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1. The prediction of species interactions is gainingmomentum as away to circumvent limitations in
data volume. Yet, ecological networks are challenging to predict because they are typically small
and sparse. Dealing with extreme class imbalance is a challenge for most binary classifiers, and
there are currently no guidelines as to how predictive models can be trained for this specific
problem.

2. Using simple mathematical arguments and numerical experiments in which a variety of classi-
fiers (for supervised learning) are trained on simulated networks, we develop a series of guide-
lines related to the choice of measures to use for model selection, and the degree of unbiasing to
apply to the training dataset.

3. Neither classifier accuracy nor the ROC-AUC are informative measures for the performance of
interaction prediction. PR-AUC is a fairer assessment of performance. In some cases, even stan-
dard measures can lead to selecting a more biased classifier because the effect of connectance
is strong. The amount of correction to apply to the training dataset depends on network con-
nectance, on the measure to be optimized, and only weakly on the classifier.

4. These results reveal that training machines to predict networks is a challenging task, and that in
virtually all cases, the composition of the training set needs to be fine-tuned before performing
the actual training. We discuss these consequences in the context of the low volume of data.

Ecological networks are a backbone for key ecological and evolutionary processes; yet enumerating all
of the interactions between 𝑆 species is a daunting task, as it scales with 𝑆2, i.e. the squared species
richness (Martinez, 1992). Recent contributions to the field of ecological network prediction (Becker et
al., 2022; Pichler et al., 2020; Strydom et al., 2021) highlight that although interactions can be predicted
by adding ecologically relevant information (in the form of, e.g. traits), we do not have robust guidelines
as to how the predictive ability of these models should be evaluated, nor about how the models should
be trained. Here, by relying on simple derivations and a series of simulations, we formulate a num-
ber of such guidelines, specifically for the case of binary classifiers derived from thresholded values.
Specifically, we conduct an investigation of the models in terms of their skill (ability to make the right
prediction), bias (trends towards systematically over-predicting one class), class imbalance (the relative
number of cases representing interactions), and show how these effects interact. We conclude on the
fact that models with the best interaction-scale predictive score do not necessarily result in the most
accurate representation of the network.

The prediction of ecological interactions shares conceptual and methodological issues with two fields
in biology: species distribution models (SDMs), and genomics. SDMs suffers from issues affecting in-
teractions prediction, namely low prevalence (due to sparsity of observations/interactions) and data
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aggregation (due to bias in sampling some locations/species). In previous work, Allouche et al. (2006)
suggested that 𝜅 was a better test of model performance than the True Skill Statistic (TSS; which we
refer to as Youden’s informedness); these conclusions were later criticized by Somodi et al. (2017), who
emphasized that informedness’ is affected both by prevalence and bias. Although this work offers rec-
ommendations about the comparison of models, it doesn’t establishes baselines or good practices for
training on imbalanced ecological data, or ways to remedy the imbalance. Steen et al. (2021) show that,
when applying spatial thinning (a process that has no analogue in networks), the best approach to train
ML-based SDMs varies according to the balancing of the dataset, and the evaluation measures used.
This suggests that there is no single “recipe” that is guaranteed to give the best model. By contrast to
networks, SDMs have the advantage of being able to both thin datasets to remove some of the sampling
bias (e.g. Inman et al., 2021), but also to create pseudo-absences to inflate the number of supposed
negatives in the dataset (e.g. Iturbide et al., 2015).

An immense body of research on machine learning application to life sciences is focused on genomics
(which has very specific challenges, see a recent discussion by Whalen et al., 2021); this sub-field has
generated recommendations that do not necessarily match the current best-practices for SDMs, and
therefore hint at the importance of domain-specific guidelines. Chicco & Jurman (2020) suggest us-
ing Matthews correlation coefficient (MCC) over 𝐹1, as a protection against over-inflation of predicted
results; Delgado & Tibau (2019) advocate against the use of Cohen’s 𝜅, again in favor of MCC, as the
relative nature of 𝜅means that a worse classifier can be picked over a better one; similarly, Boughorbel
et al. (2017) recommendMCC over other measures of performance for imbalanced data, as it has more
desirable statistical properties. More recently, Chicco et al. (2021) temper the apparent supremacy of
the MCC, by suggesting it should be replaced by Youden’s informedness (also known as 𝐽, bookmaker’s
accuracy, and the True-Skill Statistic) when the imbalance in the dataset may not be representative of
the actual imbalance.

Species interactionnetworks are often under-sampled (Jordano, 2016a, 2016b), and this under-sampling
is structured taxonomically (Beauchesne et al., 2016), structurally (de Aguiar et al., 2019) and spatially
(Poisot, Bergeron, et al., 2021; Wood et al., 2015). As a consequence, networks suffer from data defi-
ciencies both within and between datasets. This implies that the comparison of classifiers across space,
when undersampling varies locally (see e.g. McLeod et al., 2021) is non-trivial. Furthermore, the base-
line value of classifiers performance measures under various conditions of skill, bias, and prevalence,
has to be identified to allow researchers to evaluate whether their interaction predictionmodel is indeed
learning. Taken together, these considerations highlight three specific issues for ecological networks.
First, what values of performance measures are indicative of a classifier with no skill? This is partic-
ularly important as it can evaluate whether low prevalence can lull us into a false sense of predictive
accuracy. Second, independently of the question of model evaluation, is low prevalence an issue for
training or testing, and can we remedy it? Finally, because the low amount of data on interaction makes
a lot of imbalance correction methods (see e.g. Branco et al., 2015) hard to apply, which indicators can
be optimized by sacrificing least amount of positive interaction data?

