
Guidelines for the validation of machine learning pre-
dictions of species interactions

Timothée Poisot 1,2

1 Université de Montréal; 2 Québec Centre for Biodiversity Sciences

Correspondance to:
Timothée Poisot — timothee.poisot@umontreal.ca

Keywords:
species interaction networks

binary classifiers
machine learning

regression
supervised learning

1. The prediction of species interactions is gainingmomentum as away to circumvent limitations in
data volume. Yet, ecological networks are challenging to predict because they are typically small
and sparse. Dealing with extreme class imbalance is a challenge for most binary classifiers, and
there are currently no guidelines as to how predictive models can be trained for this specific
problem.

2. Using simple mathematical arguments and numerical experiments in which a variety of classi-
fiers (for supervised learning) are trained on simulated networks, we develop a series of guide-
lines related to the choice of measures to use for model selection, and the degree of unbiasing to
apply to the training dataset.

3. Neither classifier accuracy nor the ROC-AUC are informative measures for the performance of
interaction prediction. PR-AUC is a fairer assessment of performance. In some cases, even stan-
dard measures can lead to selecting a more biased classifier because the effect of connectance
is strong. The amount of correction to apply to the training dataset depends on network con-
nectance, on the measure to be optimized, and only weakly on the classifier.

4. These results reveal that training machines to predict networks is a challenging task, and that
in virtually all cases, the composition of the training set needs to be experimented on before
performing the actual training. We discuss these consequences in the context of the low volume
of data.

The accuracy paradox is the basis of a number of problems in statistical education, and lies in the fact
that, when the desired class is rare, a model that gets less and less performant will become more and
more accurate and useful, simply by (i) underpredicting true positive cases and (ii) over-predicting false
negatives. In other words, accuracy, defined as the proportion of predictions that are correct, is often
useless as a measure of how predictive a model is. This is particularly true in ecological networks; the
desired class (presence of an interaction between two species) is the one we care most about, and by
far the least commmon. Herein lies the core challenge of predicting species interactions: the extreme
imbalance between classes makes the training of predictive models difficult, and their validation even
more so as we do not reliably know which negatives are true. The connectance of empirical networks
is usually well under 20%, with larger networks having a lower connectance (MacDonald et al., 2020).
Recent contributions (Becker et al., 2021; Strydom et al., 2021) highlight that predictive models of in-
teractions can likely be improved by adding information (in the form of, e.g. traits), but that we do not
have robust guidelines as to how the predictive ability of these models should be evaluated, nor about
how the models should be trained. Here, by relying on simple derivations and a series of simulations,
we formulate a number of such guidelines, specifically for the case of binary classifiers derived from
thresholded values.
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Binary classifiers are usually assessed by measuring properties of their confusion matrix, i.e. the con-
tingency table reporting true/false positive/negative hits. A confusion matrix is laid out as

(tp fp
fn tn) ,

wherein tp is the number of interactions predicted as positive, tn is the number of non-interactions
predicted as negative, fp is the number of non-interactions predicted as positive, and fn is the number
of interactions predicted as negative. Almost all measures based on the confusion matrix express rates
of error or success as proportions, and therefore the values of these components matter in a relativeway.
At a coarse scale, a classifier is accurate when the trace of the matrix divided by the sum of the matrix
is close to 1, with other measures focusing on different ways in which the classifer is wrong.

There is an immense diversity of measures to evaluate the performance of classification tasks (Ferri et
al., 2009). Here we will focus on five of them with high relevance for imbalanced learning (He & Ma,
2013); three thresholdmetrics (𝜅, informedness, andMMC, theMatthews Correlation Coefficient), and
two ranking metrics (the areas under the Receiving Operator Characteristic and the Precision-Recall
curves; resp. ROC-ACU and PR-AUC). The 𝜅 measure of agreement (Landis & Koch, 1977) establishes
the extent to which two observers (here the data and the prediction) agree, and is measured as

2
𝑡𝑝 × 𝑡𝑛 − 𝑓𝑛 × 𝑓𝑝

(𝑡𝑝 + 𝑓𝑝) × (𝑓𝑝 + 𝑡𝑛) + (𝑡𝑛 + 𝑓𝑝) × (𝑡𝑛 + 𝑓𝑛)
.

