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Abstract

The Antarctic minke whale (Balaenoptera bonaerensis) is regarded a Southern Hemisphere endemic found
throughout the Southern Hemisphere, generally south of 60°S in austral summer. Here they have been routinely
observed in highest densities adjacent to and inside the sea ice edge, and where they feed predominantly on
krill. Detecting abundance trends regarding this species by employing visual monitoring is problematic. Partly
this is because the whales are frequently sighted within sea ice where navigational safety concerns prevent ships
from surveying. In this respect species-habitat models are increasingly recognized as valuable tools to predict
the probability of cetacean presence, relative abundance or density throughout an area of interest and to gain
insight into the ecological processes affecting these patterns. The objective of this study was to provide this
background information for the above research needs and in a broader context use species distribution models
(SDMs) to establish a current habitat suitability description for the species and to identify the main
environmental covariates related to its distribution. We used filtered 464 occurrences to generate the SDMs. We
selected eight predictor variables with reduced collinearity for constructing the models: mean annuals of the
surface temperature (°C), salinity (PSS), current velocity (m/s), sea ice concentration (fraction, %), chlorophyll-
a concentration (mg/m?), primary productivity (g/m*/day), cloud cover (%), and bathymetry (m). Six modeling
algorithms were test and the Bayesian additive regression trees (BART) model demonstrated the best
preformance. Based on variable importance, those that best explained the environmental requirements of the
species, were: sea ice concentration, chlorophyll-a concentration and topography of the sea floor (bathymetry),
explaining in sum around 62% of the variance. Using the BART model, habitat preferences have been
interpreted from patterns in partial dependence plots. Areas where the AMW have particularly high likelihood of
occurrence are East Antarctica, NE of the Weddell Sea, areas around the northern tip of the Antarctica
Peninsula, areas bordering the Scotia—Weddell Confluence. Given the association of AMWSs with sea ice, the
pagophilic character of their biology makes them particularly vulnerable to climate change and a perfect
biological indicator for tracking these changes.
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KOMIT'FOTEPHA MOJEJIb [NOIIUPEHHA AHTAPKTHUYHOI'O CMYTAYA
(BALAENOPTERA BONAERENSIS)

Bosiogumup Turap

Komn'ioTepHa Moaesib NOLIHPEHHSI AHTAPKTUYHOT0 cmyrayda [Balaenoptera bonaerensis|. — B. Turap. —
AnTapkTnyHuil cmyrad (Balaenoptera bonaerensis) € eHOEeMIKOM WIiBISHHOI MiBKYJi, 3yCTpidaeThcs, SK
HpaBwWiIo, Ha MiBAeHb Bix 60° mu.m. BmitTKy. TyT iX 3a3BHuail cnocTepiraloTh OIS Kparo MOPCHKOI KPHTH Ta
nocepen Hei, ¢ BOHH XapuylOThCsl HEPEBaXHO KpHIeM. BHSBHUTH TEHICHLIl YHMCENBHOCTI IBOTO BUAY 3a
JIOTIOMOTOIO Bi3yalbHOrO MOHITOPUHTY Tpo0OieMaTndHo. YacTKOBO Iie OB’ 3aHO 3 THM, II0 KHTIB 4acTo OadaTh
mocepesi MOPChKOT KPHTH, Jie MPoOJIeMHu Oe3MeKH HaBirailii 3aBakaroTh KOpaOisiM MPOBOIUTH CIIOCTEPEKEHHS.
V upoMy BiJHOLICHHI KOMITTOTEPHI MOJIEITi €KOJIOTiYHOT Hillli Bce OiTbllie BU3HAIOTHCS LIHHUMH iHCTPYMEHTaMU
JUIsl TIPOTHO3YBAaHHS HMOBIPHOCTI NPHCYTHOCTI KHUTOMOMIOHMX, BiTHOCHOI YHCEJIBHOCTI abo LIJIBHOCTI Ha
TEpUTOpii, IO MpPEACTaBIsSE iHTEpPEC, a TaKOK IS OTPUMAHHS YSABIEHHS MPO EKOJOTIUHI MpOoIecH, IIo
BIUIMBAIOTh Ha IIOLIMPEHHA LMX TBapMH. MeTa LbOrO IOCTIKEHHS MONsrajga B TOMY, W00 OTpUMATH
iH(popMaIio Ul 3a3Ha4eHHUX JOCTIJHUIBKAX MOTPed 1 B IIMPIIOMY KOHTEKCTI BUKOPHCTATH KOMITIOTEPHI
Mozieni nomupeHHs BuAiB (SDM) 1 BCTaHOBIEHHS TOTO, HACKLUIBKY NPHIATHE AV ICHYBaHHS BHAY T€ UM
iHIIIe CepeloBHILE, Ta BU3HAYEHHS OCHOBHUX IapaMeTpiB OCTAHHBOTO, SIKi IIbOMY CIPHUSIIOTh. {151 CTBOpEHHS
SDM mu Bukopucranu 464 BindinsTpoBaHUX peecTpaniii Ta BHOpaiy BiCIM Majo CKOPEJIbOBAHUX IPEAUKTOPIB:



