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Abstract 

To make credible ecological predictions for terrestrial ecosystems in a changing environment and 

increase our understanding of ecological processes, we need plant ecological models that can be fit 

to spatial and temporal ecological data. Such models need to be based on sufficient understanding 

of ecological processes to be robust enough to make dependable predictions and account for the 

different sources of uncertainty. Here, I argue (1) for the use of structural equation models in a 

hierarchical framework with latent variables and (2) to specify whether our current knowledge of 

relationships among state variables may be categorized primarily as logical (empirical) or causal. 

Such models will help us to make continuous progress in our understanding of and ability to predict 

the dynamics of terrestrial ecosystems, and provide us with local ecological predictions with a 

known degree of uncertainty that are useful for generating adaptive management plans. Such 

hierarchical models are analogous to epistemological models of how knowledge is obtained.  
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Introduction 

The climate and environment are changing and the effects of these changes on ecosystems and 

biodiversity are well documented (IPBES 2019). It is becoming increasingly important to develop 

credible ecological predictions, but what the limits of such a predictive approach is an open 

question. To what extent is it possible to predict the future of ecosystems in a changing 

environment? What ecological processes are most likely to dominate future ecosystem changes? 

How fast will ecosystem changes occur? Here, I focus on the vegetation component of the 

ecosystem as a dynamic system that is influenced by climate, interactions among organisms and 

disturbances as an example of attempts to develop predictive ecological models in general.  

The conceptual framework and study methods of plant ecology, and therefore of plant ecological 

models, are embedded in concepts of time and space. One of the few generalizations that we can 

make about vegetation is that it is spatially heterogeneous, and the spatial patterns of the 

vegetation depend mainly on the environment and historical legacies (Greig-Smith 1979; Ricklefs 

2004; Svenning and Skov 2004; von Humboldt and Bonpland 1805). Even in a homogenous 

environment, plant species are aggregated at large and small spatial scales. At a larger scale, plant 

species are aggregated among sites due to random extinction events and limited possibilities for 

colonization (Cordonnier et al. 2006; Leibold et al. 2004; MacArthur and Wilson 1967; Rees et al. 

2001). Within sites, plants may be aggregated due to clonal growth, limited seed dispersal, and size-

asymmetric competition (Herben et al. 2000; Pacala and Levin 1997; Stoll and Weiner 2000). The 

dominant plant species affect the soil, which leads to important feedback mechanisms, so the 

vegetation and soil may be described as a dynamic system in time and space, where different phases 

of the vegetation simultaneously co-occur in different patches (Watt 1947), or the ecosystem can 

develop in a successional pattern. 

Moreover, it is a truism that ecological processes occur in time, and they are best studied when 

temporal dynamics are taken into account (Damgaard 2019a; Damgaard and Weiner 2017; Kratz et 

al. 2003; Pickett 1989). Generally, environments are non-stationary, and spatial and temporal 

variability in ecological systems have been demonstrated to be fundamentally important to 

ecosystem dynamics (Chesson 2000b; Cushman 2010; Huston 1979). For example, the successional 

changes in tree-dominated ecosystems are expected to be highly erratic and unpredictable at the 

local scale due to variable factors such as herbivore abundance (Schippers et al. 2014), while often 

being predictable at a larger scale. Temporal changes in the water level of Atlantic wetlands have 

been shown to affect both the nature of interspecific competitive relationships and the overall 

importance of competition for regulating population growth (Merlin et al. 2015).  



3 

When studying ecological processes, the ecosystem is a useful conceptual entity that focuses 

attention on important system properties (Tansley 1935). For example, Lenton et al. (2021) argue 

that self-perpetuating feedback cycles involving biotic as well as abiotic components may be critical 

for the stability and long-time success of ecosystems, and Tansley (1935) proposed that stable 

ecosystems will outlast unstable ecosystems. Furthermore, when ecosystems are situated near 

other ecosystems in a landscape, another level of emergent properties may arise among the 

ecosystems at the landscape level (Leibold et al. 2004). For example, environmental variation within 

a landscape may lead to a storage effect with coexistence of species that would otherwise not 

coexist (Chesson 2000a; Chesson and Warner 1981).  

