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Running title: Risk of bias in trend estimation 24 

Abstract 25 

Aim: Aggregated species occurrence data are increasingly accessible through public databases for 26 

the analysis of temporal trends in species’ distributions. However, biases in these data present 27 

challenges for robust statistical inference. We assessed potential biases in data available through 28 

GBIF on the occurrences of four flower-visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf-29 

nosed bats (Phyllostomidae), and hummingbirds (Trochilidae). We also assessed whether and to 30 

mailto:robboy@ceh.ac.uk


what extent data mobilisation efforts improved our ability to estimate trends in species’ 31 

distributions. 32 

Location: The Neotropics. 33 

Methods: We used five data-driven heuristics to screen the data for potential geographic, temporal 34 

and taxonomic biases. We began with a continental-scale assessment of the data for all four taxa. 35 

We then identified two recent data mobilisation efforts (2021) that drastically increased the quantity 36 

of records of bees collected in Chile available through GBIF. We compared the dataset before and 37 

after the addition of these new records in terms of their biases and their impact on estimated trends 38 

in species’ distributions. 39 

Results: We found evidence of potential sampling biases for all taxa. The addition of newly-mobilised 40 

records of bees in Chile decreased some biases but introduced others. Despite increasing the 41 

quantity of data for bees in Chile sixfold, estimates of temporal trends in species’ distributions 42 

derived using the post-mobilisation dataset were broadly similar to what would have been 43 

estimated before their introduction. 44 

Main conclusions: Our results highlight the challenges associated with drawing statistically robust 45 

inferences about trends in species’ distributions using publicly available data. Mobilising historic 46 

records will not always enable trend estimation because more data does not necessarily equal less 47 

bias. Analysts should carefully assess their data before conducting analyses: this might enable the 48 

estimation of more robust trends and help to identify strategies for effective data mobilisation. Our 49 

study also reinforces the need for well-designed, standardized monitoring of pollinators worldwide.  50 
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Introduction 54 

Species’ geographic distributions are the fundamental units of biogeography and an important 55 

variable in ecology. Understanding the dynamics of species’ distributions – that is, how they have 56 

changed over time – is essential for identifying drivers and correlates of range contractions and 57 

expansions (Powney et al., 2014; Woodcock et al., 2016); tracking the spread of invasive species 58 

(Delisle et al., 2003) and their impacts on native taxa (Roy et al., 2012); prioritising areas for, and 59 

evaluating the effects of, conservation interventions (Cunningham et al., 2021; Moilanen, 2007); and 60 

monitoring progress towards international biodiversity targets, amongst other applications. To 61 

understand the dynamics of species’ distributions, and hence tackle these important problems, 62 

researchers must have access to reliable records of what species occurred where and when. 63 

Generally, records of this type are referred to as species occurrence data (sometimes called 64 

biological records). 65 

Naturalists have been accumulating species occurrence data for centuries. Historically, such data 66 

were primarily collected as preserved specimens in museums and herbaria (Newbold, 2010; Spear et 67 

al., 2017), and in written accounts (e.g. Oswald and Preston, 2011). More recently, however, this 68 



information was also recorded through distribution atlases (e.g., Preston, C.D., Pearman, D.A. & 69 

Dines, 2002), and various other structured and unstructured monitoring and citizen science 70 

initiatives (Boakes et al., 2010; Pescott et al., 2015; Petersen et al., 2021). Taken together, these data 71 

constitute an enormous resource that holds the potential to shape our understanding of species’ 72 

geographical distributions, as well as how, and potentially why, they have changed over time. To 73 

realise this potential, however, they must be accessible to the research community. 74 

Species occurrence data have become increasingly accessible over the last two decades. This can be 75 

attributed to the mobilisation of historic records from preserved specimens (taken here to include 76 

both the digitization of analog records and the deposition of digital records in public databases), the 77 

proliferation and growth of citizen science monitoring programs, and the launch of online data 78 

portals through which these data can be easily accessed and shared (Ellwood et al., 2015; Faith et 79 

al., 2013; Nelson and Ellis, 2019; Townsend Peterson et al., 2015). To put this into context, the 80 

largest online data portal, the Global Biodiversity Information Facility (GBIF hereafter), currently 81 

holds nearly two billion species occurrence records spanning all continents and major taxa (GBIF.org, 82 

2021). Approximately ten percent of the records held on GBIF derive from preserved specimens in 83 

museums and herbaria that have been mobilised for accession online. Whilst this represents a huge 84 

quantity of data, it is estimated that globally, museums and herbaria hold 1.5-2.0 billion preserved 85 

specimens (Townsend Peterson et al., 2015). That is to say, up to around ninety percent of these 86 

records have not been mobilised for use by the research community, at least not through GBIF. To 87 

bridge this gap, resources are now being devoted to national and international data mobilisation 88 

initiatives (Nelson and Ellis, 2019; also see e.g. https://www.idigbio.org/). It is essential, therefore, to 89 

understand the extent to which specific mobilisation efforts can improve our ability to derive robust 90 

estimates of trends in species’ distributions. 91 

The collection and mobilisation of species occurrence records provide the cornerstone for our 92 

understanding of past and current species distributions. However, these activities are typically 93 

conducted non-randomly along the axes of space, time an taxonomy; hence, the resultant data are 94 

biased towards particular locations, periods and species, respectively (Barends et al., 2020; Daru et 95 

al., 2018; Delisle et al., 2003; Isaac and Pocock, 2015; Reddy and Dávalos, 2003; Whitaker and 96 

Kimmig, 2020). These biases become more complicated when multiple datasets, each with their own 97 

idiosyncrasies, are aggregated (Whitaker and Kimmig, 2020). Consequently, there is no guarantee 98 

that any slice of species occurrence data will be suitable for any particular analytical use. 99 

Biases can seriously undermine the estimation of temporal trends in species’ distributions, which, in 100 

most cases, is a matter of statistical inference: the analyst does not possess a complete census of all 101 

species of interest in all places and time periods of interest (i.e., the statistical population) so must 102 

instead rely on a sample (the available species occurrence data). Straightforward inference in 103 

statistics is predicated on the assumption that the data are sampled randomly from the statistical 104 

population of interest (Swinscow, 1997). Otherwise, any statistics derived from that sample might be 105 

biased estimators of the corresponding population parameters (Driscoll et al., 2000), in this case 106 

temporal trends in species’ distributions. Hence, sampling biases (i.e., non-random sampling in 107 

relation to important features for inference) in species occurrence data can preclude the robust 108 

estimation of temporal trends in species’ distributions, unless those biases are well understood and 109 

can be mitigated appropriately (R. Boyd et al., 2021a; Pescott et al., 2019). 110 
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Perhaps the most striking example of geographic bias in the availability of species occurrence data is 111 

the disproportionately poor coverage of the tropics, where species richness is highest (Hughes et al., 112 

2021). For example, the Neotropics– which we define as South and Central America, Mexico and the 113 