It may sound counter-intuitive to care so deeply about how good a classifier with no-skill is, as by def-
inition, is has no skill. The necessity of this exercise has its roots in the paradox of accuracy: when
the desired class (“two species interact”) is rare, a model that gets less ecologically performant by only
predicting the opposite class (“these two species do not interact”) sees its accuracy increase; because
most of the guesses have “these two species do not interact” as a correct answer, a model that never pre-
dicts interactions would be right an overwhelming majority of the time; it would also be utterly useless.
Herein lies the core challenge of predicting species interactions: the extreme imbalance between classes
makes the training of predictivemodels difficult, and their validation evenmore so as we do not reliably
know which negatives are true. The connectance (the proportion of realized interactions, usually the
number of interactions divided by the number of species pairs) of empirical networks is usually well
under 20%, with larger networks having a lower connectance (MacDonald et al., 2020), and therefore
being increasingly difficult to predict.

1

A primer on binary classifier evaluation

Binary classifiers, which it to say, machine learning algorithms whose answer is a categorical value, are
usually assessed by measuring properties of their confusion matrix, i.e. the contingency table reporting
true/false positive/negative hits. A confusion matrix is laid out as
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(tp fp
fn tn) .

In this matrix, tp is the number of times the model predicts an interaction that exists in the network
(true positive), fp is the number of times the model predicts an interaction that does not exist in the
network (false positive), fn is the number of times the model fails to predict an interaction that actually
exists in the network (false negatives), and tn is the number of times the model correctly predicts that
an interaction does not exist (true negatives). From these values, we can derive a number of measures
of model performance (see Strydom et al., 2021 for a review of their interpretation in the context of
networks). At a coarse scale, a classifier is accurate when the trace of the matrix divided by the sum of
the matrix is close to 1, with other measures informing us on how the predictions fail.

There is an immense diversity of measures to evaluate the performance of classification tasks (Ferri et
al., 2009). Here we will focus on five of them with high relevance for imbalanced learning (He & Ma,
2013). The choice of metrics with relevance to class-imbalanced problems is fundamental, because as
Japkowicz (2013) unambiguously concluded, “relatively robust procedures used for unskewed data can
break downmiserably when the data is skewed.” Following Japkowicz (2013), we focus on two ranking
metrics (the areas under the Receiver Operating Characteristic and Precision Recall curves), and three
threshold metrics (𝜅, informedness, and MCC; we will briefly discuss 𝐹1 but show early on that it has
undesirable properties).

The 𝜅 measure (Landis & Koch, 1977) establishes the extent to which two observers (the network and
the prediction) agree, and is measured as

2 𝑡𝑝 × 𝑡𝑛 − 𝑓𝑛 × 𝑓𝑝
(𝑡𝑝 + 𝑓𝑝) × (𝑓𝑝 + 𝑡𝑛) + (𝑡𝑛 + 𝑓𝑝) × (𝑡𝑛 + 𝑓𝑛)

.

Informedness (Youden, 1950) (also known as bookmaker informedness or the True Skill Statistic) is
TPR + TNR − 1, where TPR = 𝑡𝑝∕(𝑡𝑝 + 𝑓𝑛) and TNR = 𝑡𝑛∕(𝑡𝑛 + 𝑓𝑝). Informedness can be used
to find the optimal cutpoint in thresholding analyses (Schisterman et al., 2005); indeed, the maximal
informedness corresponds to the point on the ROC curve that is closest to the perfect classifier point.
The formula for informedness is

𝑡𝑝
𝑡𝑝 + 𝑓𝑛 + 𝑡𝑛

𝑡𝑛 + 𝑓𝑝 − 1 .

The MCC is defined as

𝑡𝑝 × 𝑡𝑛 − 𝑓𝑛 × 𝑓𝑝
√
(𝑡𝑝 + 𝑓𝑝) × (𝑡𝑝 + 𝑓𝑛) × (𝑡𝑛 + 𝑓𝑝) × (𝑡𝑛 + 𝑓𝑛)

.

Finally, 𝐹1 is the harmonic mean of precision (the chance that interaction was correctly detected as
such) and sensitivity (the ability to correctly classify interactions), and is defined as

2 𝑡𝑝
2 × 𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛 .

A lot of binary classifiers are built by using a regressor (whose task is to guess the value of the interac-
tion, and can therefore return a value considered to be a pseudo-probability); in this case, the optimal
value below which predictions are assumed to be negative (i.e. the interaction does not exist) can be de-
termined by picking a threshold maximizing some value on the ROC or the PR curve. The area under
these curves (ROC-AUC and PR-AUC henceforth) give ideas on the overall goodness of the classifier,
and the ideal threshold is the point on these curves that minimizes the tradeoff represented in these
curves. Saito & Rehmsmeier (2015) established that the ROC-AUC is biased towards over-estimating
performance for imbalanced data; on the contrary, the PR-AUC is able to identify classifiers that are less
able to detect positive interactions correctly, with the additional advantage of having a baseline value
equal to prevalence. Therefore, it is important to assess whether these two measures return different
results when applied to ecological network prediction. The ROC curve is defined by the false positive
rate on the 𝑥 axis, and the true positive rate on the 𝑦 axis, and the PR curve is defined by the true positive
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rate on the 𝑥 axis, and the positive predictive value on the 𝑦 axis. By comparison with the previous para-
graph, it is obvious that 𝐹1 and MCC have ties to the PR curve (being close to the expected PR-AUC),
and that informedness has ties to the ROC curve (whereby the threshold maximizing informedness is
also the point of maximal inflection on the ROC curve). One important difference between ROC and
PR is that the later does not prominently account for the size of the true negative compartments: in
short, it is more sensitive to the correct positive predictions. In a context of strong imbalance, PR-AUC
is therefore a more stringent test of model performance.