The goal of basic ecological research is to understand the underlying causes of observed patterns, 

which would enable us to make credible ecological predictions. However, an observed ecological 

pattern may be caused by several different processes and involve several important contingencies 

(Damgaard 2019a; Simberloff 2004; Vellend 2010), and the relationship between process and 

pattern may be influenced by time lags of unknown duration (Svenning and Sandel 2013). 

Consequently, although there is some level of generality, the quantitative importance of different 

ecological processes are generally unknown and expected to differ among sites. The resulting 

variation in vegetation dynamics among seemingly comparable sites leads to a level of complexity 

that limits our ability to generalize our understanding of the ecological mechanisms underlying 

observed patterns. While historical contingencies and variation among apparently similar sites 

preclude the generalization of ecological findings, careful local studies of the mechanisms conducted 

at the relevant spatial and temporal scales do provide causal information of the factors that 

determine important community dynamic features (Simberloff 2004; Weiner 1995).  

There is increasing awareness of the limitations of classical community ecological models, e.g. Lotka-

Volterra-type competition models, to predict ecosystem effects of a changing environment (Clark et 

al. 2020; Damgaard and Weiner 2021; Eigentler 2021; Martyn et al. 2020; Mayfield and Stouffer 

2017; Neill et al. 2009; Vellend 2010). For example, it is widely appreciated that frequency-

dependent species interactions, in which relatively rare species are favored over more common 

species, may play an important role in plant species co-existence and community dynamics in plant 

communities (Chisholm and Fung 2020; Connell et al. 1984). Species-specific soil-plant interactions 

have received increasing interest as a potentially important and general mechanism for regulating 

plant populations by hindering local establishment and growth of conspecific plant species in the 

next generation (Heinen et al. 2020; Mazzoleni et al. 2015a; Mazzoleni et al. 2015b; van der Putten 

et al. 2013). In an attempt to cope with the ecological complexity, Vellend (2010) suggested 

partitioning all ecological processes into a logically complete set of disjunct categories: selection, 
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drift, dispersal and speciation (the nomenclature of these categories may be discussed in an 

ecological context, but the important characteristic is that they are logically disjunct and complete). 

Historically, such a classification scheme has been successful in evolutionary biology, and Vellend 

(2010) argued that the reason this approach has not been used more in ecology is due to universal 

familiarity with ecological patterns. For example, since prehistoric time it has been common 

knowledge that plant growth is reduced when plants grow close together, and it therefore seems 

natural to focus on the effects of competitive interactions rather than focusing on a logically 

complete set of possible processes in community ecology. 

The quantitative scientific exploration of the underlying mechanisms that lead to observed 

ecological patterns among ecological state variables in time and space relies on statistical analyses, 

but often the investigation meets the obstacle summarized in the well-known phrase “correlation 

does not imply causality”. More precisely and in the language of Jaynes (2003), the outcome of a 

statistical analysis is a logical statement of association rather than a test of different causal 

mechanisms. He argues that probability theory in a Bayesian setting may be thought of as an 

extended form of scientific logic, which enables us to quantify our belief in a hypothesis by 

modelling the different sources of uncertainty. The term “logical” sensu Jaynes (2003) highlights the 

assumed relationship between state variables and corresponds to the terms “statistical” or 

“empirical”, which are commonly used in ecology.  

The distinction between logical and causal dependencies is subtle and not always clear, but 

important nonetheless. Logical dependencies are investigated using probability theory by calculating 

the plausibility of different hypotheses when knowledge is limited (Jaynes 2003), and even though it 

is assumed that the calculated probabilities are determined by causal dependencies, the calculation 

of such probabilities is usually decoupled from causal dependencies. For example, if we want to 

know if a plant experienced competition from a neighboring plant at day t, when we know that the 

plant experienced competition at a later day 𝑡 + 𝜏, then we may calculate the probability P 

(competition at day t | competition at day 𝑡 + 𝜏). Such probability calculations allow us to make 

ecological predictions, even though the estimated relationship is not a causal dependence, since the 

outcome at a later day cannot influence the outcome at an earlier day. It can also be shown that the 

accumulation of new causally independent data may lead to logical dependencies when investigating 

the plausibility of multiple hypotheses (Jaynes 2003).  

