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Abstract 

It is argued that in order to make credible ecological predictions for terrestrial ecosystems in a 

changing environment, we need empirical plant ecological models that are fitted to spatial and 

temporal ecological data. Such models need to include sufficient ecological process understanding in 

order to make correct predictions and at the same time account for the different sources of 

uncertainty. Here, it is advocated to use structural equation models in a hierarchical framework with 

latent variables and be careful to specify whether our current process knowledge may be 

categorized as either logical or causal dependencies among state variables. Such models will provide 

us with local ecological predictions with a known degree of uncertainty that are useful for generating 

adaptive management plans and lead to a general progress in our understanding of the causes 

underlying a possible predictive limit of terrestrial ecosystems. Furthermore, it is an advantage that 

the proposed hierarchical models are analogous to well-known theoretical epistemological models 

of how knowledge is obtained.  
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Introduction 

The climate and environment are changing and general effects on ecosystems and biodiversity are 

well documented (IPBES 2019). In order to meet societal needs, it is becoming increasingly 

important to develop credible ecological prediction, however, it is an open question what the 

boundaries of such a predictive approach are. To what extend is it possible to predict the future of 

ecosystems in a changing environment? What ecological processes are most likely to dominate 

future ecosystem changes? How fast will ecosystem changes occur? In the attempt to develop 

predictive ecological models for terrestrial ecosystems and as a consequence of the green world 

hypothesis (Hairston et al. 1960), it seems relevant to focus attention on the vegetation component 

of the ecosystem as a dynamic system that is influenced by climate, herbivores and other 

disturbances.  

The notion and study methods of plant ecology, and therefore of plant ecological models, are 

embedded in the concepts of time and space. One of the few generalizations that we can make 

about vegetation is that it is spatially heterogeneous, and the spatial patterns of the vegetation 

depend mainly on the environment and historical legacies (Greig-Smith 1979; Ricklefs 2004; 

Svenning and Skov 2004; von Humboldt and Bonpland 1805). However, even in a homogenous 

environment plant species are aggregated both at large and small spatial scales. At the large scale, 

among-sites plant species are aggregated due to random extinction events and limited possibility of 

colonization (Cordonnier et al. 2006; Leibold et al. 2004; MacArthur and Wilson 1967; Rees et al. 

2001). Within-sites, plants may be aggregated due to clonal growth, limited seed dispersal, and size-

asymmetric competition (Herben et al. 2000; Pacala and Levin 1997; Stoll and Weiner 2000). 

Dominant plant species may also affect the soil, which, again, may lead to important feedback 

mechanisms, i.e. the vegetation and soil may be described as a dynamic system in time and space, 

where different phases of the vegetation simultaneously co-occur in different patches (Watt 1947). 

Moreover, it is a truism that ecological processes occur in time, and they are best studied when the 

effect of time is taken into account (Damgaard 2019a; Damgaard and Weiner 2017; Kratz et al. 2003; 

Pickett 1989). Generally, environments are non-stationary, and spatial and temporal variability in 

ecological systems have been demonstrated to be fundamentally important to ecosystem dynamics 

(Chesson 2000b; Cushman 2010; Huston 1979). For example, the successional changes in tree-

dominated ecosystems are expected to be highly erratic and unpredictable at the local scale due to 

variable herbivore abundance (Schippers et al. 2014). Likewise, temporal changes in the water level 

of Atlantic grasslands have been shown to affect both the nature of the interspecific competitive 
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relationships and the overall importance of competition for regulating population growth (Merlin et 

al. 2015).  

When studying ecological processes, the ecosystem is a useful conceptual entity that focuses 

attention on important system properties (Tansley 1935). For example, Lenton et al. (2021) argue 

that self-perpetuating feedback cycles involving biotic as well as abiotic components may be critical 

for the stability and long-time success of ecosystems, and Tansley (1935) already proposed that 

stable ecosystems outlast unstable ecosystems. Furthermore, when ecosystems are situated near 

other ecosystems in a landscape, another level of emergent properties may arise among the 

ecosystems at the landscape level (Leibold et al. 2004). For example, environmental variation within 

a landscape may lead to a storage effect with coexistence of species that would otherwise not 

coexist (Chesson 2000a; Chesson and Warner 1981).  