2

Baseline values for the threshold metrics

In this section, we will assume a network of connectance 𝜌, i.e. having 𝜌𝑆2 interactions (where 𝑆 is the
species richness), and (1 − 𝜌)𝑆2 non-interactions. Therefore, the vector describing the true state of the
network (assumed to be an unweighted, directed network) is a column vector 𝐨𝑇 = [𝜌, (1 − 𝜌)] (we can
safely drop the 𝑆2 terms, as we will work on the confusion matrix, which ends up expressing relative
values). Wewill apply skill and bias to this matrix, andmeasure how a selection of performancemetrics
respond to changes in these values, in order to assess their suitability for model evaluation.

2.1. Confusion matrix with skill and bias In order to write the values of the confusion matrix for a
hypothetical classifier, we need to define two characteristics: its skill, and its bias. Skill, here, refers to
the propensity of the classifier to get the correct answer (i.e. to assign interactions where they are, and to
not assign themwhere they are not). A no-skill classifier guesses at random, i.e. it will guess interactions
with a probability 𝜌. The predictions of a no-skill classifier can be expressed as a row vector 𝐩𝑇 =
[𝜌, (1 − 𝜌)]. The confusion matrix𝐌 for a no-skill classifier is given by the element-wise (Hadamard,
outer) product of these vectors 𝐨⊙ 𝐩, i.e.

𝐌 = ( 𝜌2 𝜌(1 − 𝜌)
(1 − 𝜌)𝜌 (1 − 𝜌)2) .

In order to regulate the skill of this classifier, we can define a skill matrix 𝐒 with diagonal elements
equal to 𝑠, and off-diagonal elements equal to (1 − 𝑠), which allows to regulate how many predictions
are wrong, under the assumption that the bias is the same (i.e. the classifier is as likely to make a false
positive or a false negative). The skill-adjusted confusion matrix is𝐌⊙ 𝐒, i.e.

( 𝜌2 𝜌(1 − 𝜌)
(1 − 𝜌)𝜌 (1 − 𝜌)2)⊙ ( 𝑠 (1 − 𝑠)

(1 − 𝑠) 𝑠 ) .

When 𝑠 = 0, Tr(𝐌) = 0 (the classifier is always wrong), when 𝑠 = 0.5, the classifier is no-skill and
guesses at random, and when 𝑠 = 1, the classifier is perfect.

The second element we can adjust in this hypothetical classifier is its bias, specifically its tendency to
over-predict interactions. Like above, we can do so by defining a bias matrix 𝐁, where interactions are
over-predicted with probability 𝑏, and express the final classifier confusion matrix as𝐌⊙ 𝐒⊙ 𝐁, i.e.

( 𝜌2 𝜌(1 − 𝜌)
(1 − 𝜌)𝜌 (1 − 𝜌)2)⊙ ( 𝑠 (1 − 𝑠)

(1 − 𝑠) 𝑠 )⊙ ( 𝑏 𝑏
(1 − 𝑏) (1 − 𝑏)) .

The final expression for the confusion matrix in which we can regulate the skill and the bias is

𝐂 = ( 𝑠 × 𝑏 × 𝜌2 (1 − 𝑠) × 𝑏 × 𝜌(1 − 𝜌)
(1 − 𝑠) × (1 − 𝑏) × (1 − 𝜌)𝜌 𝑠 × (1 − 𝑏) × (1 − 𝜌)2) .

In all further simulations, the confusion matrix 𝐂 is transformed so that it sums to unity, i.e. the entries
are the proportions of guesses.
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Figure 1 Consequences of changing the clas-
sifier skills (𝑠) and bias (𝑠) for a connectance
𝜌 = 0.15, on 𝐹1, informedness, MCC, and
𝜅. Accuracy increases with skill, but also in-
creases when the bias tends towards estimating
fewer interactions (this follows from the deriva-
tions in the text, not shown in thefigure). Inter-
estingly, 𝜅 responds as expected to skill (being
negative whenever 𝑠 < 0.5), and peaks for val-
ues of 𝑏 ≈ 0.5; nevertheless, the value of bias
for which 𝜅 is maximized in not 𝑏 = 0.5, but
instead increases with classifier skill. In other
words, at equal skill, maximizing 𝜅 would lead
to select amore biased classifier.