Informedness (Youden, 1950) (also known as bookmaker informedness or the True Skill Statistic) is
TPR + TNR − 1, where TPR = 𝑡𝑝∕(𝑡𝑝 + 𝑓𝑛) and TNR = 𝑡𝑛∕(𝑡𝑛 + 𝑓𝑝); informedness can be used to
find the optimal cutpoint in thresholding analyses (Schisterman et al., 2005). The MCC is defined as

𝑡𝑝 × 𝑡𝑛 − 𝑓𝑛 × 𝑓𝑝
√
(𝑡𝑝 + 𝑓𝑝) × (𝑡𝑝 + 𝑓𝑛) × (𝑡𝑛 + 𝑓𝑝) × (𝑡𝑛 + 𝑓𝑛)

.

Finally, 𝐹1 is the harmonic mean of precision (the chance that a positive even was correctly classified)
and sensitivity (the ability to correctly classify positive events), and is defined as

2
𝑡𝑝

2 × 𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛
.

A lot of binary classifiers are built by using a regressor (whose task is to guess the value of the interac-
tion, and can therefore return a value considered to be a pseudo-probability); in this case, the optimal
value below which predictions are assumed to be negative (i.e. the interaction does not exist) can be
determined by picking a threshold maximizing some value on the ROC curve or the PR curve. The
area under these curves (ROC-AUC and PR-AUC henceforth) give ideas on the overall goodness of the
classifier. Saito & Rehmsmeier (2015) established that the ROC-AUC is biased towards over-estimating
performance for imbalanced data; on the contrary, the PR-AUC is able to identify classifiers that are
less able to detect positive interactions correctly, with the additional advantage of having a baseline
value equal to prevalence. Therefore, it is important to assess whether these two measures return dif-
ferent results when applied to ecological network prediction. The ROC curve is defined by the false
positive rate on the 𝑥 axis, and the true positive rate on the 𝑦 axis, and the PR curve is defined by the
true positive rate on the 𝑥 axis, and the positive predictive value on the 𝑦 axis. By comparison with the
previous paragraph, it is obvious that 𝐹1 has ties to the PR curve (being close to the expected PR-AUC),
and that informedness has ties to the ROC curve (whereby the threshold maximizing informedness is
also the point of maximal inflection on the ROC curve). One important difference between ROC and
PR is that the later does not prominently account for the size of the true negative compartments: in
short, it is more sensitive to the correct positive predictions. In a context of strong imbalance, PR-AUC
is therefore a more stringent test of model performance.

The same approach is used to evaluate e.g. species distribution models (SDMs). Indeed, the training
and evaluation of SDMs as binary classifiers suffers from the same issue of low prevalence; this is not
surprising that the two fields (SDMs and network predictions) would share methods and their attached
conceptual issues, as they suffer from data limitations, class imbalance, and the conversion of quanti-
tative prediction into a binary classification. In previous work, Allouche et al. (2006) suggested that 𝜅
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was a better test of model performance than the True Skill Statistic (TSS; which we refer to as Youden’s
informedness); these conclusions were later criticized by Somodi et al. (2017), who emphasized that
informedness’ relationship to prevalence depends on assumptions about bias in the model, and there-
fore recommend the use of 𝜅 as a validation of classification performance. Although this work offers
recommendations about the comparison of models, it doesn’t establishes baselines or good practices for
training on imbalanced ecological data. Within the context of networks, there are three specific issues
that need to be adressed. First, what values of performance measures are we expecting for a classifier
that has poor performance? This is particularly important as it can evaluatewhether low prevalence can
lull us into a false sense of predictive accuracy. Second, independently of the question of model evalu-
ation, is low prevalence an issue for training, and can we remedy it? Finally, because the low amount
of data on interaction makes a lot of imbalance correction methods (see e.g. Branco et al., 2015) hard to
apply, which indicators can be optimized with the least amount of positive interaction data?