Caribbean islands– hosts the world’s richest flora, and a high diversity of interactions with 114 

pollinators (Antonelli and Sanmartín, 2011). This region also hosts a great diversity of the major 115 

groups of pollinators, including the bees (Anthophila; Freitas et al., 2009; Moure et al., 2007), 116 

hoverflies (Syrphidae; Montoya, 2016), and two vertebrate taxa that are endemic to the region: 117 

hummingbirds (Trochilidae; Ellis-Soto et al., 2021) and leaf-nosed bats (Phyllostomatidae; Villalobos 118 

and Arita, 2010). And yet, whilst wild pollinators are the most important animals for crop production 119 

in many parts of the world (Garibaldi et al., 2013), there remain important knowledge gaps regarding 120 

their distributions in space and time.  121 

In this paper, we assess the suitability of species occurrence data within GBIF for estimating 122 

temporal trends in species’ distributions, and whether recent data mobilisation efforts have 123 

improved the situation. We focus on records of flower-visiting invertebrates and vertebrates 124 

collected across the Neotropical region over the period 1950-2019. We include four taxonomic 125 

groups in our analysis: bees (Anthophila), hoverflies (Syrphidae), leaf-nosed bats (Phyllostomidae), 126 

and hummingbirds (Trochilidae). We note that not all species of Phyllostomidae are flower visitors 127 

but include the whole group for simplicity. Generally, these taxa provide pollination services to a 128 

large fraction of flowering wild plants and cultivated crops, and comprise culturally iconic species 129 

and rarities of conservation importance (IPBES, 2019; Vieli et al., 2021). We begin by conducting a 130 

continental-scale assessment of the GBIF data for common forms of bias in the geographic, temporal 131 

and taxonomic dimensions. To conduct this assessment, we deploy several heuristics that each 132 

indicate the potential for some form of bias in the data (Boyd et al., 2021). To assess the extent to 133 

which digitization efforts can improve our ability to estimate trends in species’ geographical 134 

distributions, we identify two recent mobilisation efforts that have drastically increased the number 135 

of records available for bees in Chile (12,001 and 36,010 records, respectively; Lopez-Aliste and 136 

Fonturbel, 2021a, 2021b). We create a “pre-digitization” dataset by removing the records that were 137 

introduced via these two mobilization efforts. We then compare the pre-digitization dataset with the 138 

full dataset using three criteria: 1) the total quantity of data after various stages of filtering (e.g. 139 

removing records with spatial issues); 2) the extent of any potential biases; and 3) estimates of 140 

temporal trends in species’ distributions obtained by fitting statistical models to the data. 141 

Methods 142 

Data 143 

We extracted occurrence data for Anthophila (GBIF, 2021a, 2021b), Syrphidae (GBIF, 2021c), 144 

Phyllostomidae (GBIF, 2021d) and Trochilidae (GBIF, 2021e) collected in the Neotropics (defined 145 

here as South and Central America, Mexico and the Caribbean islands) over the period 1950 to 2019 146 

from GBIF. We used a bounding box (65 ºS to 40 ºN) to filter the data and subsequently removed 147 

records from the USA which fell within its limits. We used the coordinateCleaner R package (Zizka et 148 

al., 2019) to flag and remove records with various potential spatial issues: coordinates matching 149 

country centroids and capital cities (indicating imprecise geolocation of records from vague locality 150 



names), and locations of biodiversity institutes; and records with equal latitude and longitude which 151 

can indicate data entry errors. 152 

Data assessment  153 

Bias heuristics 154 

To assess the data for sampling biases, we used five data-driven heuristics. Although the goal is to 155 

draw species-level inferences, we apply these heuristics at the taxonomic group level, i.e. separately 156 

for the bees, hoverflies, hummingbirds and leaf-nosed bats. It is not possible to assess the data for 157 

sampling biases at the species level because they are presence-only: such data provide no 158 

information on sampling effort in space or time if a species was not detected. Instead, we use the 159 

records for all species in each taxonomic group as a proxy for the spatio-temporal distribution of 160 

sampling effort for that group (often called the “target group approach”; see e.g., Phillips et al., 161 

2009; Powney et al., 2019). 162 

Each of the five heuristics indicates the potential for bias in at least one of the spatial, temporal and 163 

taxonomic dimensions (R. Boyd et al., 2021b). Heuristics one and two are straightforward: the first is 164 

the total number of records for a taxonomic group, and the second is the proportion of species 165 

known to occur in the Neotropics that have been recorded (i.e., inventory completeness). We 166 

acknowledge that these are probably better described as measures of “coverage” than “bias”. 167 

However, when one looks at how they change over time (as we do here), then they indicate the 168 

potential for temporal biases in recording intensity and taxonomic coverage, respectively, both of 169 

which will be important to take into account for accurate inference. Information on the number of 170 

species known to occur in the Neotropics, derived from the literature, online datasets (specifically 171 

for Anthophila), specialists and authorities in each taxonomic group (among the authors), is used to 172 

calculate heuristic two (Table 1).  173 

The third heuristic is used to indicate preferential sampling of rare species. It is calculated by 174 

regressing the total number of records for each species on the number of grid cells (defined below) 175 

in which they have been recorded. Each species’ deviation from the fitted regression indicates the 176 

degree to which it is over- or under-sampled given its recorded range size (Barends et al., 2020). 177 

Extending this concept, we use the coefficient of variation (r2) from the model as a measure of 178 

“rarity bias”. This heuristic ranges from 0, indicating high bias (rare species are over-sampled relative 179 

to commoner species), to 1, indicating no bias. Note that where there is a negative correlation 180 

between recorded range size and sample size this heuristic becomes problematic to interpret; this 181 

problem did not arise here.  182 

The fourth heuristic provides a measure of geographic bias; specifically, it measures the degree to 183 

which the data deviate from a random distribution in geographic space. This measure is based on 184 

the Nearest Neighbour Index (NNI; Clark and Evans, 1954). The NNI is given as the ratio of the 185 

average nearest neighbour distance of the empirical sample (using the associated coordinates) to 186 

the average nearest neighbour distance of a random distribution of the same density across the 187 

same spatial domain. We simulated 15 random distributions of equal density to the occurrence data, 188 

which allowed us to present the uncertainty associated with the index. For our NNI, values may 189 

range from 0.00 to 2.15: values below 1 indicate that the data are more clustered than a random 190 

distribution, values of ~ 1 indicate that the data are randomly distributed, and values above 1 signify 191 



over-dispersion relative to a random distribution. We acknowledge that some records available on 192 

GBIF have been converted to point locations from, for example, gridded datasets. In these cases, 193 

coordinates are only approximate and the NNI may be distorted. 194 

The fifth and final heuristic indicates whether the same portion of geographic space has been 195 

sampled over time; variation in geographic sampling confounds space and time, and this can result 196 

in serious inferential problems if population trends have not been uniform over space. This heuristic 197 

comprises a gridded map indicating the number of time periods (defined below) in which each grid 198 

cell has been sampled. Of course, changes in the geographic distribution of records could indicate 199 

changes in species’ distributions and not a bias. However, we suggest that, when working at the 200 

taxon group level (i.e., across many species) and at a coarse resolution (see below), changes in which 201 

cells have records is most likely to reflect a bias. 202 

Table 1. The approximate number of species known to occur in the Neotropics for four flower-203 

visiting  taxonomic groups. 204 

Taxon Approximate number of 
species known to occur in the 
Neotropics 

Details 

Bees (Anthophila) 5000 Moure et al. (2007) 

Hoverflies (Syrphidae) 2000 Thompson et al. (2010) 
describe ~ 1850 species but 
this number has increased to 
date and now stands at around 
2000 (Rodrigo Barahona pers. 
comm). 

