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Abstract 15 

Bivalves frequently withstand shell boring attempts by predatory gastropods that result in shell 16 

damage that must be quickly repaired to ensure survival. While the processes that underlie larval 17 

shell development have been extensively studied within the context of ocean acidification (OA), it 18 

remains unclear whether shell repair is impaired by elevated pCO2. To better understand the 19 

stereotypical shell repair process, we monitored mussels (Mytilus edulis) with sublethal shell 20 

damage within both field and laboratory conditions to characterize the deposition rate, mineral 21 

composition, and structural integrity of repaired shell. These results were then compared with a 22 

laboratory experiment wherein mussels (Mytilus trossulus) repaired shell damage in one of seven 23 

pCO2 treatments (400–2500 µatm). Shell repair proceeded through four distinct stages; shell 24 

damage was first covered with an organic film, then mineralized over the course of weeks, 25 

acquiring the appearance of nacre after 8 weeks. OA did not impact the ability of mussels to close 26 

drill holes, nor the strength or density of the repaired shell after 10-weeks, as measured through 27 

mechanical testing and µCT analysis. However, as mussels progressed through each repair 28 

stage, significant interactions between pCO2, the length of exposure to treatment conditions, and 29 

the strength, inorganic content, and physiological condition of mussels within OA treatments were 30 

observed. These results suggest that, while OA may not prevent mussels from repairing shell 31 

damage, sustained exposure to elevated pCO2 may induce physiological stress responses that 32 

impose energetic constraints on the shell repair process.  33 
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1. Introduction 34 

Mytilid mussels are bivalve mollusks that perform ecologically important roles within 35 

marine ecosystems [1,2] and support an intercontinental fishery that accounts for 6.9% (1.2 million 36 

tonnes) of the 250 billion USD global aquaculture industry [3]. Mussels survive harsh conditions 37 

along coastal shores using bivalve shells that protect them from waves, predators, and 38 

desiccation [4]. Nearshore ecosystems are subject to substantial environmental variability, 39 

including fluctuations in seawater pH [5]. As a consequence of abiotic and biotic nearshore 40 

processes, mussels routinely endure exposure to acidified conditions (with respect to open ocean 41 

conditions), resulting in pH reductions of up to 1 unit for hours or days at a time [6-8]. Ocean 42 

acidification (OA), or the incremental decline in oceanic pH globally that results from the uptake 43 

of anthropogenic atmospheric pCO2 by the ocean [9,10], is expected to intensify this process, 44 

resulting in significant consequences for marine shelled organisms [11]. Given their ecological 45 

and economic importance, the ability of mussels to build, maintain, and repair damaged shell 46 

under different pCO2 conditions will determine the impact that OA has on ecological communities 47 

and aquaculture production [12,13]. 48 

In the rocky intertidal, the distribution of mussels along shorelines is limited by wave forces 49 

[14] and motile predators (e.g., sea stars, crustaceans) that pry or peel open the shells of bivalves 50 

[15,16]. Other shallow water predators include marine snail species (muricid and natricid 51 

gastropods) that “drill” through the shell to access  their prey [17,18]. Gastropod predation is 52 

characterized by alternating bouts of mechanical shell damage and enzymatic digestion, where 53 

damage is induced using a toothed radula (bouts of 1-2 minutes) followed by the secretion of 54 

specialized enzymes (bouts of 25-30 minutes) [19,20]. Using this method, whelks can bore into 55 

and fully digest a mussel within a few days. The removal of mussels from bed networks by shell 56 

boring organisms contributes to mussel dislodgement and can cause cascading effects on 57 

intertidal ecosystems [21,22]. 58 
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Due in part to the relatively long handling time of their feeding strategy and the dynamic 59 

environment of the intertidal zone, shell boring gastropods are not always successful [23]. 60 

Evidence of incomplete and repaired boreholes can be seen throughout the fossil record, 61 

indicating that mollusks survive encounters with gastropod predators and persist with shell 62 

damage [24]. However, shell damage can impose a cost; in surveys where mussel populations 63 

were inundated with phototrophic endoliths, sublethal shell damage accompanied an increase in 64 

adult mortality of up to 50% [25]. Holes in a mussel’s shell can increase desiccation risk during 65 

low tide, expose the extracellular mantle cavity to microbial infection, promote the invasion of 66 

predatory amphipods and/or mobile polycheates, and hinder internal acid-base regulation [26]. 67 

Mussel shell is composed of three distinct layers. The inner layer (nacre, ‘mother-of-pearl’) 68 

is made up of tabloid aragonite crystals, while the middle layer is an aggregate of calcium 69 

carbonate arranged in calcite prisms, and the outer layer is a proteinaceous covering known as 70 

the periostracum [27,28]. The mantle tissue that produces shell is composed of three zones, with 71 

the outer mantle (marginal and pallial zones) producing both calcite and aragonite during shell 72 

growth, while the inner mantle (central zone) produces aragonite and is involved in shell 73 

thickening and repair [29]. Shell formation typically proceeds in two phases, wherein the mantle 74 

extrudes a mixture of polysaccharides and glycoproteins that form an organic matrix that 75 

facilitates the formation of calcium carbonate crystals [30]. Previous work suggests that the 76 

creation and maintenance of shell is particularly costly, in large part due to the formation of this 77 

proteinaceous scaffolding [31,32]. OA has been proposed to impact shell formation through both 78 

direct and indirect mechanisms, including a decrease in carbonate ion (CO2-
3) availability with 79 

declining pH [33,34], and pH-induced metabolic stress that disrupts the intercellular transport 80 

mechanisms that support the production of calcium carbonate [35]. 81 
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The effect of OA on shell formation at the growth margin in mussels has been well studied 82 