In addition to the literature on SDMs, most of the research on machine learning application to life
sciences is focused on genomics (which has very specific challenges, see a recent discussion byWhalen
et al., 2021); this sub-field has generated largely different recommendations. Chicco & Jurman (2020)
suggest using Matthews correlation coefficient (MCC) over 𝐹1, as a protection against over-inflation
of predicted results; Delgado & Tibau (2019) advocate against the use of Cohen’s 𝜅, again in favor of
MCC, as the relative nature of 𝜅means that a worse classifier can be picked over a better one; similarly,
Boughorbel et al. (2017) recommend MCC over other measures of performance for imbalanced data,
as it has more desirable statistical properties. More recently, Chicco et al. (2021) temper the apparent
supremacy of the MCC, by suggesting it should be replaced by Youden’s informedness (also known
as 𝐽, bookmaker’s accuracy, and the True-Skill Statistic) when the imbalance in the dataset may not
be representative (Jordano, 2016a, which is the case as networks are under-sampled; 2016b), when
classifiers need to be compared across different datasets (for examplewhen predicting a system in space,
where undersampling varies locally; McLeod et al., 2021), and when comparing the results to a no-skill
(baseline) classifier is important. As these conditions are likely to be met with network data, there is a
need to evaluate which measures of classification accuracy respond in a desirable way.

We establish that due to the low prevalence of interactions, even poor classifiers applied to food web
data will reach a high accuracy; this is because the measure is dominated by the accidentally correct
predictions of negatives. On simulated confusion matrices with ranges of imbalance that are credible
for ecological networks, MCC had the most desirable behavior, and informedness is a linear measure of
classifier skill. By performing simulations with four models and an ensemble, we show that informed-
ness and ROC-AUC are consistently high on network data, and that MCC and PR-AUC are more ac-
curate measures of the effective performance of the classifier. Finally, by measuring the structure of
predicted networks, we highlight an interesting paradox: the models with the best performance mea-
sures are not the models with the closest reconstructed network structure. We discuss these results in
the context of establishing guidelines for the prediction of ecological interactions.

1

Baseline values

In this section, we will assume a network of connectance 𝜌, i.e. having 𝜌𝑆2 interactions (where 𝑆 is the
species richness), and (1 − 𝜌)𝑆2 non-interactions. Therefore, the vector describing the true state of the
network (assumed to be an unweighted, directed network) is a column vector 𝐨𝑇 = [𝜌, (1 − 𝜌)] (we can
safely drop the 𝑆2 terms, as we will work on the confusion matrix, which ends up expressing relative
values). Wewill apply skill and bias to this matrix, andmeasure how a selection of performancemetrics
respond to changes in these values, in order to assess their suitability for model evaluation.

1.1. Confusion matrix with skill and bias In order to write the values of the confusion matrix for
a hypothetical classifier, we need to define two characteristics: its skill, and its bias. Skill, here, refers
to the propensity of the classifier to get the correct answer (i.e. to assign interactions where they are,
and to not assign them where they are not). A no-skill classifier guesses at random, i.e. it will guess
interactions with a probability 𝜌. The predictions of a no-skill classifier can be expressed as a row vector
𝐩 = [𝜌(1−𝜌)]. The confusionmatrix𝐌 for a no-skill classifier is given by the element-wise (Hadamard,
outer) product of these vectors 𝐨⊙ 𝐩, i.e.
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𝐌 = ( 𝜌2 𝜌(1 − 𝜌)
(1 − 𝜌)𝜌 (1 − 𝜌)2) .

In order to regulate the skill of this classifier, we can define a skill matrix 𝐒with diagonal elements equal
to 𝑠, and off-diagonal elements equal to (1 − 𝑠), and re-express the skill-adjusted confusion matrix as
𝐌⊙ 𝐒, i.e.

( 𝜌2 𝜌(1 − 𝜌)
(1 − 𝜌)𝜌 (1 − 𝜌)2)⊙ ( 𝑠 (1 − 𝑠)

(1 − 𝑠) 𝑠 ) .

Note that when 𝑠 = 0, Tr(𝐌) = 0 (the classifier is alwayswrong), when 𝑠 = 0.5, the classifier is no-skill
and guesses at random, and when 𝑠 = 1, the classifier is perfect.

The second element we can adjust in this hypothetical classifier is its bias, specifically its tendency to
over-predict interactions. Like above, we can do so by defining a bias matrix 𝐁, where interactions are
over-predicted with probability 𝑏, and express the final classifier confusion matrix as𝐌⊙ 𝐒⊙ 𝐁, i.e.