Leaf-nosed bats 
(Phyllostomidae) 

160 Villalobos and Arita (2010). 
Only a subset of species are 
nectarivorous but we include 
all 160 for simplicity.  

Hummingbirds (Trochilidae) 361 https://www.worldbirdnames.
org/new/bow/hummingbirds/ 
A small number (<10) of the 
361 species may not inhabit 
the Neotropics (Rodrigo 
Barahona pers. comm). 

 205 

It is important to conduct bias assessments at the spatio-temporal resolution (grain size) at which 206 

inferences about species’ distributions are desired. Otherwise, one might inadvertently “smooth 207 

over” biases evident only at finer scales (Pescott et al., 2019). In this case, preliminary screening 208 

indicated that the data clearly would not permit fine-scale inferences such as, say, annual estimates 209 

of species’ distributions at 10 km. For this reason, we conducted our assessment in seven decadal 210 

time periods from 1950 to 2019 (01/01/1950-31/12/1959, etc.), and at a spatial resolution of 1⁰. It 211 

should be noted that 1⁰ grid cells vary in size in the longitudinal dimension from 111 km at the 212 
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equator to 62 km at 56⁰ S, which is roughly the southerly tip of South America. We calculate the first 213 

four heuristics (all but the maps showing the number of decades in which each grid cell was 214 

sampled) separately for each of the seven decades and present the results as time-series. 215 

Digitization case study 216 

Data 217 

To determine the extent to which the digitization of historic collections can improve our ability to 218 

estimate trends in species’ distributions, we focussed on two recent mobilisation efforts in Chile. The 219 

first comprises 36,010 records of wild bees in Chile collected over the period 1917 to 2010 (Lopez-220 

Aliste and Fonturbel, 2021b; Lopez-Aliste et al., 2021). This dataset was added to GBIF on April 22nd 221 

2021. The second dataset comprises 12,001 records of flower-visiting insects (mainly bees) collected 222 

in Chile over the period 1905 to 2010 (Lopez-Aliste and Fonturbel, 2021a). This dataset was added to 223 

GBIF on January 7th 2021. 224 

Utility of data for trend estimation 225 

To compare the utility of the GBIF data before and after the addition of the two datasets described 226 

above, we focussed on Chile, where the newly-mobilised data were collected, and on the bees 227 

(Anthophila), because both datasets include a large number of records for this taxon. We began by 228 

comparing the total quantity of data before and after digitization, the quantity of records with no 229 

spatial issues and the total number of species represented. We then used the five heuristics 230 

described earlier to compare the biases in the data pre- and post-digitization. Finally, we compared 231 

estimated temporal trends in Anthophila distributions in Chile derived from GBIF before and after 232 

the additional data became available. 233 

Trend estimation 234 

To estimate temporal trends in bee distributions in Chile, we used three statistical models.  These 235 

include the model of Telfer et al. (2002), and two variants of the “reporting rate” model (Franklin, 236 

1999): the basic model (RR) and a slightly more complex model which includes a random site (grid 237 

cell) effect (RR + site; Roy et al., 2012). These models have been discussed at length elsewhere (Isaac 238 

et al., 2014; Pescott et al., 2019). Each of the models provides a species-specific measure of change 239 

in range size after attempting to correct for changes in recording intensity (see the supplementary 240 

material for full details of the models used here). We fitted the RR models at the same resolution as 241 

the bias assessment: 1⁰ grid cells in decadal time periods. The Telfer method is slightly different in 242 

that it can only be used to compare range sizes between two time periods; hence, we designated the 243 

first three and last three decades in our analysis as the first and second periods, respectively (data 244 

from the decade in between these periods were not used to fit this model). All models were fitted 245 

using the R (R Core Team, 2019) package sparta (August et al., 2020). 246 

To assess the extent to which the digitization of the historic data has changed our ability to estimate 247 

trends in species’ distributions, we fitted models to both the pre- and post-digitization datasets and 248 

compared the predictions for each species to determine whether the models made similar estimates 249 

for each dataset. Whilst this approach enables us to assess whether the predictions change due to 250 

the addition of the newly digitised data, it does not necessarily indicate whether the predictions 251 

have improved in the sense of being closer to the truth. To make a simple assessment of whether 252 

the models improved with the addition of the new data, we focused on one species for which we 253 

have clear evidence of change in its distribution range: Bombus terrestris, which was first introduced 254 



to Chile in 1997-98 and now occupies the entire latitudinal range of the country as well as much of 255 

southern Argentina (Fontúrbel et al., 2021; Montalva et al., 2017). Accurate models should capture 256 

the large expansion for B. terrestris. Unfortunately, the Telfer model is not suitable for species that 257 

were not observed in the first time period (Telfer et al., 2002), so we cannot predict the extent of 258 

the B. terrestris expansion using this method. 259 

Results 260 

Continental-scale data assessment 261 

A plot of the relative number of records against time (Fig. 1A) clearly indicates a temporal bias in 262 

data quantity. The number of records of bees, hoverflies, and leaf-nosed bats in each decade is 263 

highly variable with no obvious directional trend. The number of records for hummingbirds, on the 264 

other hand, shows a marked increase in recent decades (2000-2019). 265 

In addition to temporal bias in data quantity, the data are also biased taxonomically, and the extent 266 

of these biases varies over time. First, for all taxa, the proportion of known species recorded within 267 

GBIF is appreciably  < 1. The leaf-nosed bats and hummingbirds are, however, best represented: in 268 

the early decades around 75% of species in these groups were recorded and in the later decades this 269 

increased to almost 100%. Data are not available for the vast majority of bee and hoverfly species 270 

(Fig. 1B). Second, for most groups, rare species tend to be overrepresented in the data. Recall that 271 

the taxonomic bias index in Fig. 1C is the r2 from a regression of the number of records on recorded 272 

range size for each species. For bees, leaf-nosed bats and hummingbirds, the index is generally high 273 

in the early decades (≥ 0.7); this indicates low potential for selective sampling of rare species. 274 

However, the indices fall in later decades which indicates an increased potential for preferential 275 

sampling of rare species. The data for hoverflies are most variable in terms of potential rarity bias 276 

and contrast with the other groups in that the potential bias is less severe in the later decades. For 277 

all groups, there are some decades in which there appears to have been selective sampling of rare 278 

species. 279 

To reveal the potential for spatial biases in the data, we looked at the degree to which they are 280 

clustered in particular portions of the Neotropics using the NNI. For all groups, and in all decades, 281 

the data are more clustered than would be expected by chance (Fig. 1D). Whilst the NNI indicates 282 

that the data depart from a random distribution in geographic space, it cannot determine to what 283 

extent this reflects sampling biases and to what extent it reflects the true distributions of a taxon. 284 

We draw on information from additional sources to discuss the potential for geographic sampling 285 

biases in the Discussion. 286 

To establish whether any portions of the Neotropics have been consistently sampled over time, we 287 

mapped the number of decades in which each 1⁰ grid cell was sampled. For each group, there are 288 

small clusters of cells that have been sampled across decades (Figs 1E-H). All groups have been 289 

relatively consistently sampled in Mexico. Bees and hoverflies were also sampled relatively 290 

consistently across decades in Chile. Hummingbirds and leaf-nosed bats were sampled consistently 291 

in most decades over large parts of the Andes in Ecuador and Colombia. In summary, there are 292 

relatively small parts of the Neotropics that have been reasonably well-sampled for all groups but 293 

most grid cells (of those that have been sampled) were only sampled in a small number of decades. 294 