The ultimate goal of an ecological investigation is to understand the detailed underlying causes of an 

observed pattern, which would enable us to make credible ecological predictions. However, an 

observed ecological pattern may be caused by several different processes and involve several 

important contingencies (Damgaard 2019a; Simberloff 2004; Vellend 2010), and the relationship 

between process and pattern may be influenced by time lags of unknown duration (Svenning and 

Sandel 2013). Consequently, although there are some levels of generality, the quantitative 

importance of ecological processes are generally unknown and expected to differ among sites. The 

resulting variation in succession history among otherwise comparable sites leads to a level of 

complexity, which hinders our ability to generalize our understanding of the ecological mechanisms 

underlying observed patterns. However, while historical contingencies and variation in succession 

history among otherwise similar sites preclude the generalization of ecological findings, careful local 

studies of the ecological mechanisms conducted at the relevant spatial and temporal scales do 

provide causal information of the factors that determine important community dynamic features 

(Simberloff 2004).  

There is increasing awareness of the limitations of classical community ecological models, e.g. Lotka-

Volterra-type competition models, to predict ecosystem effects of a changing environment (Clark et 

al. 2020; Damgaard and Weiner 2021; Eigentler 2021; Martyn et al. 2020; Mayfield and Stouffer 

2017; Neill et al. 2009; Vellend 2010). For example, it is widely appreciated that frequency-

dependent species interactions, in which relatively rare species are favored over more common 

species, may play an important role in plant species co-existence and community dynamics in plant 

communities (Chisholm and Fung 2020; Connell et al. 1984). Especially, species-specific soil-plant 

interactions have received increasing interest as a potentially important and general mechanism for 



4 
 

regulating plant populations by hindering local establishment and growth of conspecific plant 

species in the next generation (Heinen et al. 2020; Mazzoleni et al. 2015a; Mazzoleni et al. 2015b; 

van der Putten et al. 2013). In an attempt to cope with the ecological complexity, Vellend (2010) 

suggested to partition all ecological processes into a logically complete set of ecological process 

categories: selection, drift, dispersal and speciation. Historically, a similar classification scheme has 

been successful in evolutionary biology, and Vellend (2010) convincingly argues that the reason this 

approach has not been used more in ecology is due to universal familiarity with ecological patterns. 

For example, since prehistoric time it has been common knowledge that plant growth is reduced 

when plants grow close together, and it therefore seems natural to focus on the effects of 

competitive interactions rather than focusing on a logically complete set of possible processes in 

community dynamics. 

The quantitative scientific exploration of the underlying mechanisms that lead to observed 

ecological patterns in time and space relies on statistical analyses, but often the investigation meets 

the obstacle summarized in the well-known phrase “correlation does not imply causality”. More 

precisely, and in the language of Jaynes (2003), the outcome of a statistical analysis is a logical 

statement of association rather than a test of different causal mechanisms. More generally, Jaynes 

(2003) argues that probability theory in a Bayesian setting may be thought of as an extended form of 

scientific logic, which enables us to quantify our belief in a hypothesis by modelling the different 

sources of our uncertainty. The distinction between logical and causal dependencies is subtle, but 

important. Logical dependencies are investigated using probability theory by calculating the 

plausibility of different hypotheses when knowledge is incomplete (Jaynes 2003), and even though it 

is assumed that the calculated probabilities are determined by causal dependencies, the actual 

calculation of logical dependencies may de decoupled from causal dependencies. For example, if we 

want to know if a plant experienced competition from a neighboring plant at day t, when we know 

that the plant experienced competition at a later day 𝑡 + 𝜏, then we may calculate the probability P 

(competition at day t | competition at day 𝑡 + 𝜏). Such probability calculations allow us to make 

ecological predictions, even though the studied relationship is not a causal dependence, since the 

outcome at a later day cannot influence the outcome at an earlier day. It can also be shown that the 

accumulation of new causally independent data may lead to logical dependencies when investigating 

the plausibility of multiple hypotheses (Jaynes 2003).  

