark JS. 2005. Why environmental scientist are becoming bayesians. Ecol Lett. 8:2-14. 396 
Clark JS. 2007. Models for ecological data. Princeton: Princeton University Press. 397 
Clark JS, LaDeau S, Ibanez I. 2004. Fecundity of trees and the colonization–competition hypothesis. 398 

Ecological Monographs. 74(3):415-442. 399 
Connell JH, Tracey JG, Webb LJ. 1984. Compensatory recruitment, growth, and mortality as factors 400 

maintaining rain forest tree diversity. Ecological Monographs. 54(2):141-164. 401 
Cordonnier T, Courbaud B, Franc A. 2006. The effect of colonization and competition processes on 402 

the relation between disturbance and diversity in plant communities. Journal of Theoretical 403 
Biology. 243:1-12. 404 

Cox RT. 1946. Probability, frequency and reasonable expectation. American Journal of Physics. 405 
14(1):1-13. 406 

Cushman SA. 2010. Space and time in ecology: Noise or fundamental driver? In: Cushman SA, 407 
Huettmann F, editors. Spatial complexity, informatics, and wildlife conservation. Springer  408 

Damgaard C. 2005. Evolutionary ecology of plant-plant interactions - an empirical modelling 409 
approach. Aarhus, Denmark: Aarhus University Press. 410 

Damgaard C. 2015. Modelling pin-point cover data of complementary vegetation classes. Ecol 411 
Inform. 30:179-184. 412 

Damgaard C. 2018. The joint distribution of pin-point plant cover data: A reparametrized dirichlet - 413 
multinomial distribution. arXiv e-prints. [accessed August 01, 414 
2018]https://ui.adsabs.harvard.edu/\#abs/2018arXiv180804582D. 415 

Damgaard C. 2019a. A critique of the space-for-time substitution practice in community ecology. 416 
Trends Ecol Evol. 34(5):416-421. 417 

Damgaard C. 2019b. Spatio-temporal structural equation modeling in a hierarchical bayesian 418 
framework: What controls wet heathland vegetation? Ecosystems. 22:152-164. 419 

Damgaard C. 2020a. Adaptive management plans rooted in quantitative ecological predictions of 420 
ecosystem processes: Putting monitoring data to practical use. 421 
bioRxiv.2020.2010.2011.334789. 422 

Damgaard C. 2020b. Measurement uncertainty in ecological and environmental models. Trends Ecol 423 
Evol. 35:871-873. 424 

https://ui.adsabs.harvard.edu/


16 

Damgaard C, Holmstrup M, Schmidt IK, Beier C, Larsen KS. 2018. On the problems of using linear 425 
models in ecological manipulation experiments: Lessons learned from a climate experiment. 426 
Ecosphere. 9(6):e02322. 427 

Damgaard C, Weiner J. 2008. Modeling the growth of individuals in crowded plant populations. 428 
Journal of Plant Ecology. 1:111–116. 429 

Damgaard C, Weiner J. 2017. It's about time: A critique of macroecological inferences concerning 430 
plant competition. Trends Ecol Evol. 32:86-87. 431 

Damgaard C, Weiner J. 2021. The need for alternative plant species interaction models. Journal of 432 
Plant Ecology. 433 

Detto M, Visser MD, Wright SJ, Pacala SW. 2019. Bias in the detection of negative density 434 
dependence in plant communities. Ecol Lett. 22(11):1923-1939. 435 

Eigentler L. 2021. Species coexistence in resource-limited patterned ecosystems is facilitated by the 436 
interplay of spatial self-organisation and intraspecific competition. Oikos. 130(4):609-623. 437 

Gelman A, Hill J. 2007. Data analysis using regression and multilevel/hierarchical models. Cambridge: 438 
Cambridge University Press. 439 

Gelman A, Hwang J, Vehtari A. 2014. Understanding predictive information criteria for bayesian 440 
models. Stat Comput. 24(6):997-1016. 441 