 295 

Figure 1. Heuristics indicating the potential for bias in GBIF data for bees (Anthophila, green lines), 296 

hoverflies (Syrphidae, purple lines), leaf-nosed bats (Phyllostomidae, orange lines) and 297 

hummingbirds (Trochilidae, pink lines) across South and Central America. The data are assessed in 298 

seven decades between 1950 and 2019 (01/01/1950-31/12/1959,... 01/01/2010-31/12/2019). Panel 299 

A shows the number of records for each taxon in each of the seven decades in our analysis; these 300 

values are normalized by dividing by the number of records in the best-sampled decade per group 301 

for visual purposes. Panel B shows the proportion of species known to occur in the Neotropics that 302 

were recorded. Panel C shows an index of proportionality between species’ recorded range sizes and 303 

the number of times they have been recorded in each decade (0 = low and 1 = high). Panel D shows 304 

the nearest neighbour index for each taxon and decade which indicates the degree to which the data 305 

are clustered (values further from 1 are more clustered). Shaded regions denote the 2.5th and 97.5th 306 

percentile calculated by comparing the data to 30 random distributions. Panels E-H show the 307 

number of decades in which each 1⁰ grid cell was sampled for each taxon. 308 

Effects of data mobilisation in Chile 309 

Data quantity  310 

The two newly-mobilised datasets drastically increased the availability of Anthophila records 311 

collected in Chile between 1950 and 2019 on GBIF (Table 2). The total number of records and the 312 

number of records without common spatial issues (see Methods) increased approximately sixfold; 313 

the number of records with no spatial issues and which are identified to species level increased 314 

approximately sevenfold; and the number of species recorded increased from 326 to 356 (Table 2). 315 

The increase in species recorded in GBIF represents a move from 70% to 77% of the 464 bee species 316 

known to occur in Chile (Lopez-Aliste and Fonturbel, 2021b). 317 

Table 2. Quantity of data on Anthophila collected in Chile over the period 1950-2019 before and 318 

after the addition of the newly-digitized records (after Lopez-Aliste and Fonturbel, 2021a, 2021b) 319 



Metric Pre digitization Post digitization 

Total number of records 6,635 38,807 

Number of records without 
common spatial issues 

6,413 37,863 

Number of records with no 
spatial issues and identified to 
species level 

5,574 37,024 

Total number of species 326 356 

Biases 320 

Whilst the newly-digitized data drastically increased the quantity of data available for bees in Chile, 321 

it did not reduce all forms of bias, and, in some cases, increased their severity.  For example, Fig. 2A 322 

shows that the vast majority of the new data were collected in decades two, three and four (1960–323 

1989). A corollary is that the addition of these data introduced strong temporal biases in data 324 

quantity (Fig. 2A, 2B). Moreover, in the full dataset, on average, preferential sampling of rare species 325 

is more apparent (Fig. 2C). Finally, the addition of new records did little to increase the geographical 326 

representativeness of the data: the NNIs indicate a similar, if not slightly greater, departure from a 327 

random distribution in the full dataset (Fig. 2D). However, we remind the reader that the NNI cannot 328 

determine whether the data are non-randomly distributed due to sampling biases or a taxon’s true 329 

distribution. 330 

Whilst the newly-digitised records did little to reduce some forms of bias in the available data, they 331 

improved the situation in other respects. The addition of the new data resulted in a more consistent 332 

level of taxonomic coverage across decades (~ 30-40 % of species known to occur in Chile; Fig. 2B). 333 

They also increased the number of grid cells that have records in multiple decades, with many grid 334 

cells even being sampled in all decades (Figs 2E and F). 335 



 336 

Figure 2. Heuristics indicating the potential for bias in GBIF data for bees (Anthophila) before (blue 337 

lines) and after (purple lines) the addition of two newly-digitized datasets in Chile (see text). The 338 

data are assessed in seven decades between 1950 and 2019 (01/01/1950-31/12/1959,..., 339 

01/01/2010-31/12/2019). Panel A shows the number of records in each of the seven decades in our 340 

analysis. Panel B shows the proportion of species known to occur in Chile recorded in each decade. 341 

Panel C shows an index of proportionality between species’ range sizes and the number of times 342 

they have been recorded in each decade (0 = low and 1 = high). Panel D shows the nearest 343 

neighbour index for each decade which indicates the degree to which the data are clustered (values 344 

further from 1 are more clustered). Panels E and F show the number of decades in which each 1⁰ 345 

grid cell was sampled. 346 

Trend estimates 347 

It was not possible to fit all models for all 146 species of Anthophila for which data are available in 348 

Chile, particularly when using the pre-digitization data. For the Telfer model we omitted species that 349 

were not recorded in at least two grid cells in the first time period: see Telfer et al. (2002) and the 350 

supplementary material for the rationale. As a result, it was only possible to estimate distribution 351 

changes for 32 species using the Telfer method with the pre-digitization data. A separate problem 352 

emerged when fitting the relatively complex RR + site model using the pre-digitization data: models 353 

for 21 species returned “singular fits”. Singular fits occur where the estimated variance of the 354 

random intercept is 0, which can indicate that the model is overfitted. As a result, we only included 355 

the 304 species for which RR + site models were successfully fitted, but also fitted the simpler RR 356 

models which do not include random effects; these models were successfully fitted for all 356 357 

species. As we wanted to compare the pre- and post-digitization models, for each model type, we 358 

were limited to including only those species whose distribution changes could be estimated using 359 

the pre-digitization data (even though many more species’ distributions could be estimated using 360 

the post-digitization data). 361 



Agreement between models fitted using the pre- and post-digitization is generally strong, but there 362 

is some variation between model types (Fig. 3). The correlations between predictions are 0.84, 0.83 363 

and 0.52 for the Telfer, RR and RR+site models, respectively (Pearson’s r; p < 0.001 in all cases; n = 364 

32, 356 and 325, respectively). 365 

 366 

Figure 3. Scatterplots showing predicted pre- and post-digitization indices of change in range size for 367 

each bee species in Chile; 1:1 lines are shown for context. Each panel shows a different model 368 

formulation (see text). The large blue points denote Bombus terrestris. An estimate of change could 369 

not be produced for B. terrestris using the Telfer method (panel A) due to an absence of records 370 

early in the time series (see Telfer et al., 2002). Note that respectively one and three extreme 371 

outliers are omitted in panels B and C to enable better visualization of the main cluster of species. 372 