The distinction between causal and logical dependencies is also complicated by possible 

unmeasured confounding factors that affect observed independent variables. These confounding 

factors may lead to a spurious correlation or omitted variable bias (Gelman and Hill 2007). The effect 

of the confounding factors could potentially be teased out in an analysis of instrument variables or 
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using structural equation models (Grace 2021; Rinella et al. 2020), and causal independence may be 

inferred from experimental manipulations and the use of the logical do-operator introduced by Pearl 

(2009). However, many important ecological processes operate at such large spatial and temporal 

scales that controlled experimental manipulations are almost impossible, although it may be 

possible in some cases to combine the information from manipulated experiments and large-scale 

observational studies (Benedetti-Cecchi et al. 2018).  

Moreover, it is important to note that structural equation models investigate the logical associations 

within a hypothesized causal network of measured ecological variables, where the associations 

typically are assumed to be linear functions. This means that structural equation models normally do 

not compare the likelihood of different functional forms of the association among the observed 

variables, i.e. the nature of the ecological processes that link the observed variables is not 

investigated. For example, in a typical structural equation model of the possible association between 

the observed growth of two plant species it is not investigated whether the growth data may be 

adequately explained by Lotka-Volterra type of interspecific competition or whether it is relevant to 

assume some additional form of frequency-dependency (e.g. Clark et al. 2020; Damgaard and 

Weiner 2021). This insensitivity to the underlying processes that link the measured ecological 

variables in the hypothesized causal network may be critical for the ecological predictions that are 

made using a fitted structural equation model. For example, if frequency-dependency plays a role in 

interspecific competitive interactions, then relatively more species will be expected to coexist 

(Chisholm and Fung 2020).  

Consequently, it is important to investigate the underlying ecological mechanisms in more detail 

than is usually done in structural equation models, and it is possible to use prior ecological insight to 

compare the statistical fit of different ecological processes in generating an observed ecological 

pattern (e.g. Clark et al. 2020; Damgaard and Weiner 2021). Clark et al. (2020) generally warn 

against using process models of relatively high complexity due to the risk of overfitting, but, on the 

other hand, if e.g. frequency-dependency or feedback cycles are important ecosystem features, then 

such level of model complexity is needed in order to make credible ecological predictions.  

Often, there is a sizeable variation in the measured independent variables due to measurement and 

sampling errors in ecological studies (Muff et al. 2015; Yanai et al. 2018). Such measurement errors 

are typically not taken into account in ecological and environmental modelling, where measured 

independent variables are treated as if they were constant entities. This is highly unfortunate, since 

it has been shown that even normally distributed sampling and measurement errors may lead to 

important model and prediction bias, a phenomenon known as "regression dilution" (Carroll et al. 
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2006; Damgaard 2020b; Damgaard and Weiner 2021; Detto et al. 2019). Another typical problem in 

the analysis of ecological experiments is to use the codes of the experimental design, e.g. “control” 

and “treatment”, as orthogonal fixed independent factors, although there often is large variation 

and covariation among the variables that are manipulated in the experiment, e.g. soil humidity and 

temperature, which are the real independent variables of interest in the study and the ones that are 

being inferred and concluded upon (Damgaard et al. 2018).  

The aim of this paper is to discuss the empirical modelling of plant ecological processes in space and 

time in order to make credible ecological predictions. Following the suggestion by Clark (2005; 2007) 

and several others, it is advocated to apply the flexibility of hierarchical models with latent variables 

in a Bayesian setting for investigating logical and causal plant ecological dependencies in a coherent 

way by modelling the different sources of uncertainty. 