[11,36-38], particularly in the context of larval development [39,40], and in the presence of warming 83 

[41-43]. Aragonite saturation-state has been shown to be the most influential variable in juvenile 84 

mussel and oyster calcification [34]. While not extensively studied in adults, OA can impose 85 

metabolic constraints on the biomineralization process [44], resulting in changes in shell shape 86 

and thickness [45]. These results suggest that declines in oceanic pH could impact how mussels 87 

recover from incomplete predation events such as those imposed by marine gastropods. 88 

However, uncertainty still exists as to the extent to which the processes that underlie shell repair 89 

mimics biomineralization at the shell margin [46], and whether the repair process in adults is 90 

subject to the same kinetic constraints as in early shell development [47]. 91 

Here we present data collected from observations and experiments conducted in the rocky 92 

intertidal of Rhode Island, USA on the blue mussel (Mytilus edulis; Linnaeus, 1758) and an OA 93 

laboratory experiment conducted in Washington, USA on the pacific blue mussel (Mytilus 94 

trossulus; Gould, 1850). Our field observations and experiments serve to determine the frequency 95 

with which mussels survive shell boring events and provide a timeline of the shell repair process 96 

that mussels undergo after incurring sublethal shell damage. These results were then used to 97 

inform laboratory mesocosm experiments wherein mussels repaired shell damage that mimicked 98 

the damage imposed by shell boring gastropods under seven OA treatments (pCO2 targets: 400–99 

2500 µatm) for up to 10 weeks. The impact of environmental pCO2 on the progression of the shell 100 

repair process, as well as the mineralization and strength of repaired shell were then assessed 101 

through material composition analysis, mechanical testing, and µCT analysis. 102 

2. Materials and Methods 103 

         Datasets presented here are the compilation of field and laboratory experiments 104 

undertaken on the Atlantic and Pacific coasts of the United States, utilizing two species of Mytilid 105 
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mussels, Mytilus edulis and Mytilus trossulus, respectively. Initial field observations of the 106 

frequency of shell repair in M. edulis populations was collected over three years (1998–2000) 107 

during monthly mussel bed surveys within the intertidal near Bass Rock and Black Point in Rhode 108 

Island, USA, (41°24' 17.4"N, 71°27' 30.5"W and 41°23' 42.4"N, 71°27' 47.9"W), following 109 

previously described sampling methods [48,49]. The observation that mussels frequently 110 

sustained and repaired shell damage from boring predators (Figure 1) motivated field experiments 111 

during the summer of 2003 wherein shell damage was induced in M. edulis living within bed 112 

populations at Black Point and resampled over the course of two months to investigate the repair 113 

process (Figure 2, Figure 3). Results of these field experiments were subsequently used to inform 114 

a laboratory experiment investigating the effect of ocean acidification (OA; elevated seawater 115 

pCO2, decreased pH) on the shell repair process in M. trossulus, conducted during the summer 116 

of 2012 at Friday Harbor Laboratories, located on San Juan Island, Washington, USA (48°32' 117 

46.9"N, 123°00' 36.5"W).  118 

M. trossulus and M. edulis are closely related sister taxa that naturally occur in sympatric 119 

populations along the eastern and western coasts of the United States. Due to their genetic 120 

similarity and systematic inclusion, along with the mediterranean mussel (M. galloprovincialis), 121 

within the ‘Mytilus edulis complex’ [50,51], hybridization between the two species is common 122 

[52,53]. While members of the complex have similar growth rates and physiology [54], shell 123 

characteristics can vary. For example, M. edulis typically produces stronger, thicker shells than 124 

M. trossulus, with the magnitude of this species difference varying by site [55]. However, the 125 

material properties and composition of shell (e.g., Young’s modulus, Vicker’s hardness, 126 

calcite/aragonite crystallographic orientation, etc.) within M. edulis and M. trossulus are not 127 

significantly different [56], suggesting their response to shell damage within this study is 128 

comparable. 129 
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Throughout field and laboratory experiments several measurement techniques remained 130 

consistent. Whenever a mussel was sampled, shell length of the major valve axis was measured 131 

with vernier calipers (Wiha-41102, ± 0.01 cm). Mussel condition and reproductive status was also 132 

commonly assessed by resecting and separating gonad and somatic tissue and drying each at 133 

60°C until a stable weight was achieved. Condition index (CI) was defined as the ratio of total dry 134 

tissue mass to shell length cubed [57], while gonad index (GI) was defined as the ratio of the dry 135 

gonad mass to dry somatic tissue mass (Metler Toledo ML54, ± 0.01 g) as previously described 136 

[48].  137 

To assess the progression of shell repair through distinct repair stages, shells were dried 138 

at room temperature, photographed with a length standard, and qualitatively scored from 0 to 4. 139 

Shells that had no visible evidence of repair were assigned to stage 0 (S0). Shells where organic 140 

matrix covered drill holes (or was present elsewhere) were considered to be at stage 1 (S1). Stage 141 

2 (S2) was characterized by a mixture of organic and mineral material, while stage 3 (S3) was 142 

assigned when repaired shell was completely mineralized and rough in texture. Repaired shell at 143 

stage 4 (S4) were considered to be visually indistinct from the surrounding shell material and 144 

resembled the surface characteristics and color of nacre. Examples of each stage are outlined in 145 