Grace JB. 2021. Instrumental variable methods in structural equation models. Methods in Ecology 442 
and Evolution. 12(7):1148-1157. 443 

Grace JB, Anderson TM, Olff H, Scheiner SM. 2010. On the specification of structural equation 444 
models for ecological systems. Ecological Monographs. 80:67–87. 445 

Grace JB, Schoolmaster Jr DR, Guntenspergen GR, Little AM, Mitchell BR, Miller KM, Schweiger EW. 446 
2012. Guidelines for a graph-theoretic implementation of structural equation modeling. 447 
Ecosphere. 3(8):art73. 448 

Greig-Smith P. 1979. Pattern in vegetation. J Ecol. 67(3):755-779. 449 
Heinen R, Hannula SE, De Long JR, Huberty M, Jongen R, Kielak A, Steinauer K, Zhu F, Bezemer TM. 450 

2020. Plant community composition steers grassland vegetation via soil legacy effects. Ecol 451 
Lett. 23(6):973-982. 452 

Herben T, During HJ, Law R. 2000. Statio-temporal patterns in grassland communities. In: Dieckmann 453 
U, Law R, Metz JAJ, editors. The geometry of ecological interactions: Simplifying spatial 454 
complexity. Cambridge: Cambridge University Press. p. 48-64. 455 

Huston M. 1979. A general hypothesis of species diversity. Am Nat. 113(1):81-101. 456 
IPBES. 2019. Global assessment report on biodiversity and ecosystem services of the 457 

intergovernmental science-policy platform on biodiversity and ecosystem services. Bonn, 458 
Germany: IPBES secretariat. 459 

Jaynes ET. 2003. Probability theory: The logic of science. Cambridge: Cambridge University Press. 460 
Kant I. 1781. Kritik der reinen vernunft. 461 
Kratz TK, Deegan LA, Harmon ME, Lauenroth WK. 2003. Ecological variability in space and time: 462 

Insights gained from the us lter program. Bioscience. 53(1):57-67. 463 
Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law 464 

R, Tilman D et al. 2004. The metacommunity concept: A framework for multi-scale 465 
community ecology. Ecol Lett. 7:601-613. 466 

Lenton TM, Kohler TA, Marquet PA, Boyle RA, Crucifix M, Wilkinson DM, Scheffer M. 2021. Survival 467 
of the systems. Trends Ecol Evol. 36(4):333-344. 468 

Lindley DV. 2002. Seeing and doing: The concept of causation. International Statistical Review / 469 
Revue Internationale de Statistique. 70(2):191-197. 470 

MacArthur RH, Wilson EO. 1967. The theory of island biogeography. Princeton: Princeton University 471 
Press. 472 

Martyn TE, Stouffer DB, Godoy O, Bartomeus I, Pastore AI, Mayfield MM. 2020. Identifying “useful” 473 
fitness models: Balancing the benefits of added complexity with realistic data requirements 474 
in models of individual plant fitness. Am Nat. 197(4):415-433. 475 



17 

Mayfield MM, Stouffer DB. 2017. Higher-order interactions capture unexplained complexity in 476 
diverse communities. Nature Ecology & Evolution. 1(3):0062. 477 

Mazzoleni S, Bonanomi G, Incerti G, Chiusano ML, Termolino P, Mingo A, Senatore M, Giannino F, 478 
Cartenì F, Rietkerk M et al. 2015a. Inhibitory and toxic effects of extracellular self-DNA in 479 
litter: A mechanism for negative plant–soil feedbacks? New Phytologist. 205(3):1195-1210. 480 

Mazzoleni S, Cartenì F, Bonanomi G, Senatore M, Termolino P, Giannino F, Incerti G, Rietkerk M, 481 
Lanzotti V, Chiusano ML. 2015b. Inhibitory effects of extracellular self-DNA: A general 482 
biological process? New Phytologist. 206(1):127-132. 483 

Merlin A, Bonis A, Damgaard CF, Mesléard F. 2015. Competition is a strong driving factor in 484 
wetlands, peaking during drying out periods. PLoS ONE. 10(6):e0130152. 485 