CepeHbOPiYHI 3Ha4deHHs Temmeparypu noBepxHi Mops (°C), comonicte (PSS), mBuakicte Tedii (M/c),
KOHIIEHTpALlisi MOPCHKOT KPUT'H (4acTKa, %), KOHIIEHTpalis xjaopodiny-a (Mr/M*), nepBUHHA NPOTYKTUBHICTB (T/
M*/n00y), xmapHicTs (%) Ta Gatumerpist (M). Byllo IpOTECTOBAHO WIICTh ANTOPUTMIB MOJEIOBAHHSA, i MOJIENb
OalieciBchKMX aIUTHBHUX perpeciiinux aepeB (BART) nmpopemoHcTpyBana nmepeBary Haj iHITUMH. 32 MOJEILTIO,
OCHOBHMMH YHHHHKAMH, $IKi (OPMYIOTh HIIOIy BHAY €: KOHIIEHTpAIlisi MOPCHKOi KPHIH, KOHILIEHTpALis
xJ10podiny-a Ta penbed MOPCHKOTO JHA (OaTHMETpis), IO B CyMi MosicHIOE Oim3bko 62% mucnepcii. Pationn, e
CMyTadi MaloTh 0COOJIMBO BUCOKY HMOBIpHICTh IepeOyBaHHsI, — 1e CxinHa AHTapKTHAa, palioHH Ha MiBHITHUN
cxin Big Mops Yeaseia, BOIM HABKOJIO MiBHIYHOT OKpaiHW AHTApKTHYHOTO MBOCTPOBA, PAOHHM, IO MEXYIOTh
i3 3MUTTAM Box MopiB Yexnemna ta Ckoma. BpaxoByroun 38’5130k CMyTaqiB 3 MOPCBHKOIO KPUTOI0, TTaroinpHAN
xapakTep iXHboi Giosorii poObuTh iX 0COOJIMBO BPa3IMBUMHU A0 3MIiHH KIIMaTy i TOMy Lei BHA € iJealbHUM
610JI0TIYHIM HIMKATOPOM IS BiJCTEIKCHHS [IMX 3MiH.

KnrodoBi cnoBa: Balaenoptera bonaerensis, TliBIeHHWII OKeaH, MOJCTIOBAaHHS MOIIMPECHHS BHUIIIB,
OaifeciBChKi aIMTHBHI perpeciiiti gepeBa, Oi0JOTiUYHHI IHANKATOP, 3MiHA KIIIMATy

Introduction

Minke whales are the smallest of the balaenopterid whales and two species of minke whales are
recognized, the common minke whale, Balaenoptera acutorostrata, and the Antarctic minke whale
(AMW), B. bonaerensis. The AMW is regarded a Southern Hemisphere endemic [Deméré 2014] and
is found throughout the Southern Hemisphere, generally south of 60°S in austral summer, where
they have been routinely observed in highest densities adjacent to and inside the sea ice edge
[Williams et al. 2014; Herr et al. 2019], and where they feed predominantly on krill [Friedlaender et
al. 2006]. The AMW is considered pagophilic in the sense of being better able than the larger baleen
whales to use habitat with high pack ice densities. AMWs have small, compact bodies, and short
fins, making them well suited to life in the pack ice where they can easily maneuver in narrow
spaces between ice floes [Ainley et al. 2007]. Hard, pointed rostrums also allow minke whales to
break through thin ice to breathe, creating holes, which in turn may provide an ecological service to
other air-breathing marine predators such as seals and penguins [Ainley et al. 2007; Tynan et al.
2009]. Predator avoidance too has been suggested as another reason for AMWSs to use sea-ice
habitats, inaccessible to Type A killer whales [Pitman & Ensor 2003].