2.2. What are the baseline values of performance measures? In this section, we will change the
values of 𝑏, 𝑠, and 𝜌, and report how the main measures discussed in the introduction (MCC, 𝐹1, 𝜅, and
informedness) respond. Before we do so, it is important to explain why we will not focus on accuracy
too much. Accuracy is the number of correct predictions (Tr(𝐂)) divided by the sum of the confusion
matrix. For a no-skill, no-bias classifier, accuracy is equal to 𝜌2 + (1 − 𝜌)2; for 𝜌 = 0.05, this is ≈ 0.90,
and for 𝜌 = 0.01, this is equal to ≈ 0.98. In other words, the values of accuracy are high enough to be
uninformative (for 𝜌 small, 𝜌2 ≪ (1 − 𝜌)2). More concerning is the fact that introducing bias changes
the response of accuracy in unexpected ways. Assuming a no-skill classifier, the numerator of accuracy
becomes 𝑏𝜌2 + (1 − 𝑏)(1 − 𝜌)2, which increases when 𝑏 is low, which specifically means that at equal
skill, a classifier that under-predicts interactions will have higher accuracy than an un-biased classifier
(because the value of accuracy is dominated by the size of tn, which will increase). These issues are
absent from balanced accuracy, but should nevertheless lead us to not report accuracy as the primary
measure of network prediction success; moving forward, we will focus on other measures.

In order to examine howMCC, 𝐹1, 𝜅, and informedness change w.r.t. the imbalance, skill, and bias, we
performed a grid exploration of the values of logit(𝑠) and logit(𝑏) linearly from−10 to 10; logit(𝑥) = −10
means that 𝑥 is essentially 0, and logit(𝑥) = 10means it is essentially 1 – this choice was motivated by
the fact that most responses are non-linear with regards to bias and skill. The values or 𝜌 were taken
linearly in ]0, 0.5], which is within the range of connectance for species interaction networks. Note that
at this point, there is no network model to speak of; the confusion matrix we discuss can be obtained
for any classification task. Based on the previous discussion, the desirable properties for a measure
of classifier success should be: an increase with classifier skill, especially at low bias; a hump-shaped
response to bias, especially at high skill, and ideally centered around logit(𝑏) = 0; an increase with
prevalence up until equiprevalence is reached.

In fig. 1, we show that none of the four measures satisfy all the considerations at once: 𝐹1 increases
with skill, and increases monotonously with bias; this is because 𝐹1 does not account for true negatives,
and the increase in positive detection masks the over-prediction of interactions. Informedness varies
with skill, reaching 0 for a no-skill classifier, but is entirely unsensitive to bias. Both MCC and 𝜅 have
the same behavior, whereby they increase with skill. 𝜅 peaks at increasing values of bias for increasing
skill, i.e. is likely to lead to the selection of a classifier that over-predicts interactions. By contract, MCC
peaks at the same value, regardless of skill, but this value is not logit(𝑏) = 0: unless at very high classifier
skill, MCC risks leading to a model that over-predicts interactions. In fig. 2, we show that all measures
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Figure 2 As in fig. 1, consequences of chang-
ing connectance for different levels of clas-
sifier skill, assuming no classifier bias. In-
formedness, 𝜅, and MCC do increase with con-
nectance, but onlywhen the classifier is not no-
skill; by way of contrast, a more connected net-
work will give a higher 𝐹1 value even with a
no-skill classifier.

except 𝐹1 give a value of 0 for a no-skill classifier, and are forced towars their correct maximal value
when skill changes (i.e. a more connected networks will have higher values for a skilled classifierd, and
lower values for a classifier making mostly mistakes).

These two analyses point to the following recommendations: MCC is indeed more appropriate than
𝜅, as although sensitive to bias, it is sensitive in a consistent way. Informedness is appropriate at dis-
criminating between different skills, but confounded by bias. As both of these measures bring valuable
information on the model behavior, we will retain them for future analyses. 𝐹1 is increasing with bias,
and should not be prioritized to evalue the performance of the model. The discussion of sensitivity to
bias should come with a domain-specific caveat: although it is likely that interactions documented in
ecological networks are correct, a lot of non-interactions are simply unobserved; as predictive models
are used for data-inflation (i.e. the prediction of new interactions), it is not necessarily a bad thing in
practice to select models that predict more interactions than the original dataset, because the original
dataset misses some interactions. Furthermore, the weight of positive interactions could be adjusted
if some information about the extent of undersampling exists (e.g. Branco et al., 2015). In a recent
large-scale imputation of interactions in the mammal-virus networks, Poisot, Ouellet, et al. (2021) for
example estimated that 93% of interactions are yet to be documented.

3

Numerical experiments on training strategy

In the following section, we will generate random bipartite networks, and train four binary classifiers
(as well as an ensemble model using the sum of ranged outputs from the component models) on 50%
of the interaction data. In practice, testing usually uses 70% of the total data; for ecological networks,
where interactions are sparse and the number of species is low, this may not be the best solution, as the
testing set becomes constrained not by the proportion of interactions, but by their number. Preliminary
experiments using different splits revealed no qualitative change in the results. Networks are generated
by picking a random infectiousness trait 𝑣𝑖 for 100 species (from a beta distribution 𝐵(𝛼 = 6, 𝛽 = 8)
distribution), and a resistance trait ℎ𝑗 for 100 species (from 𝐵(𝛼 = 2, 𝛽 = 8) distribution). There is
an interaction between 𝑖 and 𝑗 when 𝑣𝑖 − 𝜉∕2 ≤ ℎ𝑗 ≤ 𝑣𝑖 + 𝜉∕2, where 𝜉 is a constant regulating
the connectance of the network (visual exploration of the parameters show that there is an almost 1:1
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relationship between 𝜉 and connectance), and varies uniformly in [0.05, 0.35]. This model gives fully
interval networks that are close analogues to the bacteria–phage model of Weitz et al. (2005), with
both a modular structure and a non-uniform degree distribution. This dataset is easy for almost any
algorithm to learn: when trained with features [𝑣𝑖 , ℎ𝑗 , abs(𝑣𝑖 , ℎ𝑗)]𝑇 to predict the interactions between 𝑖
and 𝑗, all four models presented below were able to reach almost perfect predictions all the time (data
not presented here) – this is in part because the rule (there is maximum value of the distance between
traits for which there is an interaction) is fixed for all interactions, and any method able to learn non-
linear relationships should infer it without issues. In order to make the problemmore difficult to solve,
we use [𝑣𝑖 , ℎ𝑗] as a feature vector (i.e. the traits on which the models are trained), and therefore the
models will have to uncover that the rule for interaction is abs(𝑣𝑖 , ℎ𝑗) ≤ 𝜉. The models therefore all
have the following form, where 𝑖𝑖,𝑗 is an interaction from species 𝑖 to species 𝑗:

⎡
⎢
⎢
⎢
⎢
⎣

𝑖1,1
𝑖1,2
⋮

𝑖𝑚,𝑛−1
𝑖𝑚,𝑛

⎤
⎥
⎥
⎥
⎥
⎦

∝

⎡
⎢
⎢
⎢
⎢
⎣

𝑣1 ℎ1
𝑣1 ℎ2
⋮ ⋮
𝑣𝑚 ℎ𝑛−1
𝑣𝑚 ℎ𝑛

⎤
⎥
⎥
⎥
⎥
⎦

The training sample is composed of 50% of the 104 possible entries in the network, i.e. 𝑛 = 5000. Out
of these interactions, we pick a proportion 𝜈 (the training set balance) to be positive, so that the train-
ing set has 𝜈𝑛 interactions, and (1 − 𝜈)𝑛 non-interactions. We vary 𝜈 uniformly in ]0, 1[. This allows
to evaluate how the measures of binary classification performance respond to artificially rebalanced
dataset for a given network connectance. The rest of the dataset is used as a testing set, on which all
further measures are calculated. Note that although the training set is balanced arbitrarily, the testing
set is assembled so that it has the exact connectance of the entire network; this ensures that the model
is evaluated under the class imbalance where the predictions will be made, which represents a more
meaningful evaluation. Note also that although the simulated networks are bipartite, the algorithms
have no “knowledge” of the network structure, and simply look at pairs of species; therefore, the ap-
proach outlined here would also work for unipartite networks.

The dataset used for numerical experiments is composed of a grid of 35 values of connectance (from
0.011 to 0.5) and 35 values of 𝜈 (from 0.02 to 0.98); for each pair of values, 500 networks are generated
and predicted. For each network, we train four machines: a trait-based k-NN (e.g. Desjardins-Proulx
et al., 2017), a regression tree, a regression random forest, and a boosted regression tree. Following re-
sults from Pichler et al. (2020), linear models have not been considered (in any way, the relationship in
the simulated networks is non-linear). The point of these numerical experiments is not to recommend
the best model (this is likely problem-specific), but to highlight a series of recommendations that would
work for supervised learning tasks. All models were taken from the MLJ.jl package (Blaom et al., 2020;
Blaom & Vollmer, 2020) in Julia 1.7 (Bezanson et al., 2017). All machines use the default parameteri-
zation; this is an obvious deviation from best practices, as the hyperparameters of any machine require
training before its application on a real dataset. As we use 612500 such datasets, this would require over
2 millions unique instances of tweaking the hyperparameters, which is prohibitive from a computing
time point of view. An important thing to keep in mind is that the problem we simulate has been de-
signed to be simple to solve: we expect all machines with sensible default parameters to fare well — the
results presented in the later sections show that this assumption is warranted, and we further checked
that the models do not overfit by ensuring that there is never more than 5% of difference between the
accuracy on the training and testing sets. All machines return a quantitative prediction, usually (but
not necessarily) in [0, 1], which is proportional (but not necessarily linearly) to the probability of an
interaction between 𝑖 and 𝑗. The ROC-AUC and PR-AUC (and therefore the thresholds) can be mea-
sured by integrating over the domain of the values return by each machine, but in order to make the
average-based ensemble model more meaningful, all predictions are expressed in [0, 1].

In order to pick the best confusion matrix for a given trained machine, we performed a thresholding
approach using 500 steps on predictions from the testing set, and picking the threshold that maximized
Youden’s informedness. During the thresholding step, we measured the area under the receiver oper-
ating characteristic (ROC-AUC) and precision-recall (PR-AUC) curves, as measures of overall perfor-
mance over the range of returned values. We report the ROC-AUC and PR-AUC, as well as a suite of
other measures as introduced in the next section, for the best threshold. The ensemble model was gen-
erated by summing the predictions of all component models on the testing set (ranged in [0, 1]), then
put through the same thresholding process. The complete code to run the simulations is available at
10.17605/OSF.IO/JKEWD.
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Figure 3 Response of MCC, Informedness,
ROC-AUC, and PR-AUC to changes in the
training set balance (on the 𝑥 axis) for a series
of increasing connectances (color). All of these
values approach 1 for a goodmodel, but should
be lower when the prediction is more difficult.
Informedness is consistently high, and by con-
trast, MCC increases with additional training
set balance. Across all models, training on a
more connected network is easier. ROC-AUC
is consistently high, and therefore not properly
able to separate good from poor classifiers. On
the other hand, PR-AUC responds to changes
in the training set.