Hierarchical models 

The use of hierarchical models with latent variables allows us to partition and model the different 

sources of uncertainty (Clark 2005; 2007; Wikle 2003). For example, in an empirical study of 

competitive plant growth there may be i) sampling and measurement errors when determining the 

size of plants at different times using non-destructive measuring methods. ii) structural uncertainty 

in the form of the competitive interactions, e.g. whether frequency-dependent competitive effects 

play a role or not, and iii) the possible confounding effects of unmeasured variables on individual 

plant performance at both an early and later growth stage, e.g. spatial variation in soil nutrients or 

pathogens (Fig. 1). 

The effect of sampling and measurement uncertainty may be accounted for in a hierarchical model 

by introducing latent variables that model the true, but unknown, value of different variables (Clark 

2007; Gelman and Hill 2007). The logical link between the latent variables and the corresponding 

observed data depends on the data type and measurement method. For example, in a study where 

plant biomass is measured destructively and it is known that the variance increases with the mean, 

then it may be appropriate to model the observed biomass by a gamma distribution with latent 

variables as mean parameters and a common scale parameter that models the relationship between 

the mean and the variance. In a multi-species study of pin-point plant cover data, it may be 

appropriate to model the observed number of pin-point hits by a reparametrized Dirichlet-

multinomial distribution, where the latent variables are the mean cover of the different species and 

where the expected inter-specific spatial aggregation at the plot level is modelled by a parameter 

(Damgaard 2015; 2018). 
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The structural uncertainty is quantified by the residual error of the structural or process model, 

which is typically assumed to be normally distributed due to the central limit theorem. When fitting 

fine-grained ecological data, it may be relevant to examine how well different process models are 

supported by the data (e.g. Clark et al. 2020; Damgaard and Weiner 2021), e.g. by estimating the 

expected out-of-sample prediction error of the different models using the Watanabe-Akaike 

information criterion (Gelman et al. 2014b). In causal models at the ecosystem level, it is often 

relevant to use structural equation models for modelling the effects of different factors on the 

ecological response (Grace et al. 2010; Pearl 2009). Such structural equation models may also be 

formulated in a hierarchical setting, where the structural uncertainty is quantified by the residual 

error for each of the modelled processes (Clark 2007; Damgaard 2019b).  

Ideally, the possible confounding effects of unmeasured variables should be investigated using e.g. 

an instrument variable analysis (Gelman and Hill 2007; Rinella et al. 2020). However, this is often not 

possible and instead it has been suggested to account for the possible confounding effects of 

unmeasured variables by modeling the unexplained covariance between the observed variables, e.g. 

the unexplained covariance between early and later growth stages (Rinella et al. 2020) (Fig. 1).    

In the absence of prior knowledge and when modelling spatial and temporal vegetation data on 

relatively large scales, it may be a useful strategy to keep it simple and model changes using the 

logically complete set of ecological process categories suggested by Vellend (2010), of which 

selection is the most important category. In more complicated ecological models, it is important to 

specify whether the hypothesized ecological process knowledge may most likely be categorized as 

either logical or causal dependencies among the state variables. In any case, when using relatively 

simple models it becomes increasingly important to quantify the uncertainties and restrain from 

making predictions outside the spatial and temporal domain of the data. For example, in a spatial 

and temporal comprehensive, but coarse-grained, study of vegetation changes in wet heathlands 

and how these changes were affected by the environment, the cover changes of selected species 

were modelled by simple linear models, thus ignoring any higher-order community dynamic effects 

(Damgaard 2019b). Instead, care was taken to partition spatial and temporal effects and different 

sources of uncertainty in a hierarchical model, which enabled short-term ecological predictions to be 

made at a local site where the level of uncertainty was quantified that are immediately useful for 

generating adaptive management plans (Damgaard 2020a). In this particular case, spatial and 

temporal effects were separated by assuming that the state of the plant communities in the first 

year of sampled time series was controlled by spatial processes, which included the effects of the 

environment, as well as historical legacies, contingencies, and succession history at the site level 

prior to sampling. The temporal processes were then modelled in a state-space model based on the 
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observed yearly changes in vegetation cover during the sampling period (Fig. 2). However, in 

ecological systems with significant among-site dispersal, it may be relevant to model the effect of 

the dispersal in spatio-temporal diffusion models (e.g. Wikle 2003). 