Deriving precise and unbiased estimates of abundance of cetacean species in the Antarctic
region is central for understanding population trends. In the case of the AMW, populations are still
being impacted by ongoing commercial whaling carried out against the backdrop of global climate
change and other anthropogenic impacts [Risch et al. 2019]. However, detecting abundance trends
regarding this species by employing visual monitoring from boats, ships or airplanes, one of the
most common approaches to study marine mammal distribution and abundance [e.g., Barlow 2015],
is problematic. Partly this is because the whales are frequently sighted within Antarctic sea ice where
navigational safety concerns prevent ships from surveying [Williams et al. 2014]. Despite recent
advances in visual monitoring methods [Ferguson et al. 2018], these approaches are yet limited and
can only provide a snapshot of the true distribution, particularly for far-ranging species such as
minke whales [Kaschner et al. 2012]. Nevertheless, current population estimates and their trend raise
concerns and accordingly have resulted in the recent classification of the AMW as Near Threatened
under the IUCN Red List and under Appendix I of CITES [Cooke et al. 2018].

In this respect quantitative species-habitat models are increasingly recognized as valuable tools
to predict the probability of cetacean presence, relative abundance or density throughout an area of
interest and to gain insight into the ecological processes affecting these patterns [Hammond et al.
2013; Robinson et al. 2017; Fiedler et al. 2018; Melo-Merino et al. 2020]. By fitting models of
presence or abundance to relevant environmental variables, and then projecting them into geographic
space, dynamic responses to environmental variability can be predicted [Becker et al. 2018].
Predictions from these models can also be used to develop and evaluate management and
conservation strategies [Fiedler et al. 2018] and provide a basis for adaptive surveys or sampling
design as effort could be concentrated in areas predicted to have greater abundance [Becker et al.
2012] and/or higher habitat suitability assumed to be correlated with the species’ abundance
[Chavez-Rosales et al. 2019]. In our specific case we believe there is an opportunity, by exploring
present relationships between the AMW and a number of oceanographic covariates, including sea ice



concentration, to distinguish such areas of potential high habitat suitability regardless of logistic
constraints and in the long run help to build more robust abundance estimates for the species. The
objective of this study was to provide this background information for the above research needs and
in a broader context use species distribution models (SDMs) to establish a current habitat suitability
description for the cetacean species and to identify the main environmental covariates related to its
distribution.

Materials & Methods

There are a large number of cetacean sighting records from an array of platforms, reflecting
presence-only records, which, together with readily available and broad-scale environmental data,
provide an opportunity to improve our knowledge of the distribution of the AMW using species
distribution modeling. Presence data was retrieved from online public databases, which were
accessed using the R package 'spocc' version 0.9.0 [Chamberlain 2018], supplemented from
Ukrainian sources and recent updates [Savenko 2020] obtained around or nearby the Akademik
Vernadsky Ukrainian Antarctic station (Fig. 4). Only point records south of 60°S were considered.
As required by SDM software, each cetacean sighting was treated as a single presence record,
independent of the number of animals sighted. To reduce both spatial bias and spatial autocorrelation
in occurrence data, we performed a spatial thinning procedure by selecting only one presence point
within each pixel of the predictor variable maps using SAGA GIS [Conrad et al. 2015]. Because true
absence data is not available, we used pseudo-absence points randomly generated within a bounding
box encompassing AMW presence points by employing the 'dismo' R package [Hijmans et al. 2011].