After the simulations were completed, we removed all runs (i.e. triples of model, 𝜉, and 𝜈) for which
at least one of the following conditions was met: the accuracy was 0, the true positive or true negative
rates were 0, the connectance was larger than 0.25. This removes both the obviously failed model runs,
and the networks that aremore densely connected compared to the connectance of empirical food webs
(and are therefore less difficult to predict, being less imbalanced; preliminary analyses of data with a
connectance larger than 0.3 revealed that all machines reached consistently high performance).

3.1. Effect of training set balance on performance In fig. 3, we present the response of two thresh-
olding measures (PR-AUC and ROC-AUC) and two ranking measures (Informedness and MCC) to a
grid of 35 values of training set balance, and 35 values of connectance, for the four component models
as well as the ensemble. ROC-AUC is always high, and does not vary with training set balance. On
the other hand, PR-AUC shows very strong responses, increasing with training set balance. It is no-
table here that two classifiers that seemed to be performing well (Decision Tree and Random Forest)
based on their MCC are not able to reach a high PR-AUC even at higher connectances. All models
reached a higher performance on more connected networks, and using more balanced training sets. In
all cases, informedness was extremely high, which is an expected consequence of the fact that this is
the value we optimized to determine the cutoff. MCC increased with training set balance, although this
increase became less steep with increasing connectance. Three of the models (kNN, decision tree, and
random forest) only increased their PR-AUC sharply when the training set was heavily imbalanced to-
wards more interactions. Interestingly, the ensemble almost always outclassed its component models.
For larger connectances (less difficult networks to predict, as they are more balanced), MCC and in-
formedness stared decreasing when the training set bias got too close to one, suggesting that a training
set balance of 0.5 may often be appropriate if these measures are the one to optimize.

Based on the results presented in fig. 3, it seems that informedness and ROC-AUC are not necessarily
able to discriminate between good and bad classifiers (although this result may be an artifact for in-
formedness, as it has been optimized when thresholding). On the other hand, MCC and PR-AUC show
a strong response to training set balance, and may therefore be more useful at model comparison.

3.2. Required amount of positives to get the best performance The previous results revealed that
the measure of classification performance responds both to the bias in the training set and to the con-
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Figure 4 Value of the optimal training set
balance for the different models and measures
evaluated here, over a range of connectances.
Informedness was reliably maximized for bal-
anced training sets, and kept this behavior
across models. For other measures, larger con-
nectances in the true network allowed lower
biases in the training set. In a large number
of cases, “over-correcting” by having training
sets withmore than half instances representing
interactions would maximize the values of the
model performance measures.

nectance of the network; from a practical point of view, assembling a training set requires one to with-
hold positive information, which in ecological networks are very scarce (and typically more valuable
than negatives, on which there is a doubt). For this reason, across all values of connectance, we mea-
sured the training set balance that maximized a series of performance measures. When this value is
high, the training set needs to skew more positive in order to get a performant model; when this value
is about 0.5, the training set needs to be artificially balanced to optimize the model performance. These
results are presented in fig. 4.

The more “optimistic” measures (ROC-AUC and informedness) required a biasing of the dataset from
about 0.4 to 0.75 to be maximized, with the amount of bias required decreasing only slightly with the
connectance of the original network. MCC and PR-AUC required values of training set balance from
0.75 to almost 1 to be optimized, which is in line with the results of the previous section, i.e. they are
more stringent tests of model performance. These results suggest that learning from a dataset with very
low connectance can be a different task than for more connected networks: it becomes increasingly
important to capture the mechanisms that make an interaction exist, and therefore having a slightly
more biased training datasetmight be beneficial. As connectance increases, the need for biased training
sets is less prominent, as learning the rules for which interactions do not exist starts gaining importance.

When trained at their optimal training set balance, connectance still had a significant impact on the
performance of some machines (fig. 5). Notably, Decision Tree, and k-NN, as well as Random forest to
a lower extent, had low values of PR-AUC. In all cases, the Boosted Regression Tree was reaching very
good predictions (especially for connectances larger than 0.1), and the ensemble was almost always
scoring perfectly. This suggests that all the models are biased in different ways, and that the averaging
in the ensemble is able to correct these biases. We do not expect this last result to have any generality,
and provide a discussion of a recent example in which the ensemble was performing worse than its
components models.

4
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Figure 5 When trained on their optimally bi-
ased training set, most models were able to
maximize their performance; this is not true
when measuring PR-AUC for decision tree, k-
NN, and to a lower extent RF. The ensemble
had a consistently high performance despite in-
corporating low-performing models.

Do better classification accuracy result in more realistic networks?

In this last section, we generate a network using the same model as before, with 𝑆1, 𝑆2 = 50, 80 species,
a connectance of≈ 0.16 (𝜉 = 0.19), and a training set balance of 0.5, as fig. 4 suggests this is the optimal
training set balance for this range of connectance. The prediction made on the complete dataset is
presented in fig. 6.