( 𝜌2 𝜌(1 − 𝜌)
(1 − 𝜌)𝜌 (1 − 𝜌)2)⊙ ( 𝑠 (1 − 𝑠)

(1 − 𝑠) 𝑠 )⊙ ( 𝑏 𝑏
(1 − 𝑏) (1 − 𝑏)) .

The final expression for the confusion matrix in which we can regulate the skill and the bias is

𝐂 = ( 𝑠 × 𝑏 × 𝜌2 (1 − 𝑠) × 𝑏 × 𝜌(1 − 𝜌)
(1 − 𝑠) × (1 − 𝑏) × (1 − 𝜌)𝜌 𝑠 × (1 − 𝑏) × (1 − 𝜌)2) .

In all further simulations, the confusion matrix 𝐂 is transformed so that it sums to 1.

1.2. What are the baseline values of performance measures? In this section, we will change the
values of 𝑏, 𝑠, and 𝜌, and report how the main measures discussed in the introduction (MCC, 𝐹1, 𝜅, and
informedness) are responding to issueswith the classifier. Beforewe do so, it is important to explainwhy
we will not focus on accuracy too much. Accuracy is the number of correct predictions (Tr(𝐂)) divided
by the sum of the confusionmatrix. For a no-skill, no-bias classifier, accuracy is equal to 𝜌2+(1−𝜌)2; for
𝜌 = 0.05, this is ≈ 0.90, and for 𝜌 = 0.01, this is equal to ≈ 0.98. In other words, the values of accuracy
are expected to be so high that they are not really informatived (this is simply explained by the fact that
for 𝜌 small, 𝜌2 ≪ (1 − 𝜌)2). More concerning is the fact that introducing bias changes the response
of accuracy in unexpected ways. Assuming a no-skill classifier, the numerator of accuracy becomes
𝑏𝜌2 + (1 − 𝑏)(1 − 𝜌)2, which increases when 𝑏 is low, which specifically means that at equal skill, a
classifier that under-predicts interactions will have higher accuracy than an un-biased classifier. These
issues are absent from balanced accuracy, but should nevertheless lead us to not report accuracy as the
primary measure of network prediction success; moving forward, we will focus on other measures.

In order to examine howMCC, 𝐹1, 𝜅, and informedness change w.r.t. the imbalance, skill, and bias, we
performed a grid exploration of the values of logit(𝑠) and logit(𝑏) linearly from −10 to 10, of 𝜌 linearly
in ]0, 0.5], which is within the range of usually observed connectance values for empirical food webs.
Note that at this point, there is no food web model to speak of; rather, the confusion matrix we discuss
can be obtained for any classification task. Based on the previous discussion, the desirable properties
for a measure of classifier success should be: an increase with classifier skill, especially at low bias;
a hump-shaped response to bias, especially at high skill, and ideally center around logit(𝑏) = 0; an
increase with prevalence up until equiprevalence is reached.

In fig. 1, we show that none of the four measures satisfy all the considerations at once: 𝐹1 increases
with skill, and increases monotonously with bias; this is because 𝐹1 does not account for true negatives,
and the increase in positive detection masks the over-prediction of interactions. Informedness varies
with skill, reaching 0 for a no-skill classifier, but is entirely unsensitive to bias. Both MCC and 𝜅 have
the same behavior, whereby they increase with skill. 𝜅 peaks at increasing values of biass for increasing
skill, i.e. is likely to lead to the selection of a classifier that over-predicts interactions. By contract, MCC
peaks at the same value, regardless of skill, but this value is not logit(𝑏) = 0: unless at very high classifier
skill, MCC risks leading to a model that over-predicts interactions. In fig. 2, we show that all measures
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Figure 1 Consequences of changing the clas-
sifier skills (𝑠) and bias (𝑠) for a connectance
𝜌 = 0.15, on accuracy, 𝐹1, postive predictive
value, and 𝜅. Accuracy increases with skill,
but also increases when the bias tends towards
estimating fewer interactions. The 𝐹1 score
increases with skill but also increases when
the bias tends towards estimating more inter-
actions; PPV behaves in the same way. Inter-
estingly, 𝜅 responds as expected to skill (being
negative whenever 𝑠 < 0.5), and peaks for val-
ues of 𝑏 ≈ 0.5; nevertheless, the value of bias
for which 𝜅 is maximized in not 𝑏 = 0.5, but
instead increases with classifier skill. In other
words, at equal skill, maximizing 𝜅 would lead
to select amore biased classifier.

except 𝐹1 give a value of 0 for a no-skill classifier, and are forced towars their correct maximal value
when skill changes (i.e. a more connected networks will have higher values for a skilled classifierd, and
lower values for a classifier making mostly mistakes).

