
1

A low-cost solution for documenting, tracking, and verifying cage-level animal husbandry tasks using 1

wireless QR scanners and cloud-based spreadsheets 2

 3

Elizabeth A. Hobson 4

Department of Biological Sciences, University of Cincinnati 5

elizabeth.hobson@uc.edu 6

ORCID: 0000-0003-1523-6967 7

 8

 9

All animal activities are approved by the University of Cincinnati IACUC protocol 21-02-23-01 10

 11

2

Abstract 12

Animal care is a critical component underlying successful behavioral and cognition experiments. 13

Technological solutions for documentation and verification of care can aid in monitoring that activities 14

are completed according to standard operating procedures and ensure that no individuals are 15

overlooked. Here, I summarize a low-cost, flexible, and easy to use system that I developed to document 16

and monitor care of animals for our research group. The system enables real-time and remote-enabled 17

verification that critical daily tasks have been completed for every cage, and helps us monitor our 18

longer-term tasks to make sure that our care team is adhering to our set schedule. The main materials 19

and components needed to implement this system are QR codes, a thermal laminator, a QR scanner, a 20

computer to manage data input, and a database into which the data are scanned and summarized. 21

There are four main steps to setting up our system: (1) purchase a QR scanner, (2) generate and print QR 22

codes, (3) set up the data input spreadsheet, and (4) add summarization and verification capability to 23

the spreadsheet. Paired with simple scripts in a cloud-based spreadsheet, scanned QR code data can 24

then be easily summarized in real time to provide verification of care. The flexibility of the system allows 25

it to be customized to a large range of species. 26

 27

 28

Keywords 29

Animal care, paperless documentation, verification, QR code 30

 31

 32

3

A low-cost solution for documenting, tracking, and verifying cage-level animal husbandry tasks using 33

wireless QR scanners and cloud-based spreadsheets 34

 35

Behavioral and cognition experiments are frequently conducted with animals in controlled lab 36

environments. Animals involved in these experiments need to be cared for on a regular schedule and 37

documenting this care is often required by each university’s Institutional Animal Care and Use 38

Committee (IACUC) or similar regulatory bodies. Requirements for documentation of care have helped 39

improve transparency, consistency, and the quality of animal care (National Research Council 2011). 40

High quality care is especially important in behavioral and cognitive experiments, where we usually want 41

animals to be healthy, active, and behaving as normally as possible when they participate in 42

experiments. However, the effort involved in documenting details of animal care can be time 43

consuming. An animal care tracking system can aid in facilitating the documentation of animal care 44

activities but can additionally serve as a method for validating that care has been received for each 45

animal on the correct schedule. 46

Technological solutions can reduce the burden of documenting animal care activities. Quick response 47

(QR) codes are widely used in many fields in biology. QR codes can encode urls as quick links to open 48

websites, can link to online data entry forms, or can contain simple text. Pairing QR codes with 49

smartphone/smart device technology has become a popular method to document animal care (e.g., 50

Green et al. 2017), track specimens (e.g., Diazgranados and Funk 2013), or facilitate data entry (e.g., 51

Oteyo and Toili 2020). 52

Although using technology to more easily document animal care helps with reporting, some method to 53

verify that care has been provided to each animal on the proper schedule would also be valuable. 54

4

Verification would help double-check that no animals have been accidentally overlooked and that care 55

(especially tasks that do not occur on a daily basis) are following the intended schedule. A verification 56

system like this would help improve the consistency of care while reducing animal care staff stress about 57

potentially missing critical care. This method would be especially useful when many animals are being 58

cared for across multiple cages, tanks, or enclosures and multiple categories of care are completed for 59

each animal on different time scales (for example when some care needs to be completed every day, 60

but other care needs to be completed once a week). 61

I developed a new system to document and validate animal care activities. My group recently started 62

working with a new system in the lab and now have about 40 adult Northern bobwhite quail (Colinus 63

virginianus) housed in about 20 cages, approved for use in behavioral and cognition experiments by the 64

University of Cincinnati IACUC protocol 21-02-23-01. The population is cared for by several lab members 65

and has tasks that need to be completed on different time intervals. For example, daily each cage’s food 66

and water needs to be changed and the health of all the birds needs to be checked, weekly we clean the 67

trays, and at least once every two weeks we provide enrichment. 68

My system is a low-cost, flexible, and easy to use method that facilitates documentation of our animal 69

husbandry activities, enables real-time and remote-enabled verification that critical daily tasks have 70

been completed for every cage, and helps us monitor our longer-term tasks to make sure that our care 71

team is adhering to our set schedule. 72

Here, I summarize the system, which we have been using and fine-tuning in the lab since summer 2021. 73

The main materials and components needed to implement this system are QR codes, a thermal 74

laminator, a QR scanner, a computer to manage data input, and a database into which the data are 75

scanned and summarized. There are four main steps to setting up the system, which are described 76