The fitting of hierarchical models, which is most naturally done in a Bayesian setting using numerical 

methods, has received considerable attention (e.g. Gelman et al. 2014a). Generally, the most simple 

and robust numerical methods are MCMC iterations, either using Metropolis-Hastings methods, 

such as the Gibbs sampler, or using the Hamiltonian gradient descent algorithm (Stan Development 

Team 2017). However, for models with large datasets and many latent variables, these methods may 

be too slow and it may be necessary to estimate at least some of the variables by the Laplace 

approximation (e.g. Gómez-Rubio and Rue 2018). 

From an epistemological point of view, it is interesting that the structure of hierarchical models with 

latent variables reflects well-known theoretical philosophical models of how knowledge of the world 

is obtained. Kant (1781) suggested that there is a fundamental division between a world of 

phenomena (“Das ding an sich”) and an observer, and when an observer senses a certain 

phenomenon (the object), a representation of the object transcends into the mind of observer, and 

in this process the representation of the object is merged with several sources of relevant a priori 

knowledge, e.g. concepts of space and time, in order for the object to make sense for the observer 

(a posteriori knowledge). In a hierarchical model, the data are like Kant’s phenomena and the latent 

variable may be thought of as being similar to the transcended representation of the object in the 

mind of the observer. Likewise, Wittgenstein (1922) described how we make mental pictures of 

objects and how these pictures are models of reality. Furthermore, he suggested that the 

relationship of the different picture elements corresponds to the relationship among the objects, 

and, thus gives a representation of the structure of the reality. This notion is similar to how latent 

variables in a hierarchical model are linked by a structural equation model. It is intellectually 

satisfying that the treatment of measurement errors and causal dependencies in structural equation 

models in a hierarchical model setting in this way mimic these well-known general epistemological 

models and, consequently, provide a recipe for how to link epistemological models with data and 

causal hypotheses into a mathematical framework. 

Discussion 

It has been demonstrated that it is important to partition and model the different types of observed 

variance, and that this partition of the variance very effectively is done using hierarchical models 

(Clark 2007). For example, in a relatively fine-grained study of plant competitive growth of Festuca 

ovina and Agrostis capillaris it was concluded that the inclusion of frequency-dependence and 
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measurement error improved model performance greatly, but taking possible unmeasured variables 

into account did not. Furthermore, when sampling and measurement errors were taken into 

account, the resulting ecological prediction differed qualitatively from the corresponding non-

hierarchical models without latent variables (Damgaard and Weiner 2021). Moreover, in a study of 

tree fecundity Clark et al. (2004) found that random variation among individual trees and among 

years dominated the variation in tree fecundity. If this random variation was omitted from the 

analysis, parameter estimates would have been be biased and have lead to qualitatively erroneous 

conclusions. Furthermore, it was found that estimated random variation could partly explain the 

observed pattern of species coexistence among the tree species.  

Currently, it is an open question what the limiting factors for the performance of ecological 

predictions are; is it mainly the quality of ecological data or our knowledge of the underlying 

processes? If the current boundary for the performance of the ecological predictions is due to a 

relatively low quality of the spatial and temporal data, then there may be potential advantages in 

increasing the use of technology, e.g. drones and satellites, in ecological monitoring. Conversely, if 

the inherent boundary of the predictive performance is low, then it may be necessary to rethink our 

current strategy for e.g. adaptive management of ecosystems.  