These two analyses point to the following recommendations: MCC is indeed more appropriate than
𝜅, as although sensitive to bias, it is sensitive in a consistent way. Informedness is appropriate at dis-
criminating between different skills, but confounded by bias. As both of these measures bring valuable
information on the model behavior, we will retain them for future analyses. 𝐹1 is increasing with bias,
and should not be prioritized to evalue the performance of the model. The discussion of sensitivity to
bias should come with a domain-specific caveat: although it is likely that interactions documented in
ecological networks are correct, a lot of non-interactions are simply unobserved; as predictive models
are used for data-inflation (i.e. the prediction of new interactions), it is not necessarily a bad thing in
practice to select models that predict more interactions than the original dataset, because the original
dataset misses some interactions. Furthermore, the weight of positive interactions could be adjusted
if some information about the extent of undersampling exists (e.g. Branco et al., 2015). In a recent
large-scale imputation of interactions in the mammal-virus networks, Poisot et al. (2021) for example
estimated that 93% of interactions are yet to be documented.

2

Numerical experiments on training strategy

In the following section, we will generate random bipartite networks (this works without loss of gen-
erality on unipartite networks), and train four binary classifiers (as well as an ensemble model using
the sum of ranged outputs from the component models) on 30% of the interaction data. Networks are
generated by picking a random infectiousness trait 𝑣𝑖 for 100 species (from a 𝐵(6, 8) distribution), and
a resistance trait ℎ𝑗 for 100 species (from a 𝐵(2, 8) distribution). There is an interaction between 𝑖 and
𝑗 when 𝑣𝑖 − 𝜉∕2 ≤ ℎ𝑗 ≤ 𝑣𝑖 + 𝜉∕2, where 𝜉 is a constant regulating the connectance of the network
(there is an almost 1:1 relationship between 𝜉 and connectance), and varies uniformly in [0.05, 0.35].
This model gives fully interval networks that are close analogues to the bacteria–phage model of Weitz
et al. (2005), with both a modular structure and a non-uniform degree distribution. This model is easy
to learn: when trained with features [𝑣𝑖 , ℎ𝑗 , abs(𝑣𝑖 , ℎ𝑗)]𝑇 to predict the interactions between 𝑖 and 𝑗, all
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Figure 2 As in fig. 1, consequences of chang-
ing connectance for different levels of clas-
sifier skill, assuming no classifier bias. In-
formedness, 𝜅, and MCC do increase with con-
nectance, but onlywhen the classifier is not no-
skill; by way of contrast, a more connected net-
work will give a higher 𝐹1 value even with a
no-skill classifier.

four models presented below were able to reach almost perfect predictions all the time (data not pre-
sented here) – this is in part because the rule is fixed for all interactions. In order to make the problem
more difficult to solve, we use [𝑣𝑖 , ℎ𝑗] as a feature vector (i.e. the traits on which themodels are trained),
and therefore the models will have to uncover that the rule for interaction is abs(𝑣𝑖 , ℎ𝑗) ≤ 𝜉.

The training sample is composed of 30% of the 104 possible entries in the network, i.e. 𝑛 = 3000. Out
of these interactions, we pick a proportion 𝜈 (the training set bias) to be positive, so that the training set
has 𝜈𝑛 interactions, and (1−𝜈)𝑛 non-interactions. We vary 𝜈 uniformly in ]0, 1[. This allows to evaluate
how the measures of binary classification performance respond to artificially rebalanced dataset for a
given network connectance. The rest of the dataset (𝑛 = 7000 pairs of species) is used as a testing set,
on which all furher measures are calculated. Note that although the training set is balanced, the testing
set is not, and retains (part of) the imbalance of the original data.