Darker points indicate clusters of predictions overlapping for multiple species. Also note that the 373 

sign of the Telfer model predictions in panel A does not necessarily indicate whether a species is 374 

expanding or declining in absolute terms; rather, they give each species’ change relative to other 375 

species in the group. 376 

To make a simple assessment of whether the newly-digitized data improve our ability to estimate 377 

temporal trends in species’ distributions, we focused on B. terrestris, which has been continually 378 

introduced to Chile since the 1990s (i.e., midway through the time series) and has expanded widely 379 

since. We were not able to estimate a trend for B. terrestris using the Telfer method for reasons 380 

described in the Methods. For both the pre- and post-digitization datasets, the RR and RR+site 381 

models predict that B. terrestris’ range size has increased, as one would expect. The addition of the 382 

newly-mobilised data had little effect on the predictions; this is indicated by the fact that they fall on 383 

the 1:1 line on a plot of the predictions based on the pre-digitization data vs those based on the 384 

post-digitization data (Fig. 3). 385 

Discussion 386 

In this paper, we have demonstrated the need for analysts to use publicly available species 387 

occurrence data with caution when estimating trends in species’ distributions. We began by 388 

providing evidence of sampling biases in available data on the occurrences of bees, hoverflies, leaf-389 

nosed bats, and hummingbirds collected in the Neotropics. We also showed that two recent data 390 

digitization efforts reduced some biases in the bee records collected in Chile, but introduced others. 391 

Finally, we showed that, despite a dramatic increase in data quantity, statistical models fitted to the 392 



pre- and post-digitization datasets produced broadly similar estimates of temporal trends in species’ 393 

distributions (Fig. 3). 394 

The data-driven heuristics used here indicate non-random sampling along the axes of space, time 395 

and taxonomy. However, one might not expect presence-only data to be randomly distributed; for 396 

example, it is possible that the data are non-randomly distributed across the continent because the 397 

taxa are truly concentrated in certain portions of geographic space. We showed that the data for the 398 

leaf-nosed bats and hummingbirds were non-randomly distributed (Fig. 1D) due to the availability of 399 

many records in the Andean region in Ecuador and Colombia (Fig. 1G and H and Figs 3 and 4 in the 400 

supplementary material). This likely reflects the fact that these taxa are most diverse in this region 401 

(Ellis-Soto et al., 2021; Villalobos and Arita, 2010). Similarly, the distribution of data for bees is fairly 402 

consistent with areas of high species richness as estimated by Orr et al. (2021). For hoverflies, 403 

however, the non-random distribution of records more likely reflects sampling biases and the fact 404 

that most information remains undigitized in museums or other collections. For example, there is 405 

almost a complete absence of data in Venezuela and Paraguay which is known to reflect a lack of 406 

monitoring (Montoya et al., 2012). There are also data on hoverfly occurrences from Colombia 407 

(Montoya, 2016), Brazil (Borges and Couri, 2009), Ecuador (Marín-Armijos et al., 2017) and Chile 408 

(Barahona-Segovia et al., 2021) that are yet to be digitized. 409 

Much of the data for all taxa were collected in Mexico. In the case of the bees and hoverflies this 410 

could reflect the fact this region has suitable habitat for many species. Mexico is a hotspot of 411 

endemic plants on which many species may depend (Myers et al., 2000), and, indeed, it hosts one of 412 

the richest bee faunas worldwide (Orr et al., 2021). However, Mexico is not considered a hotspot for 413 

leaf-nosed bats and hummingbirds (Ellis-Sotto et al., 2021; Villalobos and Arita, 2010), so, for these 414 

taxa, the large number of records in this region likely reflects disproportionately high sampling 415 

effort. The fact that non-random distributions of presence-only data can reflect both sampling biases 416 

and species’ true distributions reinforces the need for analysts to consult other sources of 417 

information, such as regional experts, in addition to the available data itself.  418 

Notwithstanding the fact that the data for some taxa might be more geographically representative 419 

than the data-driven heuristics suggest, it is not possible to conclude that the available data for any 420 

of the taxon groups are free of bias. There are no data held in GBIF for the vast majority of known 421 

bee and hoverfly species (Fig. 1B), perhaps because the few experts in the field tend to focus on a 422 

particular subset of species, or because focus has shifted to other taxa (e.g. hummingbirds) in recent 423 

years. Furthermore, for all taxa except perhaps bees, rare species are overrepresented in the 424 

available data (Fig. 1C), whether because of preferential sampling or biases introduced at the 425 

mobilisation stage. Consequently, the data can say little about trends in many species’ distributions, 426 

and those species for which there are data are more likely to be rare. In short, the data pertain to an 427 

unrepresentative sample of species. 428 

In addition to taxonomic biases, Figs 1E-H indicate that, for grid cells with > 1 record, most have only 429 

been sampled in a small number of decades. It follows that the geographic distribution of sampling 430 

has changed over time. This can cause serious problems for the estimation of temporal trends in 431 

species’ distributions because changes in space are confounded with changes in time (Boyd et al., 432 

2021). For example, a species might fare well in one portion of the continent, and less well in 433 

another; if the data were sampled from the former portion in one period, and the latter portion in 434 



the next, then one might come to the artefactual conclusion that the species is in decline. Our 435 

results clearly demonstrate the need for analysts to properly scrutinise such data before using them 436 

to draw inferences about trends in species’ distributions. 437 

The mobilisation of historic records is the most direct (and arguably cost-effective) way to 438 

understand biodiversity change over the last few hundred years (Nelson and Ellis, 2019; Page et al., 439 

2015). However, to our knowledge, there have been no explicit comparisons of the utility of 440 

available data for a given inferential goal before and after the mobilisation of such records. We 441 

identified two recent mobilisation efforts that increased the quantity of data on bee occurrences in 442 

Chile approximately sixfold. The addition of these records had a mixed effect on sampling biases in 443 

the available data: a larger fraction of bee species are represented in the post-digitization data 444 

across decades, and more grid cells had been sampled in more decades; however, across decades 445 

there are stronger biases towards rare species and decades two to four (1960-1989). Whilst perhaps 446 

intuitive to some, the point that more data does not necessarily equal less bias is an important one, 447 

and has the potential to be overlooked given the abundance of records now available to ecologists. 448 

In terms of estimates of temporal trends in bee distributions in Chile, the addition of the newly-449 

mobilised data had only a modest effect. This is indicated by fairly strong correlations between the 450 

predictions from the models fitted to the pre-digitisation data and those fitted to the full dataset 451 

(Fig. 3). It is not clear whether the newly-mobilised data improved the accuracy of the models. We 452 

looked at the predictions for B. terrestris which is known to have expanded widely since its 453 

introduction in the 1990s. The RR and RR+site models do predict an expansion of B. terrestris, but 454 

those predictions are roughly identical regardless of whether they are based on the pre-digitisation 455 

data or the full dataset. Given the tendency towards recording of rare species and lack of new 456 

records in the later decades within the full dataset, this may indicate undersampling of B. terrestris 457 

relative to other bee species. Ideally, we would also have tested whether the models were able to 458 

detect a decline in species’ distributions. However, to do so we would need to identify a species for 459 

which there is clear evidence of a range decline independent of GBIF data. Whilst some species are 460 

known to be declining in terms of population size (e.g., Morales et al., 2013), we were not able to 461 

confidently identify a species that should be declining in terms of occupied 1⁰ cells. Based on the 462 

predictions for B. terrestris alone, it is not possible to conclude that the mobilisation of historic 463 

records improves our ability to estimate trends in species’ distributions in this case. 464 

Targets for data mobilisation have previously been defined in terms of data quantity. For example, 465 