Logical and causal dependencies are not distinct entities but form a continuum from almost pure 

logical (statistical) relationships to primarily causal relationships, and the distinction is further 

complicated by unmeasured confounding factors that affect observed independent variables. These 



5 

confounding factors may lead to "spurious correlations" or omitted variable bias (Gelman and Hill 

2007). The effect of the confounding factors could potentially be teased out in an analysis of 

instrument variables or using structural equation models (Grace 2021; Rinella et al. 2020), and causal 

independence may be inferred from experimental manipulations and the use of the logical do-

operator introduced by Pearl (2009). However, many important ecological processes operate at such 

large spatial and temporal scales that controlled experimental manipulations are impossible, 

although it may be possible in some cases to combine the information from manipulated 

experiments and large-scale observational studies (Benedetti-Cecchi et al. 2018).  

The combined effect of both logical and causal dependencies among state variables at the 

ecosystem level is most effectively modelled using structural equations (Grace et al. 2010). However, 

it is important to note that structural equation models investigate the observed logical associations 

within a hypothesized causal network of measured ecological variables, where the associations are 

typically assumed to be linear functions. This means that structural equation models normally do not 

compare the likelihood of different functional forms of the association among the observed state 

variables - the nature of the ecological processes that link the observed variables is not investigated. 

For example, in a typical structural equation model of the possible association between the 

observed growth of two plant species, it is not addressed whether the growth data may be 

adequately explained by Lotka-Volterra type of interspecific competition or whether it is relevant to 

assume some additional form of frequency-dependency (e.g. Clark et al. 2020; Damgaard and 

Weiner 2021). This insensitivity to the underlying processes that link the measured ecological state 

variables in the hypothesized causal network may be critical for the ecological predictions that are 

made using a fitted structural equation model. For example, if frequency-dependency plays a role in 

interspecific competitive interactions, then more species can coexist (Chisholm and Fung 2020).  

Consequently, when specifying structural equation models it is important to model the underlying 

ecological mechanisms in more detail than is usually done and to apply hypothesized mechanistic 

functional relationships among state variables, e.g., by assuming that plant growth decrease with the 

relative frequency of the plant species in a non-linear way (Damgaard and Weiner 2021). In this way, 

dependencies that are mainly logical can be replaced by dependencies of a more causal nature in 

structural equation models. The mathematical dependencies in a structural equation model will not 

be either strictly logically or strictly causal, but there is a continuum from simple linear logical 

dependencies to more causal mechanistic dependencies, such as a sigmoid growth functions, which 

capture known population ecological mechanisms at a sufficiently high level of aggregation to allow 

statistical treatment of available ecological data in a structural equation model. It is possible to use 

prior ecological insight to compare the statistical fit of different ecological processes in generating an 
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observed ecological pattern (e.g. Clark et al. 2020; Damgaard and Weiner 2021). Clark et al. (2020) 

warn against the use of process models of relatively high complexity due to the risk of overfitting, 

but if frequency-dependency or feedback cycles are important ecosystem features, then such level 

of model complexity is needed in order to make credible ecological predictions.  

Often, there is sizeable variation in the measured independent variables due to measurement and 

sampling errors in ecological studies (Muff et al. 2015; Yanai et al. 2018). Such measurement errors 

are typically not taken into account in ecological and environmental modelling, where measured 

independent variables are treated as if they were constant entities. This is unfortunate, since it has 

been shown that even normally distributed sampling and measurement errors may lead to 

important model and prediction bias, a phenomenon known as "regression dilution" (Carroll et al. 