The dataset used for numerical experiments is composed of 64000 such (𝜉, 𝜈) pairs, on which four ma-
chines are trained: a decision tree regressor, a boosted regression tree, a ridge regressor, and a random
forest regressor. All models were taken from the MLJ.jl package (Blaom et al., 2020; Blaom & Vollmer,
2020) in Julia 1.7 (Bezanson et al., 2017). All machines use the default parameterization; this is an
obvious deviation from best practices, as the hyperparameters of any machine require training before
its application on a real dataset. As we use 64000 such datasets, this would require 256000 unique in-
stances of tweaking the hyperparameters, which is not realistic. Therefore, we assume that the default
parameterizations are comparable across networks. All machines return a quantitative prediction, usu-
ally (but not necessarily) in [0, 1], which is proportional (but not necessarily linearly) to the probability
of an interaction between 𝑖 and 𝑗.

In order to pick the best adjacency matrix for a given trained machine, we performed a thresholding
approach using 500 steps on predictions from the testing set, and picking the threshold that maximized
Youden’s informedness, which is usually the optimized target for imbalanced classification. During
the thresholding step, we measured the area under the receiving-operator characteristic (ROC-AUC)
and precision-recall (PR-AUC) curves, as measures of overall performance over the range of returned
values. We report the ROC-AUC and PR-AUC, as well as a suite of other measures as introduced in the
next section, for the best threshold. The ensemble model was generated by summing the predictions
of all component models on the testing set (ranged in [0, 1]), then put through the same thresholding
process. The complete code to run the simulations is given as an appendix; running the final simulation
required 4.8 core days (approx. 117 hours).
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Figure 3 Response of MCC and Informed-
ness to changes in the training set bias for
a fixed connectance (rows). Both of these
values approach 1 for a good model. In-
formedness is consistently high, and by con-
trast, MCC increases with additional training
set bias. Across all models, training on a more
connected network is easier.

After the simulations were completed, we removed all runs (i.e. pairs of 𝜉 and 𝜈) for which at least
one of the following conditions was met: the accuracy was 0, the true positive or true negative rates
were 0, the connectance was larger than 0.25. This removes both the obviously failed model runs, and
the networks that are more densely connected compared to the connectance of empirical food webs
(and are therefore less difficult to predict, being less imbalanced; preliminary analyses of data with a
connectance larger than 3 revealed that all machines reached consistently high performance).

2.1. Effect of training set bias on performance In fig. 3, we present the response of MCC and in-
formedness to (i) five levels of network connectance and (ii) a gradient of training set bias, for the four
component models as well as the ensemble. All models reached a higher performance on more con-
nected networks, and using more biased training sets (with the exception of ridge regression, whose in-
formedness decreased in performance with training set bias). In all cases, informedness was extremely
high, which is an expected consequence of the fact that this is the value we optimized to determine the
cutoff. MCC increased with training set bias, although this increase became less steep with increasing
connectance. Interestingly, the ensemble almost always outclassed its component models. In a few
cases, both MCC and informedness stared decreasing when the training set bias got too close to one,
which suggests that it is possible to over-correct the imbalance.

In fig. 4, we present the same information as fig. 3, this time using ROC-AUC and PR-AUC. ROC-AUC
is always high, and does not vary with training set bias. On the other hand, PR-AUC shows very strong
responses, increasing with training set bias. It is notable here that two classifiers that seemed to be
performing well (Decision Tree and Random Forest) based on their MCC are not able to reach a high
PR-AUC even at higher connectances. As in fig. 3, the ensemble outperforms its component models.

Based on the results presented in fig. 3 and fig. 4, it seems that informedness and ROC-AUC are not
necessarily able to discriminate between good and bad classifiers (although this resultmay be an artifact
for informedness, as it has been optimized when thresholding). On the other hand, MCC and PR-AUC
show a strong response to training set bias, and may therefore be more useful at model comparison.

2.2. Required amount of positives to get the best performance The previous results revealed that
the measure of classification performance responds both to the bias in the training set and to the con-
nectance of the network; from a practical point of view, assembling a training set requires to withold
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Figure 4 Response of ROC-AUC and PR-
AUC to changes in the training set bias for a
fixed connectance (rows). ROC-AUC is con-
sistently high, and therefore not properly able
to separate good from poor classifiers. On the
other hand, PR-AUC responds to changes in
the training set. As in fig. 3, training on more
connected networks is easier.

positive information, which in ecological networks are very scarce (and typically more valuable than
negatives, on which there is a doubt). For this reason, across all values of connectance, we measured
the training set bias that maximized a series of performance measures. When this value is high, the
training set needs to skew more positive in order to get a performant model; when this value is about
0.5, the training set needs to be artificially balanced to optimize the model performance. These results
are presented in fig. 5.