GBIF aimed to serve one billion records by 2010 (Townsend Peterson et al., 2015). We share the 466 

sentiment of others (Meyer et al., 2015; Townsend Peterson et al., 2015) that a better strategy 467 

would be to target the mobilisation of data that would be most informative for some inferential 468 

goal. Studies like ours could be used as “gap analyses” to establish where best to target new 469 

mobilisation efforts along the axes of space, time and taxonomy. Such studies could also inform 470 

decisions on where best to focus future adaptive or targeted sampling effort and for which taxa. 471 

However, we acknowledge that there will always be trade-offs between the mobilisation or sampling 472 

strategy (e.g. to reduce bias), funding, logistics, the availability of experts (particularly taxonomists) 473 

and local interests.  474 

There remain substantial gaps in knowledge about the status of pollinating species worldwide, and 475 

the effectiveness of measures to protect them, with evidence largely biased toward Europe and 476 



North America (Dicks et al., 2016; Zattara and Aizen, 2021). Our study reinforces the urgent need for 477 

strategic data mobilisation, and for long-term standardized monitoring of flower-visiting species 478 

across Neotropical America. The aim should be to get as close as possible to a representative sample 479 

along the axes of space, time and taxonomy. This will be challenging both logistically and financially, 480 

but the benefits would almost certainly outweigh the costs (Breeze et al., 2021).  481 

Data availability  482 

The GBIF data can be accessed using the DOIs given in the reference list. All code needed to fully 483 

reproduce our analyses can be found here https://github.com/robboyd/SURPASS_WP1.  484 

Acknowledgements 485 

RJB, GP, RS, JO and CC were funded by the SURPASS2 project under the Newton Fund Latin America 486 

Biodiversity Programme: Biodiversity - Ecosystem services for sustainable development, awarded by 487 

the UKRI Natural Environment Research Council (NERC) NE/S011870/2. TMF and AMS were funded 488 

by the SURPASS2 project in Brazil, awarded by Sã o Paulo Research Foundation (FAPESP) project 489 

#2018/14994-1. AMS was also funded by Conselho Nacional de Desenvolvimento Científico e 490 

Tecnológico - Brazil (CNPq) grant number 312.605/2018-8. RMBS was funded by FONDECYT grant 491 

3200817. MA, LM, CLM, EEZ were funded by the SURPASS2 project in Argentina RD 1984/19, 492 

awarded by CONCICET. LFP, FF, MLA were funded by the SURPASS2 project in Chile NE/S011870/1, 493 

awarded by the Chilean Agency of Research and Development. The contribution of OLP was 494 

supported by the Natural Environment Research Council award number NE/R016429/1 as part of the 495 

UK Status, Change and Projections of the Environment (UK- SCAPE) programme delivering National 496 

Capability. 497 

References  498 

Antonelli, A., Sanmartín, I., 2011. Why are there so many plant species in the Neotropics? Taxon 60, 499 
403–414. doi:10.1002/tax.602010 500 

August, T., Powney, G., Outhwaite, C., Harrower, C., Hill, M., Hatfield, J., Mancini, F., Isaac, N., 2020. 501 
sparta: Trend Analysis for Unstructured Data. R package version 0.2.18. 502 

Barahona-Segovia, R., Riera, P., Paninao-Monsalvez, L., Guzmán, V., Henriquez-Piskulich, P., 2021. 503 
Updating the knowledge of the flower flies (Diptera: Syrphidae) from Chile: Illustrated catalog, 504 
extinction risk and biological notes. Zootaxa 1–178. 505 

Barends, J.M., Pietersen, D.W., Zambatis, G., Tye, D.R.C., Maritz, B., 2020. Sampling bias in reptile 506 
occurrence data for the Kruger National Park. Koedoe 62, 1–9. doi:10.4102/koedoe.v62i1.1579 507 

Boakes, E.H., McGowan, P.J.K., Fuller, R.A., Chang-Qing, D., Clark, N.E., O’Connor, K., Mace, G.M., 508 
2010. Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. 509 
PLoS Biol. 8. doi:10.1371/journal.pbio.1000385 510 

Borges, Z.M., Couri, M.S., 2009. Revision of Toxomerus Macquart, 1855 (Diptera: Syrphidae) ..., 511 
Zootaxa. 512 

Boyd, R., Powney, G., Burns, F., Danet, A., Duchenne, F., Grainger, M., Jarvis, S., Martin, G., Nilsen, 513 
E.B., Porcher, E., Stewart, G., Wilson, O., Pescott, O., 2021a. ROBITT: a tool for assessing the 514 

https://github.com/robboyd/SURPASS_WP1


risk-of-bias in studies of temporal trends in ecology. EcoEvoRxiv. doi:10.32942/osf.io/rhvey 515 

Boyd, R., Powney, G., Carvell, C., Pescott, O.L., 2021b. occAssess: An R package for assessing 516 
potential biases in species occurrence data. Ecol. Evol. doi:10.1002/ece3.8299 517 

Breeze, T.D., Bailey, A.P., Balcombe, K.G., Brereton, T., Comont, R., Edwards, M., Garratt, M.P., 518 
Harvey, M., Hawes, C., Isaac, N., Jitlal, M., Jones, C.M., Kunin, W.E., Lee, P., Morris, R.K.A., 519 
Musgrove, A., Connor, R.S.O., Peyton, J., Potts, S.G., Roberts, S.P.M., Roy, D.B., Roy, H.E., Tang, 520 
C.Q., Vanbergen, A.J., Carvell, C., 2021. Pollinator monitoring more than pays for itself 44–57. 521 
doi:10.1111/1365-2664.13755 522 

Clark, P., Evans, F., 1954. Distance to Nearest Neighbour as a Measure of Spatial Relationships in 523 
Populations. Ecology 35, 445–453. doi:10.1007/BF02315373 524 

Cunningham, C.A., Thomas, C.D., Morecroft, M.D., Crick, H.Q.P., Beale, C.M., 2021. The effectiveness 525 
of the protected area network of Great Britain. Biol. Conserv. 257, 109146. 526 
doi:10.1016/j.biocon.2021.109146 527 

Daru, B.H., Park, D.S., Primack, R.B., Willis, C.G., Barrington, D.S., Whitfeld, T.J.S., Seidler, T.G., 528 
Sweeney, P.W., Foster, D.R., Ellison, A.M., Davis, C.C., 2018. Widespread sampling biases in 529 
herbaria revealed from large-scale digitization. New Phytol. 217, 939–955. 530 
doi:10.1111/nph.14855 531 

Delisle, F., Lavoie, C., Jean, M., Lachance, D., 2003. Reconstructing the spread of invasive plants: 532 
Taking into account biases associated with herbarium specimens. J. Biogeogr. 30, 1033–1042. 533 
doi:10.1046/j.1365-2699.2003.00897.x 534 

Dicks, B.L. V, Viana, B., Bommarco, R., Brosi, B., Arizmendi, C., Cunningham, S.A., Galetto, L., Hill, R., 535 
Lopes, V., Pires, C., Taki, H., 2016. What governments can do to safeguard pollination services. 536 
Science (80-. ). 354. doi:doi: 10.1126/science.aai9226 537 

Driscoll, P., Lecky, F., Crosby, M., 2000. An introduction to statistical inference - 3. J. Accid. Emerg. 538 
Med. 17, 357–363. doi:10.1136/emj.17.5.357 539 