2006; Damgaard 2020b; Damgaard and Weiner 2021; Detto et al. 2019). Another typical problem in 

the analysis of ecological experiments is the use of the language of the experimental design, e.g. 

“control” and “treatment”, as orthogonal fixed independent factors, although there is often large 

variation and covariation among the variables that are manipulated in the experiment, e.g. soil 

humidity and temperature, which are the real independent variables of interest in the study and the 

ones that are being inferred and concluded upon (Damgaard et al. 2018).  

How can we best improve the empirical modelling of plant ecological processes in space and time in 

order to make credible ecological predictions? Following the suggestion by Clark (2005; 2007) and 

several others, I argue for combining structural equation models with the flexibility of hierarchical 

models with latent variables in a Bayesian setting for investigating logical and causal plant ecological 

dependencies in a coherent way and at the same time model the different sources of uncertainty. 

Hierarchical models 

In ecosystem models, it is often relevant to use structural equations for modelling the effects of 

different factors on an ecological response (Grace et al. 2010; Pearl 2009). Importantly, structural 

equation models may also be formulated in a hierarchical setting, where the structural uncertainty is 

quantified by the residual error for each of the modelled processes (Clark 2007; Damgaard 2019b).  

The use of hierarchical models with latent variables allows us to partition and model the different 

sources of uncertainty (Clark 2005; 2007; Wikle 2003). For example, in an empirical study of 

competitive plant growth there may be i) sampling and measurement errors when determining the 

size of plants at different times using non-destructive measuring methods. ii) structural uncertainty 

in the form of the competitive interactions, e.g. whether frequency-dependent competitive effects 

play a role or not, and iii) the possible confounding effects of unmeasured variables on individual 
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plant performance at both an early and later growth stage, due to spatial variation in soil nutrients, 

pathogens and other factors (Fig. 1). 

The effect of sampling and measurement uncertainty is accounted for in hierarchical models by 

introducing latent variables that model the true, but unknown, value of different variables (Clark 

2007; Gelman and Hill 2007). The logical link between the latent variables and the corresponding 

observed data depends on the type of data and the measurement method. For example, in a study 

where plant biomass is measured destructively and it is known that the variance increases with the 

mean, then it may be appropriate to model the observed biomass by a gamma distribution with 

latent variables as mean parameters and a common scale parameter expressing the relationship 

between the mean and the variance. In a multi-species study of pin-point plant cover data, it may be 

appropriate to model the observed number of pin-point hits by a reparametrized Dirichlet-

multinomial distribution, in which the latent variables are the mean cover of the different species 

and where the expected inter-specific spatial aggregation at the plot level is modelled by a 

parameter (Damgaard 2015; 2018). 

When fitting fine-grained ecological data, it is relevant to examine how well different process 

models are supported by the data (e.g. Clark et al. 2020; Damgaard and Weiner 2021) by estimating 

the expected out-of-sample prediction error of the different functional models using the Watanabe-

Akaike or other information criterion (Gelman et al. 2014b). In the absence of prior knowledge when 

modelling spatial and temporal vegetation data on relatively large scales, it may be a useful strategy 

to keep it simple and model changes using the logically complete set of ecological process categories 

such as those suggested by Vellend (2010), of which selection at the community level is the most 

important category. In more complicated ecological models, it is important to specify whether the 

hypothesized ecological dependencies among the state variables may be categorized as primarily 

logical or causal. In any case, when using relatively simple models it becomes increasingly important 

to quantify the uncertainties and restrain from making predictions outside the spatial and temporal 

domain of the data. For example, in a spatial and temporal comprehensive, but coarse-grained, 

study of vegetation changes in wet heathlands and how these changes were affected by the 

environment, changes in cover of selected species were modelled by simple linear models, thus 

ignoring any higher-order community dynamic effects (Damgaard 2019b). Instead, care was taken to 

partition spatial and temporal effects and different sources of uncertainty in a hierarchical model, 

which enabled short-term ecological predictions that are useful for generating local adaptive 

management plans (Damgaard 2020a). In this particular case, spatial and temporal effects were 

separated by assuming that the state of plant communities in the first year of sampled time series 

was controlled by spatial processes, which included the effects of the environment, as well as 
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historical legacies, contingencies, and succession history at the site level prior to initiating sampling. 