Figure 2A.  146 

The size of shell repair patches at each stage were quantified by photographing the shell 147 

interior and tracing the outline of the repaired region to determine the cross-sectional area (±0.01 148 

cm2) using Image J. [58]. The strength of the repaired shell was assessed using an Instron 5565 149 

material testing frame [59] fitted with a micro-indentation steel tip (diameter = 0.5 mm). Repaired 150 

shell was approached from the exterior of the shell at 10 mm min-1 and the resulting maximum 151 

force required to dislodge the repaired region from drill holes was recorded (±0.01 N). This assay 152 

was not designed to be a comprehensive analysis of the material properties of repaired shell, but 153 
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rather to approximate the effort a predator would have to exert to re-enter the mantle cavity and 154 

serve as an estimation of the ability of the repair to prevent subsequent predation. Finally, the 155 

inorganic content (%) of the repaired shell was determined by removing newly deposited material 156 

from shell injuries and comparing their mass before and after incineration at 500°C for 4 hours 157 

[60]. 158 

2.1. Rhode Island: field experiment 159 

The ability of M. edulis (shell length = 3-5 cm) to repair simulated shell damage that 160 

approximated the size and shape of shell injuries imposed by boring gastropods was first 161 

assessed within intertidal mussel beds located near Black Point, Rhode Island, USA. A 1 mm 162 

diameter hole was carefully drilled in the apex of the right valve of mussels in situ without removing 163 

mussels from aggregations, using a drill stop of 1 mm to prevent injury to the internal tissues of 164 

the animal. Mussels chosen for inclusion in the experiment were at similar tidal heights (ranging 165 

from 0.5 m above and below MLLW) and within three meters of each other to ensure consistent 166 

wave exposure and environmental conditions. After shell damage, mussels were sampled over 167 

the course of two months (June–July, 2003) approximately biweekly (10, 23, 38, and 51 days). 168 

Upon collection, animals were sacrificed and the CI and GI of each was determined; these metrics 169 

were compared with an initial sample of nearby mussels taken on the day shell damage was 170 

initiated. Shells were visually assessed for shell repair (qualitative score S0-S4), and the cross-171 

sectional area of the repaired region (cm2), the force required to dislodge the shell repair (N), and 172 

the inorganic content (%) of newly produced shell were measured as previously described. 173 

2.2. Washington State: laboratory ocean acidification experiment 174 

M. trossulus (shell length = 3-5 cm) were collected from Argyle Creek, San Juan Island, 175 

WA, USA (48-31'12'' N, 123-00'53'' W) in March, 2012. Upon collection, a subset of mussels was 176 

immediately sampled for initial field values of GI and CI. Shell damage was induced in the right 177 
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valve of remaining mussels as previously described and individuals were haphazardly placed in 178 

one of seven experimental mesocosms that ranged in target pCO2 levels (400, 700, 1000, 1600, 179 

1900, 2200, 2500 µatm) at 16°C in the Ocean Acidification Environmental Laboratory (OAEL) 180 

located at Friday Harbor Laboratories, San Juan Island, WA, USA. Mussels were held in 1.5L 181 

chambers with flow-through, UV-sterilized, and 0.2 µm filtered seawater. Chambers were cleaned 182 

three times weekly. Mussels were fed a diet of prepared algal paste (Shellfish Diet 1800, Reed 183 

Mariculture, Campbell, CA) at a daily rate of 5% of the estimated biomass within each chamber. 184 

Mussels were removed from each treatment over the course of a 2.5-month exposure at irregular 185 

intervals (8, 15, 22, 28, 43, 56, 69 days) and the GI, CI, cross-sectional area of the repaired shell 186 

region, as well as the strength and inorganic content of repaired shell were determined as 187 

previously described. 188 

OA treatments were accomplished through dynamic injection of CO2 using a pH-stat 189 

system, following the methods outlined in O’Donnell et al. 2013 [61]. Briefly, a Honeywell 190 

UDA2182 process controller and Honeywell Durafet III electrode [62] monitored the pH 191 

(uncertainty = ± 0.13%) and temperature (uncertainty = ± 0.63%) of each experimental mesocosm 192 

and added CO2 to maintain the pH at a predefined setpoint calculated from target pCO2 levels 193 

using CO2calc [63]. pH electrodes were calibrated to the total scale using spectrophotometric pH 194 

(Ocean Optics USB4000; Ocean Insight, Toms River, NJ) and were compared to treatment 195 

conditions every 3-4 days to ensure the correct calibration was maintained. The salinity of each 196 

treatment was measured daily using a sensION 5 conductivity meter (Hach Company, Loveland, 197 

CO; uncertainty = ± 0.33%). Total alkalinity (AT) was measured using SOP 3b from (Dickson et 198 

al., 2007) every 3-4 days (uncertainty = ± 0.33%). 199 

The relationship between AT and salinity established over the course of two years at our 200 

field station (AT = 38.856 * Salinity + 916.43, R2 = 0.95) was used to estimate AT in each 201 
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mesocosm; results obtained by this method were found to be within ± 0.4% of measured AT 202 

values. From estimates of AT and measurements of pH, temperature, and salinity, we calculated 203 

the pCO2 (µatm), CO3 (µmol kg-1 SW), HCO3 (µmol kg-1 SW), aragonite saturation state (Ωar), and 204 

calcite saturation state (Ωca) of each treatment. The uncertainty associated with each calculated 205 

parameter was determined using a Monte Carlo analysis (i = 10,000), sampling the random, 206 

normal distribution of measurement uncertainty associated with each pH, AT, temperature, and 207 

salinity measurement and propagating them through each calculation. The resulting propagated 208 

uncertainty was combined with treatment variability (1 S.D.) by taking the square root of the sum 209 

of squares (reported as total uncertainty (uT)), following published recommendations [64]. 210 