Cetacean occurrence is usually modeled against a range of topographic, physical and
oceanographic [Breen et al. 2016]. Since cetacean distributions may primarily be driven by those of
their prey, it is likely that such factors serve as proxies for spatio-temporal variation in prey density
[Baines & Weir 2020]. We used the R package 'sdmpredictors' version 0.2.9 to access potential
predictor variables for current projections available for the study area [Bosch 2020]. We chose the
Bio-ORACLE version 2.0 dataset [Assis et al. 2018]. These variables represent temperature, salinity,
chlorophyll concentration, and current velocity, among other factors. Present values refer to the
period between 2000 and 2014. Variables were available at a spatial resolution of 5 arc-minutes.
Bathymetry was included as a topographic layer derived from the ETOPO1 Global Relief Model
[Amante & Eakins 2009]. All the environmental layers were processed in SAGA GIS in datum
WGS84, with the same spatial extent and the same resolution. Because collinearity among
environmental variables may lead to overfitting, we used Spearman rank correlation coefficients in
the 'caret' R package [Kuhn 2008] to exclude from the analyses redundant variables with significant
correlation coefficients (|rs| > 0.8).

There is a large suite of algorithms available for modeling the distribution of species, but
because there is no single ‘best’ algorithm some authors have reasonably suggested that niche or
distribution modeling studies should begin by testing a suite of algorithms [eg., Qiao et al. 2015].
Accordingly, we assessed the relative performance of commonly used SDM algorithms based on
envelope and statistical models, and machine learning techniques: BIOCLIM [Busby 1991; Booth et
al. 2014], generalized linear models [Guisan et al. 2002], Maxent [Phillips et al. 2006], random
forests [Breiman 2001] and boosted regression trees [Elith et al. 2008]; these were employed using
the 'sdm' package within the statistical software R [Naimi & Araujo 2016]. In addition we tested
Bayesian additive regression trees (BART), a relatively new alternative to other popular
classification tree methods, having yet to find a wider application in predicting species distributions,
and based on inductive learning process carried out using the Bayes theorem. For running SDMs
with BARTs we used the recently developed R package, ‘embarcadero’ [Carlson 2020]. As part of
their output, most algorithms rank the environmental layers used to train the SDM based on their
relative importance in building the models. Importantly, they also allow the construction of response
curves to elucidate the effect of selected variables on habitat suitability [Phillips & Dudik 2008]. Of
particular interest are patterns in partial dependence plots, which are plots of the marginal effect of a
predictor variable when other variables are held constant [Pearson 2020]. Models were evaluated by
10-fold cross-validation using 20% of the occurrence dataset.



The AUC (area under the curve), was used to assess the predictive performance of the models
[Hosmer & Lemeshow 1989]. Models with mean test-AUC values of AUC<0.7 are considered of
poor predictive performance, 0.7<AUC<0.8 moderate, and AUC>0.8 good to excellent performance
[Duan et al. 2014]. Presently there is a discussion about the reliability of AUC to measure the
performance of models based on presence-only methods [Lobo et al. 2008; etc.], therefore to have a
complementary measure of model performance we calculated the true skill statistic (TSS) [Allouche
et al. 2006]. The TSS can assume values between —1 and 1 and values of TSS<0.2 can be considered
as reflecting poor model predictive performance, 0.2<TSS<0.4 as fair, 0.4<TSS<0.6 moderate, and
TSS>0.6 as good to excellent performance. However, model selection based solely on discriminatory
ability, without consideration of overfitting, tends to result in overly complex models [Radosavljevic
& Anderson 2014]. In this respect, overfitted models will often produce jagged response curves that
likely appear to be modeling noise, rather than biological response [Tobefia et al. 2016]. Model
robustness and reliability were assessed by comparing model results to the current knowledge of
AMW ecology and distribution.

We used the 10™ percentile training presence threshold value to generate contour lines
separating suitable areas from unsuitable [Liu et al. 2005]. This threshold value provides a better

ecologically significant result when compared with more restricted threshold values [Phillips &
Dudik 2008].

Results & Discussion

After filtering the presence data consisting of 1022 georeferenced records, we used 464
occurrences to generate the SDMs. We selected eight predictor variables with reduced collinearity
for constructing the models. These represent mean annuals of the surface temperature (°C), salinity
(PSS), current velocity (m/s), sea ice concentration (fraction, %), chlorophyll-a concentration
(mg/m?), primary productivity (g/m*/day), cloud cover (%), and bathymetry (m).