Ellis-Soto, D., Merow, C., Amatulli, G., Parra, J.L., Jetz, W., 2021. Continental-scale 1 km hummingbird 540 
diversity derived from fusing point records with lateral and elevational expert information. 541 
Ecography (Cop.). 44, 640–652. doi:10.1111/ecog.05119 542 

Ellwood, E.R., Dunckel, B.A., Flemons, P., Guralnick, R., Nelson, G., Newman, G., Newman, S., Paul, 543 
D., Riccardi, G., Rios, N., Seltmann, K.C., Mast, A.R., 2015. Accelerating the digitization of 544 
biodiversity research specimens through online public participation. Bioscience 65, 383–396. 545 
doi:10.1093/biosci/biv005 546 

Faith, D., Collen, B., Ariño, A., Patricia Koleff, P.K., Guinotte, J., Kerr, J., Chavan, V., 2013. Bridging the 547 
biodiversity data gaps: Recommendations to meet users’ data needs. Biodivers. Informatics 8, 548 
41–58. doi:10.17161/bi.v8i2.4126 549 

Fontúrbel, F.E., Murúa, M.M., Vieli, L., 2021. Invasion dynamics of the European bumblebee Bombus 550 
terrestris in the southern part of South America. Sci. Rep. 11, 1–7. doi:10.1038/s41598-021-551 
94898-8 552 

Franklin, D.C., 1999. Evidence of disarray amongst granivorous bird assemblages in the savannas of 553 
northern Australia, a region of sparse human settlement. Biol. Conserv. 90, 53–68. 554 
doi:10.1016/S0006-3207(99)00010-5 555 



Freitas, B.M., Imperatriz-fonseca, V.L., Medina, L.M., De, A., Peixoto, M., Galetto, L., Nates-parra, G., 556 
Javier, J.G., Freitas, B.M., Imperatriz-fonseca, V.L., Medina, L.M., Peixoto, A.D.M., Breno, M.F., 557 
Lúcia, V., Luis, M.M., 2009. Diversity , threats and conservation of native bees in the Neotropics 558 
To cite this version : HAL Id : hal-00892033 Review article Diversity , threats and conservation 559 
of native bees in the Neotropics *. Apidologie 40, 332–346. doi:10.1051/apido/2009012 560 

Garibaldi, L.A., Steffan-Dewenter, I., Winfree, R., Aizen, M.A., Bommarco, R., Cunningham, S.A., 561 
Kremen, C., Carvalheiro, L.G., Harder, L.D., Afik, O., Bartomeus, I., Benjamin, F., Boreux, V., 562 
Cariveau, D., Chacoff, N.P., Dudenhöffer, J.H., Freitas, B.M., Ghazoul, J., Greenleaf, S., Hipólito, 563 
J., Holzschuh, A., Howlett, B., Isaacs, R., Javorek, S.K., Kennedy, C.M., Krewenka, K.M., Krishnan, 564 
S., Mandelik, Y., Mayfield, M.M., Motzke, I., Munyuli, T., Nault, B.A., Otieno, M., Petersen, J., 565 
Pisanty, G., Potts, S.G., Rader, R., Ricketts, T.H., Rundlöf, M., Seymour, C.L., Schüepp, C., 566 
Szentgyörgyi, H., Taki, H., Tscharntke, T., Vergara, C.H., Viana, B.F., Wanger, T.C., Westphal, C., 567 
Williams, N., Klein, A.M., 2013. Wild pollinators enhance fruit set of crops regardless of honey 568 
bee abundance. Science (80-. ). 340, 1608–1611. doi:10.1126/science.1230200 569 

GBIF.org, 2021. GBIF Home Page. Available from: https://www.gbif.org [WWW Document]. 570 

GBIF, 2021a. GBIF.org (8 November 2021) GBIF Occurrence Download (Bees1). 571 
doi:https://doi.org/10.15468/dl.xn6wyb 572 

GBIF, 2021b. GBIF.org (8 November 2021) GBIF Occurrence Download (Bees2). 573 
doi:https://doi.org/10.15468/dl.nt2caq 574 

GBIF, 2021c. GBIF.org (8 November 2021) GBIF Occurrence Download (Syrphidae). 575 
doi:https://doi.org/10.15468/dl.ph3pv6 576 

GBIF, 2021d. GBIF.org (8 November 2021) GBIF Occurrence Download (Phyllostomidae). 577 
doi:https://doi.org/10.15468/dl.2626e4 578 

GBIF, 2021e. GBIF.org (8 November 2021) GBIF Occurrence Download (Trochilidae). 579 
doi:https://doi.org/10.15468/dl.nzda7x 580 

IPBS, 2019. Global assessment report on biodiversity and ecosystem services of the 581 
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Debating 582 
Nature’s Value. 583 

Isaac, N.J.B., Pocock, M.J.O., 2015. Bias and information in biological records. Biol. J. Linn. Soc. 115, 584 
522–531. doi:10.1111/bij.12532 585 

Isaac, N.J.B., van Strien, A.J., August, T.A., de Zeeuw, M.P., Roy, D.B., 2014. Statistics for citizen 586 
science: Extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–587 
1060. doi:10.1111/2041-210X.12254 588 

Lopez-Aliste, M., Fonturbel, F., 2021a. Chilean flower visitors. Pontificia Universidad Católica de 589 
Valparaíso. Occurrence dataset. doi:https://doi.org/10.15468/wwjm5s accessed 590 

Lopez-Aliste, M., Fonturbel, F., 2021b. Wild bees of Chile - The PUCV collection. Version 1.5. 591 
Pontificia Universidad Católica de Valparaíso. Occurrence dataset. 592 
doi:https://doi.org/10.15468/6knwyq 593 

Marín-Armijos, D., Quezada-Ríos, N., Soto-Armijos, C., Mengual, X., 2017. Checklist of the flower flies 594 
of Ecuador (Diptera, syrphidae). Zookeys 2017, 163–199. doi:10.3897/zookeys.691.13328 595 

Meyer, C., Kreft, H., Guralnick, R., Jetz, W., 2015. Global priorities for an effective information basis 596 



of biodiversity distributions. Nat. Commun. 6. doi:10.1038/ncomms9221 597 

Moilanen, A., 2007. Landscape Zonation, benefit functions and target-based planning: Unifying 598 
reserve selection strategies. Biol. Conserv. 134, 571–579. doi:10.1016/j.biocon.2006.09.008 599 

Montalva, J., Sepulveda, V., Vivallo, F., Silva, D.P., 2017. New records of an invasive bumble bee in 600 
northern Chile: expansion of its range or new introduction events? J. Insect Conserv. 21, 657–601 
666. doi:10.1007/s10841-017-0008-x 602 

Montoya, A.L., 2016. Family syrphidae, Zootaxa. doi:10.11646/zootaxa.4122.1.39 603 

Montoya, A.L., Pérez, S.P., Wolff, M., 2012. The Diversity of Flower Flies (Diptera: Syrphidae) in 604 
Colombia and Their Neotropical Distribution. Neotrop. Entomol. 41, 46–56. 605 
doi:10.1007/s13744-012-0018-z 606 