Microtomography (microCT) scans of shells from mussels in OA treatments were taken 211 

using a Skyscan 1076 scanner (Bruker, Billerica, MA), imaging shells in 35 µm slices at 45 kV. 212 

3D image reconstruction was performed in NRecon (Micro Photonics Inc, Allentown, PA), with 213 

further rendering in Drishti [65]. The density of repaired shell was estimated by applying a 1 mm 214 

diameter cylinder centered on the drill hole of each shell and recording the mean and maximum 215 

grayscale values of the scan slices in aggregate. Grayscale values were compared with those of 216 

unrepaired shell 1 mm away from the drill hole. 217 

2.3. Statistical Analyses 218 

         All statistical analyses were performed in R (Version 3.4.1; http://www.r-project.org/) using 219 

the RStudio IDE (Version 1.0.153; http://www.rstudio.com/). When applicable, analysis of 220 

covariance (ANCOVA) was used to investigate differences in response variables to the duration 221 

of exposure (days) and magnitude (pCO2 targets) of OA treatments. During model construction, 222 

the assumptions of normality and homoscedasticity were assessed using the Shapiro test and a 223 

visual assessment of Q-Q and residual-fitted plots. To achieve normality, the Johnson 224 

transformation was used when necessary [66]. When response variables were expressed as 225 

http://www.r-project.org/
http://www.r-project.org/
http://www.rstudio.com/
http://www.rstudio.com/
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proportions, the logit transformation (log of odds ratio) was used. For significant effects (α = 0.05), 226 

the agricolae package was used to perform pairwise comparisons of groups using the Tukey HSD 227 

post hoc test [67]. For the comparison of qualitative repair scores, the distribution of mussels 228 

within each stage was compared with a chi-squared test, using the 400 µatm treatment as the 229 

expected values. 230 

3. Results 231 

3.1. Rhode Island: field experiment 232 

Evidence of gastropod predation within mussel beds varied significantly during monthly 233 

field sampling of intertidal sites, with as many as 8% of mussels (M. edulis, n=50, 1998-2001) 234 

within bed populations carrying shell damage in a given month (Figure 1B). When shell damage 235 

was artificially induced in a subset of individuals within a population, mussels progressed steadily 236 

through each repair stage (S0-S4) over a 51-day period (see Figure 2A for examples). Ten days 237 

after shell damage was induced, 70% of mussels had entered the first stage of shell repair (S1) 238 

and successfully closed drill holes by applying an organic film over the opening (examples from 239 

M. trossulus provided in Figure 3). These results matched laboratory assays wherein it took M. 240 

trossulus (n=25) 11 days for all mussels to reach S1 (Figure 2B). Following the closure of the 241 

shell opening, 86.6% of mussels were at S2 after 23 days, and 80% were at S3 after 38 days 242 

(Figure 2C).  243 

Significant changes in the material and biomechanical properties of repaired shell were 244 

observed as mussels progressed through each repair stage. The inorganic content (p<0.001, 245 

Figure 2D) and force required to dislodge repaired shell material (p<0.001, Figure 2E) significantly 246 

increased as mussels (M. edulis) remained within the intertidal post shell injury by +83% and 247 

+346% (comparing 10 to 51 days), respectively. For both measured parameters, hardening of the 248 

repaired region corresponded with the transition from S1 to S2 (Figure 2C-E). The relationship 249 



12 
 

between repair stage and the physical properties of repaired shell was further validated by pooling 250 

data from field experiments (M. edulis) and laboratory studies discussed in the following section 251 

(M. trossulus). From this analysis, repair stage was positively correlated with inorganic content 252 

(p=0.012; Figure 2F) and force (p=0.032; Figure 2G). The strength of repaired shell and inorganic 253 

content were also positively correlated (loess regression) with each other when compared across 254 

both species, with inorganic content explaining 42% of the variance observed in force (p<0.001, 255 

Figure 2H). 256 

At the end of the field experiment, the appearance of repaired shell resembled that of 257 

surrounding shell, with all mussels proceeding to at least S3 after 51 days; in this end stage 258 

population, 45% of repairs were in S4 and had evidence of nacre formation (Figure 2C). However, 259 

when mechanical testing was employed to dislodge the repaired region of shell repairs within S4, 260 

the force required was not significantly different than those in S2 or S3 (Figure 2G), indicating that 261 

perhaps more time is needed to produce a material with a similar structural integrity to undamaged 262 

shell. µCT imaging of shells at S3 and S4 suggested that repaired shell had a similar density to 263 

unrepaired shell, but appeared thinner in cross-section and was irregularly anchored to the interior 264 

shell around each drill hole (Figure 4C,D). 265 

3.2. Washington State: ocean acidification shell repair experiment 266 

Laboratory experiments employed seven OA treatments, with measured pH values 267 

ranging from 7.29 to 7.95 (total scale, Table 1) and calculated pCO2 levels ranging from 483 to 268 