The more “optimistic” measures (ROC-AUC and informedness) required a biasing of the dataset from
about 0.4 to 0.75 to be maximized, with the amount of bias required decreasing only slightly with the
connectance of the original network. MCC and PR-AUC required values of training set bias from 0.75
to almost 1 to be optimized, which is in line with the results of the previous section, i.e. they are more
stringent tests of model performance. These results suggest that learning from a dataset with very low
connectance can be a different task than for more connected networks: it becomes increasingly impor-
tant to caputre the mechanisms that make an interaction exist, and therefore having a slightly more
biased training dataset might be beneficial. As connectance increases, the need for biased training sets
is less prominent, as learning the rules for which interactions do not exist starts gaining importance.

When trained at their optimal training set bias, connectance still had a significant impact on the per-
formance of some machines fig. 6. Notably, Decision Tree, Random Forest, and Ridge Regression had
low values of PR-AUC. In all cases, the Boosted Regression Tree was reaching very good predictions (es-
epcially for connectances larger than 0.1), and the ensemble was almost always scoring perfectly. This
suggests that all the models are biased in different ways, and that the averaging in the ensemble is able
to correct these biases. We do not expect this last result to have any generality, and provide a discussion
of a recent exemple in which the ensemble was performing worse than its components models.

3

Do better classification accuracy result in more realistic networks?

In this last section, we generate a network using the same model as before, with 𝑆1, 𝑆2 = 50, 80 species,
a connectance of ≈ 0.16 (𝜉 = 0.19), and a training set bias of 0.7. The prediction made on the complete
dataset is presented in fig. 7. Visualizing the results this way highlights the importance of exploratory
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Figure 5 Value of the optimal training set
bias for the different models and measures
evaluated here, over a range of connectances.
Informedness was reliably maximized for bal-
anced training sets, and kept this behavior
across models. For other measures, larger con-
nectances in the true network allowed lower
biases in the training set. In a large number
of cases, “over-correcting” by having training
sets withmore than half instances representing
interactions would maximize the values of the
model performance measures.

Figure 6 When trained on their optimally bi-
ased training set, most models were able to
maximize their performance; this is not true for
decision tree, which had a very low PR-AUC,
and to some extent for ridge regression who
had a slow increasewith network connectance.
The ensemble had a consistently high perfor-
mance despite incorporating poor models.
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Figure 7 Visualisation of the models predic-
tions for one instance of a network predic-
tion problem (shown in the “Dataset” panel).
This figure reveals how inspecting the details of
the prediction is important: indeed, although
the performance measures hint at the fact that
ridge regression is mediocre, this figure reveals
that it is making predictions that correspond to
a network with an entirely different topology
(namely, nested as opposed to diagonal).

data analysis: whereas all models return a network with interactions laying mostly on the diagonal (as
expected), the Ridge Regression is quite obviously biased. Despite this, we can see that the ensemble is
close to the initial dataset.

The trained models were then thresholded (again by optimising informedness), and their predictions
transformed back into networks for analysis; specifically, we measured the connectance, nestedness
(REF), and modularity (REF). This process was repeated 250 times, and the results are presented in
tbl. 1. The random forest model is an interesting instance here: it produces the network that looks
the most like the original dataset, despite having a very low PR-AUC, suggesting it hits high recall at
the cost of low precision. Although the ensemble was able to reach a very high PR-AUC (and a very
high ROC-AUC), this did not necessarily translate into more accurate reconstructions of the structure
of the network. This result bears elaborating. Measures ofmodel performance capture howmuch of the
interactions and non-interactions are correctly identified. As long as these predictions are not perfect,
some interactions will be predicted at the “wrong” position in the network; these measures cannot
describe the structural effect of these mistakes. On the other hand, measures of network structure can
have the same value with interactions that fall at drastically different positions; this is in part because
a lot of these measures covary with connectance, and in part because as long as these values are not
0 or their respective maximum, there is a large number of network configurations that can have the
same value. That ROC-AUC is consistently larger than PR-AUCmay be a case of this measure masking
models that are not, individually, strong predictors (Jeni et al., 2013).