The trained models were then thresholded (again by optimising informedness), and their predictions
transformed back into networks for analysis; specifically, we measured the connectance, nestedness (𝜂;
Bastolla et al., 2009), modularity (𝑄; Barber, 2007), asymmetry (𝐴; Delmas et al., 2018), and Jaccard
network dissimilarity (Canard et al., 2014). This process was repeated 250 times, and the results are
presented in tbl. 1. The k-NN model is an interesting instance here: it produces the network that looks
the most like the original dataset, despite having the lowest PR-AUC, suggesting it hits high recall at
the cost of low precision. The ensemble was able to reach a very high PR-AUC (and a very high ROC-
AUC), which translated into more accurate reconstructions of the structure of the network (with the
exception of modulairty, which is underestimated by 0.03). This result bears elaborating. Measures of
model performance capture howmuch of the interactions and non-interactions are correctly identified.
As long as these predictions are not perfect, some interactions will be predicted at the “wrong” position
in the network; these measures cannot describe the structural effect of these mistakes. On the other
hand, measures of network structure can have the same value with interactions that fall at drastically
different positions; this is in part because a lot of these measures covary with connectance, and in part
because as long as these values are not 0 or their respectivemaximum, there is a large number of network
configurations that can have the same value. That ROC-AUC is consistently larger than PR-AUCmay be
a case of this measure masking models that are not, individually, strong predictors (Jeni et al., 2013). In
this specif example, the combination of individually “adequate” models resulted in an extremely strong
ensemble, suggesting that the correct prediction of interactions (as measured by MCC, Inf., ROC-AUC,
and PR-AUC) andnetwork properties is indeed a feasible task under appropriately hyper-parameterized
models.
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Figure 6 Visualisation of the raw (un-
thresholded) models predictions for one
instance of a network prediction problem
(shown in the “Dataset” panel). Increasing
the value of the 𝜉 parameter would make the
diagonal structure “broader,” leading to more
interactions. A visual inspection of the results
is important, as it highlights how some models
can “miss” parts of the network; by combining
them in an ensemble, these gaps compensate
one another, and lead (in this case) to a better
prediction.

Table 1 Values of four performancemetrics, andfivenetwork structuremetrics, for 500 independent predictions
similar to the ones presented in fig. 6. The values in bold indicate the best value for each column (including ties).
Because the values have been rounded, values of 1.0 for the ROC-AUC column indicate an average ≥ 0.99.

Model MCC Inf. ROC-AUC PR-AUC Conn. 𝜂 𝑄 𝐴 Jaccard

Decision tree 0.59 0.94 0.97 0.04 0.17 0.64 0.37 0.42 0.1
BRT 0.46 0.91 0.97 0.36 0.2 0.78 0.29 0.41 0.19

Random Forest 0.72 0.98 0.99 0.1 0.16 0.61 0.38 0.42 0.06
k-NN 0.71 0.98 0.99 0.02 0.16 0.61 0.39 0.42 0.06

Ensemble 0.74 0.98 1.0 0.79 0.16 0.61 0.38 0.42 0.06
Data 0.16 0.56 0.41 0.42 0.0

5

Guidelines for the assessment of network predictive models

We establish that due to the low prevalence of interactions, even poor classifiers applied to food web
data will reach a high accuracy; this is because the measure is dominated by the accidentally correct
predictions of negatives. On simulated confusion matrices with ranges of imbalance that are credible
for ecological networks, MCC had the most desirable behavior, and informedness is a linear measure of
classifier skill. By performing simulations with four models and an ensemble, we show that informed-
ness and ROC-AUC are consistently high on network data, whereas MCC and PR-AUC are more ac-
curate measures of the effective performance of the classifier. Finally, by measuring the structure of
predicted networks, we highlight an interesting paradox: the models with the best performance mea-
sures are not necessarilly themodels with the closest reconstructed network structure. We discuss these
results in the context of establishing guidelines for the prediction of ecological interactions.

It is noteworthy that the ensemble model was systematically better than the component models. We do
not expect that ensembles will always be better than single models. Networks with different structures
than the onewe simulated heremay respond in different ways, especially if the rules are fuzzier than the
simple rule we used here. In a recent multi-model comparison involving supervised and unsupervised
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learning, Becker et al. (2022) found that the ensemble was not the best model, and was specifically
under-performing compared tomodels using biological traits. Thismay be because the dataset of Becker
et al. (2022) was known to be under-sampled, and so the network itself contained less information than
the network and species traits. There is no general conclusion to draw from either these results or ours,
besides reinforcing the need to be pragmatic about which models should be included in the ensemble,
and whether to use an ensemble at all. In a sense, the surprising performance of the ensemble model
should form the basis of the first broad recommendation: optimal training set balance and its interaction
with connectance and the specific binary classifier used is, in a sense, an hyperparameter that should be
assessed. The distribution of results in fig. 4 and fig. 5 show that there are variations around the trend,
and multiple models should probably be trained on their “optimal” training/testing set, as opposed to
the same ones.

The results presented here highlight an interesting paradox: although the k-NN model was ultimately
able to get a correct estimate of network structure (see tbl. 1 and fig. 6), it ultimately remains a poor
classifier, as evidenced by its low PR-AUC. This suggests that the goal of predicting interactions and
predicting networks may not always be solvable in the same way – of course a perfect classifier of in-
teractions would make a perfect network prediction; indeed, the best scoring predictor of interactions
(the ensemble model) had the best prediction of network structure. The tasks of predicting networks
structure and of predicting interactions within networks are essentially two different ones. For some
applications (.e.g. comparison of network structure across gradients), onemay caremore about a robust
estimate of the structure, at the cost at putting some interactions at the wrong place. For other applica-
tions (e.g. identifying pairs of interacting species), one may conversely care more about getting as many
pairs right, even though the mistakes accumulate in the form of a slightly worse estimate of network
structure. How these two approaches can be reconciled is something to evaluate on a case-by-case ba-
sis, especially since there is no guarantee that an esemble model will always be the most precise one.
Despite this apparent tension at the heart of the predictive exercise, we can use the results presented
here to suggest a number of guidelines.