2458 µatm (Table 2). OA did not significantly affect whether mussels were able to repair damaged 269 

shell (p=0.53, Table S1), with no observed impact of pCO2 on the proportion of mussels that 270 

mineralized repaired shell (reached S3 or S4) after 4 weeks (Figure 5A). All mussels closed drill 271 

holes irrespective of treatment, with no impact of pCO2 (p=0.64) or time (p=0.57) on the size of 272 

the S1 repair patch (Table S3). Repair patches were generally proportional to the degree of shell 273 
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damage, neatly covering the drill hole in 60% of cases (Figure 3F). However, significant 274 

overgrowth of the repair patch did occur, resulting in organic matrix deposition within the entire 275 

valve interior (Figure 3D) and repair away from the shell defect in rare cases (Figure 3E). 276 

While OA did not prevent mussels from closing shell injuries or mineralizing repaired shell, 277 

the severity pCO2 exposure and the time spent within treatments significantly impacted the 278 

inorganic content (OA: p<0.001, time: p<0.001; Table S3, Figure 5B) and the force required to 279 

dislodge repaired regions (OA: p<0.001, time: p=0.02; Table S3, Figure 5C). Similar results were 280 

observed when analyses were constrained to only include mussels after 10 weeks within 281 

treatments (end point only). After 10-weeks of OA exposure, significantly fewer animals reached 282 

S3 or S4 in pCO2 treatments above 1500 µatm than the 400 µatm control (Figure 5D). However, 283 

while pCO2 did have a significant effect on the inorganic content of repaired shell (p=0.013, Table 284 

S2, Figure 5E), no effect was observed on the force required to dislodge repair patches (p=0.263, 285 

Table S2, Figure 5F). No effect of OA was also observed on the mean (p=0.85, Figure 6C) or max 286 

(p=0.56, Figure 6D) grayscale values approximating the shell density of repaired region collected 287 

from µCT scans (Table S4). 288 

The condition (p<0.001) and gonad (p=0.008) indices of mussels universally decreased 289 

over 10 weeks under laboratory conditions (Table S5, Figure S2A,D). Mussel condition (p=0.017), 290 

not reproductive condition (p=0.814), was significantly affected by pCO2 and no interaction with 291 

time in treatment was detected (p=0.645, Table S3). When comparing the initial and final condition 292 

and gonad indices under experimental conditions, a significant impact of pCO2 on CI (p<0.001) 293 

and GI (p=0.012) was observed, with no decrease in either metric observed in field populations 294 

over the same time period (Table S5, Figure S1). However, neither CI or GI was correlated with 295 

the force to dislodge repaired regions (p=0.435, p=0.690) or their inorganic content (p=0.989, 296 

p=0.619), with no observed clustering observed with pCO2 treatment (Figure S2). 297 
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4. Discussion 298 

Here we describe the shell repair process of mytilid mussels after sublethal shell damage 299 

that penetrates the mantle cavity away from the shell margin, as well as the effect of ocean 300 

acidification (OA) on the speed and efficiency of repair. In both field and laboratory assays, 301 

mussels mineralized shell injuries within 3 weeks, transitioning through four distinct repair stages 302 

wherein the inorganic content, structural integrity, and shell density of repaired shell increased 303 

(Figure 2, Figure 4). The ability of mussels to close simulated bore holes was not impacted by 304 

environmental pCO2 (Figure 5A), with no effect of OA observed on the strength (Figure 5F) or 305 

density (Figure 6) of repaired shell after 10-weeks under laboratory conditions. However, as 306 

mussels progressed through each repair stage, significant interactions between pCO2, the length 307 

of exposure to treatment conditions, and the strength, inorganic content, and physiological 308 

condition of mussels within OA treatments were observed (Table S3, Figure 5). These results 309 

suggest that, while OA (up to 2500 µatm) may not prevent mussels from repairing shell damage, 310 

sustained exposure to increased pCO2 may induce physiological stress responses that impose 311 

energetic constraints on aspects of the shell repair process. 312 

Our field observations indicate that up to 8% of mussel populations carry evidence of shell 313 

damage consistent with the feeding strategy of predatory gastropods (Figure 1). To limit exposure 314 

to the surrounding environment, mussels in both field and laboratory conditions quickly (within 5 315 

days) covered 1 mm diameter drill holes by affixing an organic film over the interior of the shell 316 

opening (Figure 2A, Figure 3A-C). The texture and color of organic film was consistent with the 317 

findings of prior studies, several of which have characterized the composition of numerous matrix 318 

proteins and polysaccharides [68-70]. µCT imaging of repaired shells confirmed that these films 319 

formed over, rather than within, drill holes, similar to the way a patch is applied over a tear in a 320 

piece of clothing (Figure 4, Figure 6A).  321 
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 Significant variability was observed between individual mussels’ initial response to shell 322 

injury, irrespective of pCO2 treatment. Organic films typically covered drill holes, but varied widely 323 

in their size, shape, and even location with respect to the shell injury (Figure 3A-E); 10% of 324 

mussels produced a patch 100x greater than the drill hole diameter (Figure 3F) and, in rare 325 

instances, organic matrix was produced away from shell damage altogether (Figure 3E). To our 326 

knowledge, variability in the localization of the repair process of this magnitude has not been 327 

previously reported. One possible explanation for this variation could be that, while great lengths 328 

were taken to standardize the depth with which drill holes were generated, variation in shell 329 

thickness may have resulted in different degrees of tissue damage. Additionally, shell fragments 330 

from drilling could have been dispersed within the shell cavity, leading to non-localized repair. 331 