The outputs of the SDM algorithms varied in terms of discrimination accuracy evaluated by the
AUC and TSS (Table 1).

Table 1. Discrimination accuracy of employed SDM algorithms

SDM methods AUC TSS
BIOCLIM 0.70 0.37
Generalized Linear Model 0.78 0.50
Maxent 0.83 0.60

Random forests 0.88 0.65

Boosted regression trees 0.82 0.57
Bayesian additive regression trees 0.88 0.66

According to these results, the Bayesian additive regression trees model demonstrates the best
preformance (AUC=0.88, TSS=0.66), very closely followed by the random forests model
(AUC=0.88, TSS=0.65). To make a choice between them we inspected the covariate response
curves generated by both models in terms of "smoothness".

In this respect the random forests model suggested over-fitting, therefore the Bayesian additive
regression trees algorithm was selected to perform an indepth analysis of the niche of the AMW in
relation to the selected environmental predictors and the distribution of the species in the Antarctic
region.

In addition, the package ‘embarcadero’ includes an automated variable selection procedure
being highly effective at identifying informative subsets of predictors, allows to generate and plot
partial dependence curves.
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The modeling identified a number of environmental variables that mostly contributed to
generating the potential distribution prediction of the AMW in the study area. Based on variable
importance, those that best explained the environmental requirements of the species, were: sea ice
concentration, chlorophyll-a concentration and topography of the sea floor [bathymetry], explaining
in sum around 62% of the variance.

Using the BART model, habitat preferences can be interpreted from patterns in partial
dependence plots, where predicted habitat suitability is plotted against a marginal change in each
variable, all other variables set to their average value.

Firstly, we analyze sea ice concentration preferences. As mentioned, the species is pagophilic
and observed densities of the AMW are highest near the edge of the pack ice, likely because
occurrences are typically recorded from observations made on ships unable to penetrate sea ice, but
advanced surveys had shown that the AMW also occurs inside the ice pack and within polynyas
[Williams et al. 2014]. The proportion of the population found within the pack ice is not well known
but has been estimated, for instance, at 10-50% in the southeast Indian Ocean sector in summer
[Kelly et al. 2014] and up to 20% of AMWs of the Weddell Sea were within ice covered waters
[Williams et al. 2014].

In a relatively recent study, satellite telemetry from three individuals revealed AMW summer
foraging spaces can generally be associated with pack ice habitat, delimited by the sea ice extent
(SIE), over the continental shelf [Lee et al. 2017]. SIE defines the ocean area covered by sea ice and
a threshold of minimum sea ice concentration (15%) is used to identify the SIE [Worby & Comiso,
2004], although others [Zhao et. al., 2015] considere it to be 13%. In the study conducted by Lee
and coauthors [2017] one whale remained in pack ice concentrations greater than 50%. The other
followed the coastline and the SIE as it traveled through the Bellinghausen and Amundsen seas,
predominantly within 50 km of the SIE. This whale remained in low ice concentrations, less than
50%, for its entire foraging season. The partial response curve, considering the association between
habitat suitability (HS) and sea ice concentration (SIC) [Fig. 1], shows that in both cases the
individuals most likely were in preferable areas where SICs best match their niche requirements.
Starting from a threshold of minimum sea ice concentration of 15%, HS with increasing SIC
demonstrates a sharp rise with a more or less steady growth trend towards a concentration of 60%,
after which it rapidly declines, indicating predominantly unsuitable habitat. On the whole, SICs
between 30 to 60% seem, according to the model, to be mostly favoured by the species. Using the
10™ percentile training presence threshold value (HS=0.245) suitable areas, in terms of SIC, occupy
a wider range from around 12 to 69%, that is to say areas moderately off the SIE to areas
considerably packed with ice. A recent report of occurrences throughout the full range of ice
concentrations found AMW densities generally lower in high ice concentrations [Herr et al., 2019].
Likely, in the persue of krill closely linked with the under-ice environment [Nicol 2006], AMWs
reach their prey under the ice in places extending from 27 km beyond the ice edge [Brierley et al.