The temporal processes were then modelled in a state-space model based on the observed yearly 

changes in vegetation cover during the sampling period (Fig. 2). In ecological systems with significant 

among-site dispersal, it may be relevant to model the effect of the dispersal in spatial and temporal 

diffusion models (e.g. Wikle 2003). The fitting of hierarchical models, which is most naturally done in 

a Bayesian setting using numerical methods, has received considerable attention (e.g. Gelman et al. 

2014a).  

Ideally, the possible confounding effects of unmeasured variables should be investigated using an 

instrument variable analysis (Gelman and Hill 2007; Rinella et al. 2020). However, this is often not 

possible and instead it has been suggested that we can account for possible confounding effects of 

unmeasured variables by modeling the unexplained covariance between the observed variables 

(Rinella et al. 2020), such as the unexplained covariance between early and later growth stages (Fig. 

1).    

From an epistemological point of view, it is noteworthy that the structure of hierarchical models 

with latent variables reflects well-known theoretical philosophical models of how knowledge of the 

world is obtained. Kant (1781) suggested that there is a fundamental division between a world of 

phenomena (“Das ding an sich”) and an observer, and when an observer senses a certain 

phenomenon (the object), a representation of the object transcends into the mind of observer, and 

in this process the representation of the object is merged with several sources of relevant a priori 

knowledge, such as concepts of space and time, for the object to make sense for the observer (a 

posteriori knowledge). In a hierarchical model, the data are like Kant’s phenomena and the latent 

variable may be thought of as being similar to the transcended representation of the object in the 

mind of the observer. Similarly, Wittgenstein (1922) described how we make mental pictures of 

objects and how these pictures are models of reality. He suggested that the relationship among the 

different picture elements corresponds to the relationship among the objects, and thus gives a 

representation of the structure of the reality. This notion is similar to how latent variables in a 

hierarchical model are linked by a structural equation model. It is encouraging that the treatment of 

measurement errors and causal dependencies in structural equation models in a hierarchical setting 

mimics these well-known general epistemological models and, consequently, provides a recipe for 

how to link models with data and causal hypotheses into a mathematical framework. 

Discussion 

I have argued that it is important to partition and model the different types of observed variance, 

and that hierarchical models are often the best tool for this purpose. For example, in a relatively 
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fine-grained study of plant competitive growth of Festuca ovina and Agrostis capillaris it was 

concluded that the inclusion of frequency-dependence and measurement error improved model 

performance greatly, but taking possible unmeasured variables into account did not. Furthermore, 

when sampling and measurement errors were taken into account, the resulting ecological prediction 

differed qualitatively from the corresponding non-hierarchical models without latent variables 

(Damgaard and Weiner 2021). Moreover, in a study of tree fecundity Clark et al. (2004) found that 

random variation among individual trees and among years dominated the variation in tree fecundity. 

If this random variation was omitted from the analysis, parameter estimates would have been 

biased and led to qualitatively erroneous conclusions. They also found that estimated random 

variation could partly explain the observed pattern of coexistence among the tree species.  

The current poor performance of ecological predictions is probably due to the relatively low quantity 

and quality of spatial and temporal ecological data. The increasing use of advanced technology in 

ecological monitoring, such as drones and satellites, may allow us to make better predictions. As 

fine-grained plant growth data at large spatial scales become increasingly available, it may be 

feasible to fit structural equation models in which different hypothesized species interaction 

processes are compared statistically. By increasing the resolution of spatial and temporal ecological 

data, it should become possible to increase the performance of the predictions. At the limit of better 

and better data and increasingly detailed understanding of the ecological processes, the increase in 

predictive performance may reach a boundary. If the intrinsic boundary of ecological predictive 

performance is low, due to historical or other contingencies, it may be necessary to rethink our 

current strategy of adaptive management of ecosystems based on ecological predictions in nature 

conservation. 