Table 1 Values of four performance metrics, and three network structure metrics, for 250 independent predic-
tions similar to the ones presented in fig. 7. The values in bold indicate the best value for each column (including
ties). Because the values have been rounded, values of 1.0 for the ROC-AUC column indicate an average ≥ 0.99.

Model MCC Inf. ROC-AUC PR-AUC Conn. 𝜂 𝑄

Decision tree 0.85 0.92 0.97 0.12 0.21 0.76 0.31
BRT 0.90 0.90 0.98 0.86 0.23 0.82 0.27

Random Forest 0.90 0.96 1.00 0.27 0.20 0.72 0.32
Ridge Regression 0.80 0.91 0.95 0.58 0.24 1.0 0.18

Ensemble 0.88 0.94 1.00 0.96 0.20 0.75 0.31
Data 0.18 0.66 0.34
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4

Guidelines for the assesment of network predictive models

The results presented here highlight an interesting paradox: although the Random Forest was ulti-
mately able to get a correct estimate of network structure tbl. 1, it ultimately remains a poor classifier,
as evidenced by its low PR-AUC. This suggests that the goal of predicting interactions and predicting
networksmay not be solvable in the same way – of course a perfect classifier of interactions wouldmake
a perfect network prediction; but even the best scoring predictor of interactions (the ensemble model)
had not necessarily the best prediction of network structure. The tasks of predicting networks structure
and of predicting interactions within networks are essentially two different ones. For some applications
(.e.g. comparison of network structure across gradients), one may care more about a robust estimate of
the structure, at the cost at putting some interactions at the wrong place. For other applications (e.g.
identifying pairs of interacting species), one may conversely care more about getting as many pairs
right, even though the mistakes accumulate in the form of a slightly worse estimate of network struc-
ture. How these two approaches can be reconciled is undoubtedly a task for further research. Despite
this apparent tension at the heart of the predictive exercise, we can use the results presented here to
suggest a number of guidelines.

First, because we should have more trust in reported interactions than in reported absences of inter-
actions, we can draw on previous literature to recommend informedness as a measure to decide on a
threshold (Chicco et al., 2021); this being said, because informedness is insensitive to bias, the model
performance is better evaluated through the use of MCC fig. 3. Because 𝐹1 is monotonously sensitive
to classifier bias fig. 1 and network connectance fig. 2, MCC should be prefered as a measure of model
evaluation.

Second, because the PR-AUC responds more to network connectance fig. 6 and training set imbalance
fig. 4, it should be used as a measure of model performance over the ROC-AUC. This is not to say
that ROC-AUC should be discarded (in fact, a low ROC-AUC is a sign of an issue with the model),
but that its interpretation should be guided by the PR-AUC value. Specifically, a high ROC-AUC is not
informative, as it can be associated to a low PR-AUC (see e.g. RandomForest in tbl. 1) This again echoes
recommendations from other fields (Jeni et al., 2013; Saito & Rehmsmeier, 2015).

Thirdly, regardless of network connectance, maximizing informedness required a training set bias of
about 0.5, and maximizing the MCC required a training set bias of 0.7 and more. This has an important
consequence in ecological networks, for which the pool of positive cases (interactions) to draw from is
typically small: the most parsimonious measure (i.e. the one requiring to discard the least amount of
information to train the model) will give the best validation potential, and is probably the informedness
(maximizing informedness is the generally accepted default for imbalanced classification; Schisterman
et al., 2005).

Finally, it is noteworthy that the ensemblemodel was systematically better than the componentmodels;
evenwhen themodelswere individually far formperfect, the ensemblewas able to leverage the different
biases expressed by the models to make an overall more accurate prediction. We do not expect that
ensembles will always be better than single models. In a recent multi-model comparison, Becker et
al. (2021) found that the ensemble was not the best model. There is no general conclusion to draw
from this besides reinforcing the need to be pragmatic about which models should be included in the
ensemble, or whether to use an ensemble at all. In a sense, the surprising peformance of the ensemble
model should form the basis of the last recommendation: optimal training set bias and its interaction
with connectance and binary classifier is, in a sense, an hyperparameter that should be assessed. The
distribution of results in fig. 5 and fig. 6 show that there are variations around the trend; furthermore,
networks with different structures than the one we simulated here may respond in different ways.
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