2002] up to hundreds of kilometres into the ice-covered area, as in the Lazarev Sea [Flores et al.
2012] and other parts of the Southern Ocean [Herr et al. 2019], as far as there are regions of open
water (such as leads, polynyas etc.). In this respect AMWs exploit a unique niche among sympatric
whale species feeding on krill in the Southern Ocean [Friedlaender et al. 2014].

Secondly, since cetacean distributions may primarily be driven by those of their prey, it is likely
that such factors as chlorophyll-a concentration serve as proxies for spatio-temporal variation in prey
density [Baines & Weir 2020]. Indeed, the corresponding partial response curve (Fig. 2) shows a
steep rise of HS between concentrations 0.8 and 1.0 mg/m?, reaching an unprecedented value of
almost 90% at the chlorophyll-a concentration of 1.35 mg/m?. Using the employed threshold value,
suitable conditions are expected to appear above the concentration of 0.6 mg/m?.
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Next in the row of influential variables is ocean depth.

It has been documented that the distribution of AMWs is related to the continental shelf break
[Ainley et al. 2012]. The corresponding curve for ocean water depth (Fig. 3) showed a sharp positive
response with areas shallower than approximately 3000 m (using a Maxent model, authors cited
above consider it to be around 3500 m), reaching a maximum at around 1000 m, a mark close to the
continental shelf break, slightly declining and rising once again as the distance to the shore
decreases.

Once again, referring to the study conducted by Lee and coauthors [2017], two of the tracked
whales demonstrated bimodal distributions in bathymetry, remaining in the shallow waters of the
continental shelf early in the season and moving into deeper water as the season progressed, a
behaviour which appears to be consistent with our model.

Generally speaking, the shelf break is defined as the line between the shelf and the upper
continental slope. Around Antarctica, the ice load and the resulting isostatic equilibrium and erosion
result in a deep shelf. Some authors consider the shelf break to be mostly located between 400 and
600 m water depth [Arndt et al. 2013], others around 800 m [Murase et al. 2013] or 1000 m
[Atkinson et al. 2008].

Our model indicates that the shelf break and shelf waters inshore of it seem to be areas with the
habitats attractive to the AMW and where higher densities of the species have been recorded [Herr et
al. 2019].

The importance of the vicinity of the shelf break area in various locations throughout the
Southern Ocean is that Antarctic krill, a dominant prey item for AMWSs, occurs here in higher
densities [Siegel & Watkins 2016]. Using the employed threshold value, suitable conditions should
appear in waters shallower that 2790 m, but the best being around 800-1000 m and/or in nearshore
habitats.
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The combination of sea ice concentration, chlorophyll-a concentration, and bathymetry in the
present study’s model appears to successfully predict the presumed foraging habitat and distribution
for the AMW (Fig. 4). Areas where the AMW have particularly high likelihood of occurrence are
East Antarctica, NE of the Weddell Sea, areas around the northern tip of the Antarctica Peninsula,
areas bordering the Scotia—Weddell Confluence.
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Conclusions

The spatial distribution of biological organisms is one of the fundamental pieces of information
necessary to understand their ecology. Detailed current knowledge of the distributions of cetaceans
and their suitable habitat is important for the effective management and conservation not only of
cetacean species but also of entire marine ecosystems [Kanaji et al. 2015]. The application of
presence-only SDMs for marine species’ is particularly attractive due to often logistical and
economic costs of obtaining systematic species’ distribution data [Smith et al. 2021]. Exploring
present relationships between AMW and environmental variables can highlight potential reasons for
shifts in abundance estimates and help to build more robust survey methods for the future [Williams
et al. 2014], provide a basis for adaptive surveys or sampling design as effort could be concentrated
in areas predicted to have better habitat suitability. Suitable habitat for AMWs predicted by the SDM



is interpreted as regions where the species is most likely to be found, and represent priority areas
where monitoring efforts (including passive acoustic monitoring and aerial and/or vessel-based
surveys) should be focused in the coming years. Given the association of AMWSs with sea ice, the
pagophilic character of their biology makes them particularly vulnerable to climate change and a
perfect biological indicator for tracking these changes.
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