While there is evidence that specific proteins act as nucleation sites during calcite and aragonite 332 

formation [71,72], less is known about how mollusks determine where to deposit the organic 333 

matrix. Work by Hüning et al. (2016) [46] provides preliminary evidence that the expression of 334 

genes involved in shell formation at the pallial and marginal mantle can be induced in central 335 

mantle tissue after shell damage. The results presented here suggest that transcriptomic changes 336 

in the mantle that lead to organic matrix deposition may be part of a more globalized physiological 337 

response than previously thought, or mediated by some yet unknown factor with regard to the 338 

type of shell injury endured. 339 

         Irrespective of individual variation in organic film formation, the strength and inorganic 340 

content of the repaired region increased as time passed after shell damage (Figure 2, Figure 4). 341 

This result is consistent with other studies that monitor shell formation, which have observed that 342 

calcium carbonate precipitation into the organic matrix acts as a precursor to aragonite formation 343 

[73,74]. Shell mineralization was also apparent visually, as the color of deposited organic matrix 344 

transitioned from a greenish-yellow to what appeared to be a mixture of crystalline gray structures 345 

during S2 (Figure 2A). While it remains unclear to what extent the rate of progression through 346 
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each repair stage is influenced by mussel condition or seasonal factors, other studies using drill-347 

based shell damage assays have observed a similar chronological hierarchy of protein secretion 348 

(6-15 d), calcite crystal accumulation (15-23 d), and aragonite tablet formation (30-100 d) after 349 

the initial shell injury [28,46]. In our field experiment with M. edulis, all mussels after 27 days 350 

showed evidence of mineralization at the repair site, with aragonite formation at 51 days (Figure 351 

2C). The same process was seen in the laboratory with M. trossulus, where mussels produced 352 

organic films as early as 5 days (Figure 2B) and evidence of calcite accumulation was observed 353 

after 22 days (Figure 4). 354 

         Mussels (M. trossulus) repairing damaged shells within seven pCO2 treatments ranging 355 

from 400 to 2500 µatm for 10-weeks do not exhibit evidence of direct OA impacts on the shell 356 

repair process. Mussels generally reached S1 level of repair after 22 days regardless of OA 357 

treatment (Figure 5A), and there was no evidence that the strength (Figure 5F) or density (Figure 358 

6C,D) of repaired shell was impacted by pCO2 in individuals collected after exposure to OA for 359 

10-weeks. However, a significant interaction between pCO2 and the time spent in each OA 360 

treatment was observed for both the strength (force to dislodge) and inorganic content of repaired 361 

shell (Table S1), as well as a trend of more mussels remaining in S2 after 10-weeks in high pCO2 362 

treatments (Figure 5D).  363 

Observed associations between OA and the composition or strength of repaired shell in 364 

this study is complicated by an overall decline in the physiological and reproductive condition of 365 

mussels across all treatments over the course of 10-weeks, along with a significant interaction 366 

between condition index and pCO2. There is substantial evidence that adult mussels can produce 367 

shell under physiologically stressful conditions, and many species persist in upwelling zones 368 

where CO2 rich waters can lead to calcium carbonate saturation states well below 1 [75]. 369 

Subsequent observations of the total calcium carbonate production of mussel beds within these 370 
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regions also suggest that the degree to which OA impacts shell production strongly depends on 371 

habitat food density (particulate organic carbon, POC) [76,77], and pales in comparison to the 372 

effect of warming [42]. In our laboratory experiment, all mussels were fed 5% of their wet body 373 

mass in algae daily, delivered at a concentration of 3,000-10,000 cells ml-1 with peristaltic pumps 374 

at regular intervals. This amount of food was consistent with previous studies in our laboratory 375 

where mussels have maintained and even gained tissue mass over the course of 3 months 376 

(Carrington et al., unpublished dataset). However, the condition of mussels within our experiment, 377 

as denoted by the ratio of grams of dried tissue to shell length cubed, decreased as both a function 378 

of pCO2 treatment (p=0.008) and time (p=0.001) with an interaction that was also significant 379 

(p=0.030, Table S5). As a point of comparison, wild populations of mussels over this same time 380 

period did not experience a significant decrease in either physiology condition or gonad index 381 

(Table S5, Figure S1), making any observed effects of pCO2 on shell repair within our mesocosm 382 

study difficult to ascribe to OA alone. 383 

To our knowledge, this study is the first to investigate the impact of OA on the structure, 384 

composition, and integrity of repaired shell in mytlid mussels away from the shell margin. A 385 

number of studies have investigated the impact of shell repair in gastropods [78-80], and previous 386 

work in mussels has described transcriptomic shifts in mantle gene expression in response to OA 387 

[81,82]. The combination of OA and increased temperature (Li et al., 2015). Hüning et al. (2013) 388 

show that exposure to OA up to 4000 µatm for 8-weeks reduced the expression of genes related 389 

to energy and protein metabolism, as well as greatly depressed the expression of key proteins 390 

that facilitate the calcification process (e.g., chitinase) expression in the inner mantle (central 391 

zone), the region likely responsible for shell repair in drill-based assays such as the one described 392 

here. However, it is worth noting that sustained exposure to OA conditions below a pH of 7.3 (the 393 

most extreme treatment used in this study) is unlikely, even in nearshore environments [8], despite 394 

high frequency excursions in pH observed in estuarine habitats [6,7]. 395 
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Taken together, our results suggest that if OA does have an effect on shell repair in 396 

mussels, it is likely through the induction of energetic constraints on biomineralization [83,84]. 397 

Biomineralization is an energy intensive process [85,86], and the added cost of shell repair 398 