Morales, C.L., Arbetman, M.P., Cameron, S.A., Aizen, M.A., Morales, C.L., Arbetman, M.P., Cameron, 607 
S.A., Aizen, M.A., 2013. Rapid ecological replacement of a native bumble bee by invasive 608 
species. Front. Ecol. Environ. doi:10.1890/120321 609 

Moure, J.S., Urban, D., Melo, G.A.R., 2007. Catalogue of the bees (Hymenoptera, Apoidea) in the 610 
Neotropical region. Apidologie. doi:10.1051/apido:2008033 611 

Nelson, G., Ellis, S., 2019. The history and impact of digitization and digital data mobilization on 612 
biodiversity research. Philos. Trans. R. Soc. B Biol. Sci. 374, 2–10. doi:10.1098/rstb.2017.0391 613 

Newbold, T., 2010. Applications and limitations of museum data for conservation and ecology, with 614 
particular attention to species distribution models. Prog. Phys. Geogr. 34, 3–22. 615 
doi:10.1177/0309133309355630 616 

Orr, M.C., Hughes, A.C., Chesters, D., Pickering, J., Zhu, C.D., Ascher, J.S., 2021. Global Patterns and 617 
Drivers of Bee Distribution. Curr. Biol. 31, 451–458.e4. doi:10.1016/j.cub.2020.10.053 618 

Oswald, P.., Preston, C.D., 2011. John Ray’s Cambridge Catalogue (1660)., (Eds). ed. Cambridge 619 
University Press, London. 620 

Page, L.M., Macfadden, B.J., Fortes, J.A., Soltis, P.S., Riccardi, G., 2015. Digitization of Biodiversity 621 
Collections Reveals Biggest Data on Biodiversity. Bioscience 65, 841–842. 622 
doi:10.1093/biosci/biv104 623 

Pescott, O.L., Humphrey, T.A., Stroh, P.A., Walker, K.J., 2019. Temporal changes in distributions and 624 
the species atlas: How can British and Irish plant data shoulder the inferential burden? Br. Irish 625 
Bot. 1, 250–282. doi:10.33928/bib.2019.01.250 626 

Pescott, O.L., Walker, K.J., Pocock, M.J.O., Jitlal, M., Outhwaite, C.L., Cheffings, C.M., Harris, F., Roy, 627 
D.B., 2015. Ecological monitoring with citizen science: The design and implementation of 628 
schemes for recording plants in Britain and Ireland. Biol. J. Linn. Soc. 115, 505–521. 629 
doi:10.1111/bij.12581 630 

Petersen, T.K., Austrheim, G., Speed, J.D.M., Grøtan, V., 2021. Species data for understanding 631 
biodiversity dynamics : The what , where and when of species occurrence data collection 1–17. 632 
doi:10.1002/2688-8319.12048 633 

Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J., Ferrier, S., 2009. Sample 634 
selection bias and presence-only distribution models: Implications for background and pseudo-635 
absence data. Ecol. Appl. 19, 181–197. doi:10.1890/07-2153.1 636 



Powney, G.D., Carvell, C., Edwards, M., Morris, R.K.A., Roy, H.E., Woodcock, B.A., Isaac, N.J.B., 2019. 637 
Widespread losses of pollinating insects in Britain. Nat. Commun. 1–6. doi:10.1038/s41467-638 
019-08974-9 639 

Powney, G.D., Rapacciuolo, G., Preston, C.D., Purvis, A., Roy, D.B., 2014. A phylogenetically-informed 640 
trait-based analysis of range change in the vascular plant flora of Britain. Biodivers. Conserv. 641 
23, 171–185. doi:10.1007/s10531-013-0590-5 642 

Preston, C.D., Pearman, D.A. & Dines, T.D., 2002. New Atlas of the British and Irish Flora., eds. ed. 643 
Oxford University Press, Oxford. 644 

R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for 645 
Statistical Computing, Vienna, Austria. 646 

Reddy, S., Dávalos, L.M., 2003. Geographical sampling bias and its implications for conservation 647 
priorities in Africa. J. Biogeogr. 30, 1719–1727. doi:10.1046/j.1365-2699.2003.00946.x 648 

Roy, H.E., Adriaens, T., Isaac, N.J.B., Kenis, M., Onkelinx, T., Martin, G.S., Brown, P.M.J., Hautier, L., 649 
Poland, R., Roy, D.B., Comont, R., Eschen, R., Frost, R., Zindel, R., Van Vlaenderen, J., Nedvěd, 650 
O., Ravn, H.P., Grégoire, J.C., de Biseau, J.C., Maes, D., 2012. Invasive alien predator causes 651 
rapid declines of native European ladybirds. Divers. Distrib. 18, 717–725. doi:10.1111/j.1472-652 
4642.2012.00883.x 653 

Spear, D.M., Pauly, G.B., Kaiser, K., 2017. Citizen science as a tool for augmenting museum collection 654 
data from urban areas. Front. Ecol. Evol. 5, 1–12. doi:10.3389/fevo.2017.00086 655 

Swinscow, T., 1997. Statistics at square one, 9th ed. MJ Publishing Group 1997. 656 

Telfer, M.G., Preston, C.D., Rothery, P., 2002. A general method for measuring relative change in 657 
range size from biological atlas data. Biol. Conserv. 107, 99–109. doi:10.1016/S0006-658 
3207(02)00050-2 659 

Thompson, F.C., Rothery, G.E., Zumbado, M.A., 2010. Syrphidae (Flower Flies)., in: Manual of Central 660 
American Diptera. Vol. 2. NRC Research Press, Ottawa, pp. 763–792. 661 

Townsend Peterson, A.T., Soberón, J., Krishtalka, L., 2015. A global perspective on decadal challenges 662 
and priorities in biodiversity informatics. BMC Ecol. 15. doi:10.1186/s12898-015-0046-8 663 

Vieli, L., Mur, M.M., Flores-prado, L., Carvallo, O., Valdivia, C.E., Muschett, G., Manuel, L., Jofr, C., 664 
Font, F.E., 2021. Local Actions to Tackle a Global Problem : A Multidimensional Assessment of 665 
the Pollination Crisis in Chile 1–18. 666 

Villalobos, F., Arita, H.T., 2010. The diversity field of New World leaf-nosed bats (Phyllostomidae). 667 
Glob. Ecol. Biogeogr. 19, 200–211. doi:10.1111/j.1466-8238.2009.00503.x 668 

Whitaker, A.F., Kimmig, J., 2020. Anthropologically introduced biases in natural history collections, 669 
with a case study on the invertebrate paleontology collections from the middle cambrian 670 
spence shale lagerstätte. Palaeontol. Electron. 23, 1–26. doi:10.26879/1106 671 

Woodcock, B.A., Isaac, N.J.B., Bullock, J.M., Roy, D.B., Garthwaite, D.G., Crowe, A., Pywell, R.F., 2016. 672 
Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. 673 
Commun. 7. doi:10.1038/ncomms12459 674 

Zattara, E.E., Aizen, M.A., 2021. Worldwide occurrence records suggest a global decline in bee 675 
species richness. One Earth 4, 114–123. doi:10.1016/j.oneear.2020.12.005 676 



Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, 677 
A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V., Antonelli, A., 2019. 678 
CoordinateCleaner: Standardized cleaning of occurrence records from biological collection 679 
databases. Methods Ecol. Evol. 10, 744–751. doi:10.1111/2041-210X.13152 680 

 681 