First, because we have more trust in reported interactions than in reported absences of interactions
(which are overwhelmingly pseudo-absences), we can draw on previous literature to recommend in-
formedness as a measure to decide on a threshold for binary classification (Chicco et al., 2021); this be-
ing said, because informedness is insensitive to bias (although it is a linear measure of skill), the overall
model performance is better evaluated through the use of MCC (figs. 4, 5). Because 𝐹1 is monotonously
sensitive to classifier bias fig. 1 and network connectance fig. 2, MCC should be prefered as a measure
of model evaluation and comparison. When dealing with multiple models, we therefore suggest to find
the optimal threshold using informedness, and to pick the best model using MCC (assuming one does
not want to use an ensemble model).

Second, accuracy alone should not be the main measure of model performance, but rather an expec-
tation of how well the model should behave given the class balance in the set on which predictions
are made; this is because, as derived earlier, the expected accuracy for a no-skill no-bias classifier is
𝜌2 + (1 − 𝜌)2 (where 𝜌 is the class balance), which will most often be large. This pitfall is notably il-
lustrated in a recent food-web model (Caron et al., 2022) wherein the authors, using a training set of
𝑛 = 104 with only 100 positive interactions (representing 0.1% of the total interactions), reached a good
accuracy. Reporting a good accuracy is not informative, especially when accuracy isn’t (i) compared
to the baseline expected value under the given class balance, and (ii) interpreted in the context of a
measure that is not sensitive to the chance prediction of many negatives (like MCC).

Third, because the PR-AUC responds more to network connectance (fig. 5) and training set imbalance
(fig. 4) than ROC-AUC, it should be used as a measure of model performance over the ROC-AUC. This
is not to say that ROC-AUC should be discarded (in fact, a low ROC-AUC is undoubtedly a sign of an
issue with the model), but that its interpretation should be guided by the PR-AUC value. Specifically,
a high ROC-AUC is not informative, as it can be associated to a low PR-AUC (see e.g. Random Forest
in tbl. 1) This again echoes recommendations from other fields (Jeni et al., 2013; Saito & Rehmsmeier,
2015). We therefore expect to see high ROC-AUC values, and then to pick themodel that maximizes the
PR-AUC value. Taken together with the previous two guidelines, we strongly encourage to (i) ensure
that accuracy and ROC-AUC are high (in the case of accuracy, higher than expected under no-skill
no-bias situation), and (ii) to discuss the performance of the model in terms of the most discriminant
measures, i.e. PR-AUC and MCC.

Finally, network connectance (i.e. the empirical class imbalance) should inform the composition of the
training and testing set, because it is an ecologically relevant value. In the approach outlined here, we
treat the class imbalance of the training set as an hyper-parameter, but test the model on a set that has
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the same class imbalance as the actual dataset. This is an important distinction, as it ensure that the
prediction environment matches the testing environment (as we cannot manipulate the connectance of
the empirical dataset on which the predictions will be made), and so the values measured on the testing
set (or validation set if the data volume allows one to exists) can be directly compared to the values for
the actual prediction. A striking result from fig. 4 is that Informedness was almost always maximal
at 50/50 balance (regardless of connectance), whereas MCC required more positives to be maximized
when connectance increases, matching the idea that it is amore stringentmeasure of performance. This
has an important consequence in ecological networks, for which the pool of positive cases (interactions)
to draw from is typically small: the most parsimonious measure (i.e. the one requiring to discard the
least amount of interactions to train the model) will give the best validation potential, and in this light
is very likely informedness (maximizing informedness is, in fact, the generally accepted default for
imbalanced classification regardless of the problem domain; Schisterman et al., 2005). This last result
further strengthens the assumption that the amount of bias is an hyper-parameter that must be fine-
tuned, as using the wrong bias can lead to models with lower performance; for this reason, it makes
sense to not train all models on the same training/testing set, but rather to optimize the set composition
for each of them.

One key element for real-life data that can make the prediction exercise more tractable is that some
interactions can safely be assumed to be impossible; indeed, a lot of networks admit a stochastic block
model as a good approximation (e.g. Xie et al., 2017). In ecological networks, this can be due to spatial
constrains (Valdovinos, 2019), or to the long-standing knowledge that some links are “forbidden” due to
traits (Olesen et al., 2011) or abundances (Canard et al., 2014). The matching rules (Olito & Fox, 2015;
Strona & Veech, 2017) can be incorporated in the model either by adding compatibility traits, or by only
training the model on pairs of species that are not likely to be forbidden links; having this information
would allow to assemble training/testing sets that have true negatives, and in this situation, it may be
possible to use the more usual 70/30 split. Besides forbidden links, a real-life case that may arise is
multi-interaction or multi-layer networks (Pilosof et al., 2017). These can be studied using the same
general approach outlined here, either by assuming that pairs of species can interact in more than one
way (wherein one would train a model for each type of interaction, based on the relevant predictors),
or by assuming that pairs of species can only have one type of interaction (wherein this becomes a
multi-label classification problem).
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