(maintenance) could impose energetic limitations on other physiological processes such as 399 

growth or reproduction [87]. In areas where mussels sustain a high rate of shell damage, it is 400 

possible that the cost associated with shell repair could compound over time, preventing smaller 401 

individuals from quickly surpassing the size range in which larger predators (e.g., sea stars, 402 

crustaceans) can handle them [88]. However, there is growing evidence that, given adequate food 403 

availability, mussels possess mechanisms to reduce the cost of shell repair, such as shell 404 

thickening [89,90] or perpetual shell remodeling [91]. To tease apart these interactions, future work 405 

would benefit from integrating biomechanical, material, and genetic techniques to describe the 406 

shell repair process in different environmental conditions and under different degrees of food 407 

limitation. 408 
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11. Tables and Figures 681 

Table 1. Measured seawater carbonate parameters during OA treatments and their respective 682 

variability (±1 SD). Measurement uncertainties for each parameter were as follows: temperature 683 

(T; 0.63%), salinity (S; 0.33%), pH (0.13%), and total alkalinity (AT; 0.19%). 684 

 685 

pCO2 
target 

T (°C) Salinity pH (total) 
AT 

(µmol*kgSW) 

     

400 15.8 ± 0.1 30.0 ± 0.2 7.95 ± 0.03 2079 ± 7 

700 16.1 ± 0.5 29.9 ± 0.3 7.77 ± 0.02 2083 ± 8 

1000 15.9 ± 0.2 30.2 ± 0.1 7.64 ± 0.02 2080 ± 10 

1600 16.0 ± 0.3 30.4 ± 0.2 7.46 ± 0.02 2086 ± 7 

1900 16.0 ± 0.2 30.0 ± 0.1 7.38 ± 0.06 2080 ± 6 

2200 16.0 ± 0.4 29.8 ± 0.2 7.31 ± 0.03 2078 ± 5 

2500 15.9 ± 0.1 30.4 ± 0.3 7.29 ± 0.03 2090 ± 9 
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Table 2. Calculated seawater parameters over the course of OA treatments and their respective 687 

uncertainties. The total uncertainty (U total) for each calculated parameter is reported as the 688 

combination of propagated measured uncertainties as reported in Table 1 and the variability of 689 

each parameter over the course of each experiment. 690 

   691 

pCO2 
target 

pCO2  
(µatm) 

CO3 

(µmol*kgSW) 
HCO3 

(µmol*kgSW) 
ΩAr ΩCa 

      

400 483 ± 64 110 ± 17 1807 ± 38 1.74 ± 0.26 2.73 ± 0.40 

700 769 ± 100 77 ± 13 1892 ± 31 1.21 ± 0.22 1.90 ± 0.32 

1000 1062 ± 140 58 ± 10 1939 ± 27 0.91 ± 0.16 1.43 ± 0.25 

1600 1652 ± 215 39 ± 7 1986 ± 21 0.62 ± 0.11 0.97 ± 0.18 

1900 2009 ± 372 34 ± 7 2000 ± 22 0.53 ± 0.11 0.82 ± 0.18 

2200 2365 ± 317 28 ± 5 2013 ± 19 0.44 ± 0.08 0.69 ± 0.13 

2500 2458 ± 340 27 ± 7 2016 ± 20 0.43 ± 0.09 0.67 ± 0.14 
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 693 

Figure 1. (A) Predation on mussels (Mytilus edulis) by predatory gastropods (Nucella lapillus; 694 

image credit: Luke Miller). (B) Mussels (M. edulis, n=50 per sample) with evidence of shell repair 695 

over 3 years of monthly field sampling in Rhode Island. (C) Exterior and interior view of a shell 696 

(M. edulis) with a repaired drill hole collected during field sampling within Rhode Island. 697 
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 699 

Figure 2. Time series of shell repair process. (A) Photographs of the interior of damaged mussel 700 

shells showing the four stereotypical repair stages (S1-S4). (B) Proportion of mussels (M. 701 

trossulus, n=25) within laboratory experiments that closed drill holes (reached or exceeded S1) 702 

over 12 days. Proportion of mussels (M. edulis, n=15 per treatment) at each repair stage (C), the 703 

inorganic content of excised repaired shell regions (D), and the force required to dislodge repaired 704 

shell (E), from out-planted populations sampled over seven weeks in the intertidal. Summary of 705 

the inorganic content (F) and force to dislodge (G) repaired shell within each repair stage (pooled 706 

data from M.edulis and M. trossulus, n=282). The relationship between the force and inorganic 707 

content of repaired shell (H) across field and laboratory experiments within both mussel species. 708 
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 709 

710 
Figure 3. Examples of variable response to shell damage during stage 1 (S1). Some mussels 711 

deposited organic matrix neatly within the shell defect (A), while others applied repair patches 712 

over a greater area (B-C). In rare cases, the organic matrix encompassed the entirety of the 713 

valve interior (D, red circle indicates location of shell damage), while others produced matrix 714 

away from the drill hole altogether (E). The frequency distribution of repair patch size during S1 715 

(F). 716 
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 717 

Figure 4. Representative photographs and µCT images of repaired drill holes at each repair stage 718 

(S1-4) sampled from mussels within laboratory experiments (M. trossulus; 400 µatm pCO2). 719 

 720 
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 721 

Figure 5. (A) proportion of mussels (M. trossulus) that produced mineralized shell (reached S3 722 

or S4) in response to shell damage within each OA treatment. (B) Inorganic content of excised 723 

repaired shell from mussels within each OA treatment (C) The force required to dislodge 724 

repaired regions produced in each OA treatment. Proportion of mussels at each repair stage 725 