In the near future, when fine-grained plant growth data at large spatial scales are expected to 

become increasingly available, e.g. due to the use of drones, then it may be feasible to fit structural 

equation models where different species interaction process models are compared statistically. A 

working hypothesis may be that by increasing both the resolution of spatial and temporal ecological 

data and the level of understanding of the underlying ecological processes, it will become possible to 

increase the performance of the predictions. However, at the limit of better and better data and 

increasingly detailed understanding of the ecological processes, the increase in predictive 

performance may reach a maximum. It will be interesting to examine what factors control this 

possible maximum in the predictive performance of ecological systems.  

For some simple ecosystems that operate on relatively small spatial scales and a relatively fast time 

scale, e.g. microbial decomposer systems, it may be possible to make manipulated experiments that 

allow us to test and validate complete causal hypotheses of the system dynamics. However, the 

relevant temporal and spatial scales of most ecosystems are so large that a purely experimental 

approach is not feasible, and in our modelling of ecosystem processes we must recognize that our 

current ecosystem knowledge is incomplete and not be overconfident in hypothesized causal 

mechanisms. Consequently, ecological models with both causal and logical dependencies will be 

needed in the attempt to make credible ecological predictions.  
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Generally and to ensure credibility, it is important to quantify the uncertainty of the generated 

ecological predictions. In my opinion, the public notion of plant ecology as a “soft” science, which 

plays a disproportionally small role in real politics, hinges on our failure as a community to make 

credible predictions. Currently, the majority of plant ecological predictions, from local management 

plans of natural habitats to global assessments of biodiversity, are broad verbal statements without 

any attempts to quantify the uncertainty of the predictions. In an attempt to communicate 

credibility of the verbal predictions, a common practice is to call on the consensus of experts. For 

example, in a report from IPBES (2019) 150 selected experts extracted the content of more than 

15,000 scientific publications to make a global assessment of biodiversity and the obtained 

conclusions, including the recommended actions, were approved at a plenary meeting. How is such a 

process even possible and what is the role of the ecological data in the 15,000 scientific publications 

in reaching a consensus for the recommended actions? In my opinion, it is self-evident that no body 

of even distinguished experts can grasp the complexity of ecosystem dynamics in a changing 

environment and fairly assess the wealth of relevant spatial and temporal data in round-table and 

panel discussions. Instead, it is essential to apply a quantitative modelling approach, where the 

uncertainty of the effects of the recommended actions may be assessed in a systematic way.  
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Figures 

Fig. 1. : Hierarchical model of competitive plant growth from plants at an early and later growth 

stage. The true, but unknown, plant size at the early and later growth stage is modelled by latent 

variables (squares) and denoted 𝑋, 𝑌, respectively. The latent variables are logically linked to the 

observed data (circles), which are denoted 𝑥, 𝑦, respectively, with the corresponding latent variables 

as the mean value. The sampling and measurement uncertainty are modelled with 𝜎𝑥 and 𝜎𝑦, 

respectively. The competitive growth process is modelled by the function, 𝐹, which depends on 𝑋 

and possibly on some measured environmental variables 𝑧𝑚.  The effect of unmeasured variables 

affecting both earlier and later growth stages is modelled by 𝜎𝑥𝑦 as the part of the covariance 

between the early and later growth stages that is not explained by the independent factors in the 

process model.  
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Fig. 2. Outline of a structural equation model where the spatial and temporal processes are 

separated. The spatial variation in vegetation cover in 2007 is modelled by nitrogen deposition 

(Ndep), soil pH (pH), soil type and precipitation (Precipit.). The yearly change in vegetation cover 

from 2007 to 2014 (only a single yearly change is shown in the figure) is modelled by all the former 

variables as well as grazing. The square boxes are latent variables and the oval boxes are data. The 

full black arrows denote spatial processes, the dotted black arrows denote temporal processes, and 

the grey arrows denote the logical modelling of sampling and measurement error (Damgaard 

2019b). 
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