Muff S, Riebler A, Held L, Rue H, Saner P. 2015. Bayesian analysis of measurement error models 486 
using integrated nested laplace approximations. J R Stat Soc C-Appl. 64(2):231-252. 487 

Neill C, Daufresne T, Jones CG. 2009. A competitive coexistence principle? Oikos. 118(10):1570-1578. 488 
Pacala S, Levin SA. 1997. Biological generated spatial pattern and the coexsistence of competing 489 

species. In: Tilman D, Kareiva P, editors. Spatial ecology the role of space in population 490 
dynamics and interspecific interactions. Princeton: Princeton University Press. 491 

Pearl J. 2009. Causal inference in statistics: An overview. Statistics Surveys. 3:96-146. 492 
Pickett STA. 1989. Long-term studies in ecology. In: Likens GE, editor. Long-term studies in ecology. 493 

Springer-Verlag. 494 
Rees M, Condit R, Crawley M, Pacala S, Tilman D. 2001. Long-term studies of vegetation dynamics. 495 

Science. 293:650-655. 496 
Ricklefs RE. 2004. A comprehensive framework for global patterns in biodiversity. Ecol Lett. 7(1):1-497 

15. 498 
Rinella MJ, Strong DJ, Vermeire LT. 2020. Omitted variable bias in studies of plant interactions. 499 

Ecology. 101(6):e03020. 500 
Schippers P, van Teeffelen AJA, Verboom J, Vos CC, Kramer K, WallisDeVries MF. 2014. The impact of 501 

large herbivores on woodland–grassland dynamics in fragmented landscapes: The role of 502 
spatial configuration and disturbance. Ecol Complex. 17:20-31. 503 

Shipley B. 2016. Cause and correlation in biology. Cambridge Cambridge University Press. 504 
Simberloff D. 2004. Community ecology: Is it time to move on? Am Nat. 163(6):787-799. 505 
Stoll P, Weiner J. 2000. A neighborhood view of interactions among individual plants. In: Dieckmann 506 

U, Law R, Metz JAJ, editors. The geometry of ecological interactions. Cambridge: Cambridge 507 
University Press. p. 11-27. 508 

Svenning J-C, Sandel B. 2013. Disequilibrium vegetation dynamics under future climate change. Am J 509 
Bot. 100:1–21. 510 

Svenning J-C, Skov F. 2004. Limited filling of the potential range in european tree species. Ecol Lett. 511 
7(7):565-573. 512 

Tansley AG. 1935. The use and abuse of vegetational concepts and terms. Ecology. 16:284-307. 513 
van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos 514 

JN, Kulmatiski A, Schweitzer JA et al. 2013. Plant–soil feedbacks: The past, the present and 515 
future challenges. J Ecol. 101(2):265-276. 516 

Vellend M. 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology. 517 
85(2):183-206. 518 

von Humboldt A, Bonpland A. 1805. Essai sur la géographie des plantes. Chicago and London: 519 
University of Chicago Press. 520 

Walker SG. 2013. Bayesian inference with misspecified models. Journal of Statistical Planning and 521 
Inference. 143(10):1621-1633. 522 

Watt AS. 1947. Pattern and process in the plant community. J Ecol. 35:1-22. 523 
Weiner J. 1995. On the practice of ecology. J Ecol. 83(1):153-158. 524 
Wikle CK. 2003. Hierarchical bayesian models for predicting the spread of ecological processes. 525 

Ecology. 84(6):1382-1394. 526 



18 

Wittgenstein L. 1922. Tractatus logico-philosophicus. London: KEGAN PAUL, TRENCH, TRUBNER & 527 
CO., LTD. 528 

Wright S. 1921. Correlation and causation. Journal of Agricultural Research. 20:557-585. 529 
Yanai RD, See CR, Campbell JL. 2018. Current practices in reporting uncertainty in ecosystem 530 

ecology. Ecosystems. 21(5):971-981. 531 

 532 