(D), the inorganic content of repaired regions (E), and force to dislodge repaired regions (F) 726 

after 10 weeks within each OA treatment. Data is from 4-8 mussels per treatment per time point. 727 

Asterisks mark treatments that were statistically different than the 400 µatm control. 728 
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32 
 

 730 

 731 

Figure 6. (A) 3D rendering of a drill hole and deposited shell material constructed from µCT 732 

scan slices. Images represent three perspectives of the same shell repair from a single mussel 733 

(M. trossulus) held within the 400 µatm pCO2 for 10-weeks. (B) Cylindrical volume used for 734 

density analysis; asterisk marks approximate location used for control measurements of 735 

unrepaired shell. The mean (C) and maximum (D) grayscale values within sampled cylinders 736 

after 10-weeks within OA treatments (n=4-8 mussels per treatment). 737 

  738 



33 
 

12. Supplemental Information 739 

Table S1. ANCOVA results comparing the effect of seawater pCO2 and the length of exposure 740 

to treatment conditions (days) on the proportion of mussels (M. trossulus) that produced 741 

mineralized repaired shell (reached S3 or S4) over 10-weeks.  742 

Source df SS F-value P-value 

     

Time 6 340.07 48.01 <0.001 

pCO2 6 6.11 0.86 0.53 

Residuals 36 42.5   

     

 743 

Table S2. ANOVA results comparing the effect of seawater pCO2 and mussel condition 744 

(condition index, CI) on the inorganic content (%) and force required to dislodge repaired shell 745 

material (N) within the endpoint population (10-weeks).  746 

Variable Source df SS F-value P-value 

      

Inorganic 
Content 

pCO2 1 1410 7.211 0.013* 

CI 1 10 0.050 0.825 

Residuals 25 4888   

      

Force pCO2 1 25.5 1.313 0.263 

CI 1 5.7 0.291 0.594 

Residuals 25 485.5   
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Table S3. ANCOVA results comparing the effect of seawater pCO2 and the length of exposure 748 

(days) to treatment conditions on the force required to dislodge repaired shell (N), the inorganic 749 

content of repaired shell (%), the condition index (CI), and gonad index (GI) of mussels over 750 

course of 10-weeks within seven OA treatments. 751 

Variable Source df SS F-value P-value 

      

Force Time 6 25.6 5.28 <0.001* 

pCO2 6 12.4 2.57 0.021* 

Time x pCO2 36 45.7 1.60 0.029* 

Residuals 195 158   

      

Inorganic 
content 

Time 6 20.8 4.59 <0.001* 

pCO2 6 17.5 3.85 0.001* 

Time x pCO2 36 53.3 1.96 0.002* 

Residuals 195 147.3   

      

Repair area Time 6 0.70 0.72 0.638 

pCO2 6 0.78 0.80 0.573 

Residuals 36 37.7   

      

CI Time 6 3.66 × 10-5 7.55 <0.001* 

pCO2 6 1.28 × 10-5 2.65 0.017* 

Time x pCO2 36 2.60 × 10-5 0.89 0.645 

Residuals 194 1.57 × 10-4   

      

GI Time 6 8.94 × 10-2 2.98 0.008* 

pCO2 6 1.47 × 10-2 0.49 0.814 

Time x pCO2 36 0.047 0.98 0.512 

Residuals 194 0.971   
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Table S4. ANCOVA results comparing the effect of seawater pCO2 on the mean and max 752 

grayscale value from µCT scans of endpoint samples (see Figure 6B). 753 

Variable Source df SS F-value P-value 

      

Mean grayscale 
value 

pCO2 6 2.77 0.43 0.85 

 Residuals 23 24.5   

      

Max grayscale value pCO2 6 2.77 2.98 0.56 

 Residuals 23 2.96 × 102   
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Table S5. The results of two-way ANOVA and Tukey HSD comparisons of initial and final (after 755 

10 weeks) condition (condition index, CI) and gonad indices (GI) comparing mussels in OA and 756 

field treatments. 757 

 Source df SS F-value P-value 

      

CI 

Treatment 7 26.63 3.72 0.001* 

Time 1 41.53 40.60 <0.001* 

Treatment × Time   7 16.7 2.33 0.030* 

Residuals 110 112.52   

      

GI 

Treatment 7 0.121 2.73 0.012* 

Time 1 0.006 0.95 0.331 

Treatment × Time   7 0.083 1.88 0.080 

Residuals 107 0.674   

 

 Variable group  Variable group 

      

CI 

field.initial a 

CI 

1600.initial abc 

field.final abc 1600.final abc 

400.initial abc 1900.initial a 

400.final bc 1900.final bc 

700.initial ab 2200.initial ab 

700.final bc 2200.final c 

1000.initial abc 2500.initial abc 

1000.final bc 2500.final abc 
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 759 

 760 

Figure S1. Comparison of the initial and final (after 10 weeks) condition (A) and gonad (B) 761 

indices across OA treatments and field samples.  762 
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 763 

Figure S2. Effect of condition index (CI) and gonad index (CI) on shell repair during OA 764 

laboratory experiments. The CI of mussels universally declined under laboratory conditions 765 

regardless of OA treatment (A), with no observed effect of CI on the force required to dislodge 766 

repaired regions (B) or their inorganic content (C). Similarly, the GI of mussels also declined 767 

while housed in the laboratory (D) but did not significantly affect the force to dislodge (E) or 768 

inorganic content (F) or repaired shell region. 769 