For some simple ecosystems that operate on relatively small spatial scales and relatively short time 

scale, such as microbial decomposer systems, it may be possible to perform manipulative 

experiments that allow us to test and validate complete causal hypotheses of the system dynamics. 

However, the relevant temporal and spatial scales of most ecosystems are so large that a purely 

experimental approach is not feasible, so in our modelling of ecosystem processes we must 

recognize that our current ecosystem knowledge is incomplete and not be overconfident in 

hypothesized causal mechanisms. Consequently, ecological models with both causal and logical 

dependencies will be needed in the attempt to make credible ecological predictions. The goal of 

ecology as a science, however, is to increase our mechanistic understanding of the different 

processes and thereby enable us to convert assumed logical dependencies into more causal 

dependencies among state variables in our structural equation models. The current state of 

structural equation models in plant ecology, where many dependencies are strictly based on logical 
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and statistical arguments will act as a guide into where knowledge is missing and suggest future 

research agendas. It is important to capture the causal mechanisms at a sufficiently high aggregation 

level to allow statistical treatment of available ecological data in a structural equation model. It is 

not necessary or even desirable to model all the known mechanistic details, such as modelling every 

single birth and death event using individual based models. 

It is important to quantify the uncertainty of generated ecological predictions. In my opinion, the 

public notion of plant ecology as a “soft” science, which plays a disproportionally small role in real 

politics, hinges on our failure as a community to make credible predictions. Currently, the majority 

of plant ecological predictions, from local management plans of natural habitats to global 

assessments of biodiversity, are broad verbal statements without any attempts to quantify the 

uncertainty of the predictions. To communicate credibility of the verbal predictions, a common 

practice is to call on the consensus of experts. For example, in a report from IPBES (2019) 150 

selected experts extracted the content of more than 15,000 scientific publications to make a global 

assessment of biodiversity and the obtained conclusions, including the recommended actions, were 

approved at a plenary meeting. How is such a process even possible and what is the role of the 

ecological data in the 15,000 scientific publications in reaching a consensus for the recommended 

actions? But no body of even distinguished experts can grasp the complexity of ecosystem dynamics 

in a changing environment and fairly assess the wealth of relevant spatial and temporal data in 

round-table and panel discussions. In the cases where good data are available it would be more 

appropriate to apply a quantitative modelling approach, where the uncertainty of the effects of the 

recommended actions may be assessed in a systematic way, and the results of the quantitative 

analyses can then be interpreted by experts for decision makers. 
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Figures 

Fig. 1. : Hierarchical model of competitive plant growth from plants at an early and later growth 

stage. The true, but unknown, plant size at the early and later growth stage is modelled by latent 

variables (squares) and denoted 𝑋, 𝑌, respectively. The latent variables are logically linked to the 

observed data (circles), which are denoted 𝑥, 𝑦, respectively, with the corresponding latent variables 

as the mean value. The sampling and measurement uncertainty are modelled with 𝜎𝑥 and 𝜎𝑦, 

respectively. The competitive growth process is modelled by the function, 𝐹, which depends on 𝑋 

and possibly on some measured environmental variables 𝑧𝑚.  The effect of unmeasured variables 

affecting both earlier and later growth stages is modelled by 𝜎𝑥𝑦 as the part of the covariance 

between the early and later growth stages that is not explained by the independent factors in the 

process model.  
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Fig. 2. Outline of a structural equation model where the spatial and temporal processes are 

separated. The spatial variation in vegetation cover in 2007 is modelled by nitrogen deposition 

(Ndep), soil pH (pH), soil type and precipitation (Precipit.). The yearly change in vegetation cover 

from 2007 to 2014 (only a single yearly change is shown in the figure) is modelled by all the former 

variables as well as grazing. The square boxes are latent variables and the oval boxes are data. The 

full black arrows denote spatial processes, the dotted black arrows denote temporal processes, and 

the grey arrows denote the logical modelling of sampling and measurement error (Damgaard 

2019b). 
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