5

below: (1) purchase a QR scanner, (2) generate and print QR codes, (3) set up the data input 77

spreadsheet, and (4) add summarization and verification capability to the spreadsheet. 78

Step 1: Purchase QR scanner device 79

Data is input into the system with a handheld QR scanner. Wireless QR scanners are available for 80

between 30-100$USD. I used a Tera 2D Barcode Scanner (Model D5100, https://amzn.to/3AM4Zvh) 81

which cost about 45$USD at time of purchase in 2021. For QR scanning capability, look for a “2D” 82

barcode scanner (“1D” scanners can only read barcodes). These scanners are usually rechargeable with 83

a USB cable; the more expensive models often come with a charging cradle that functions as a stand. 84

The battery life is quite good on some of these models; in our lab, we charge our scanner usually only 85

once every 2-3 weeks. Different models vary in their range – in our case, our model is able to transmit to 86

a central computer from an adjacent room. 87

Step 2: Generate and print QR codes 88

Custom QR codes can be freely generated using the R package “qrcode” (Teh and Onkelinx 2021). QR 89

codes can also be generated using several free websites for those not comfortable with R. In our system, 90

each code contains the cage ID and the category or task that is being scanned, separated by a space. See 91

Box 1 for the R script I used to generate tags for 20 cages, each with seven different categories of tasks 92

or activities that we scan and track. In my lab, we use the categories “good.health” and “PROBLEM” to 93

enter data on health checks, “cleaned.water.food”, “spot.cleaned”, and “full.clean” to track different 94

types of cleaning activities, “enrichment” to record when birds are given enrichment items like an alfalfa 95

feeder or a dust bath, and “NOTE” to add a row to the database into which we can enter any extra notes 96

by hand after scanning. 97

6

Box 1. R script to generate custom QR tags
load packages
library(tidyverse)
library(qrcode)
library(png)

create vector of cage IDs (forcing two-digits for single digit numbers)
cages <- str_pad(seq(1:20), 2, pad = "0")

create vector of categories for tags
checks <- c("good.health", "PROBLEM", "cleaned.water.food", "spot.cleaned", "full.clean",
"enrichment", "NOTE")

create dataframe with all cage IDs and all categories of tag checks
cages.checks <- expand.grid(cages, checks)
colnames(cages.checks) <- c("CageID", "Check.Type")
cages.checks <- cages.checks %>% arrange(CageID, Check.Type)

create full text labels for QR codes (use space as separator between cageID and task category)
cages.checks$Label <- paste("Cage", cages.checks$CageID, cages.checks$Check.Type, sep=" ")

loop to create png images for each QR tag
for(i in 1:nrow(cages.checks)){
 #specify path & file name for each png image
 mypath <- file.path("qrs.spot_full.clean", paste(cages.checks$Label[i], ".png", sep = ""))
 #create png using qrcode_gen from package
 png(file=mypath)
 qrcode::qrcode_gen(cages.checks$Label[i])
 dev.off()
}

 98

After the image files for each QR code have been generated, they can be compiled into a table with one 99

row of codes per cage. I used Microsoft Word to compile the tables: I found that this approach, while 100

somewhat time-consuming, provided the easiest method for color and layout customization. I used a 101

colored background that corresponded to each code’s category to help more quickly differentiate 102

categories and reduce the chances of scanning the wrong code (see Fig 1). We have good luck scanning 103

QR codes that are sized at 0.75 inches. To avoid mis-scanning adjacent codes, we notched out a paper 104

card with a 1 inch opening and use it to cover all QR codes except the desired one when scanning. 105

7

Fig 1. Example cage QR tag with QR codes for six animal care categories and one for notes.

Once printed, these tags are cut out, with each cage’s tags in a single strip and laminated for long-term 106

durability. I used an inexpensive thermal laminator to protect the tags. Tag strips were laminated with 5 107

mil laminator pouches. Laminators are widely available for 20-60$USD (e.g., Apache AL13 Thermal 108

Laminator, https://amzn.to/32KW7JR). An optional paper trimmer greatly facilitates this step (e.g., 109

Worklion Paper Cutter with Security Blade, https://amzn.to/3ubVpR3). I used zip ties to secure the tags 110

to the front of each cage. 111

Step 3: Set up central hub and spreadsheet for data input 112

Data from the QR scanner are transmitted to a central computer via USB. Many kinds of computers can 113

be used as the central hub: at a minimum, the computer needs a USB port, an internet connection, and 114

the ability to access Google Sheets. In my lab we use a basic desktop computer on which we do other 115

kinds of data entry. Small single-board computers like the Raspberry Pi would be a very low-cost option 116

and should work well as a hub (e.g., a Raspberry Pi Zero with case and accessories costs around 60$USD, 117

https://amzn.to/3HtmpiL, and would only need a monitor added to make it functional for the QR 118

scanning system). 119

8

Figure 2. Google spreadsheet into which QR tags are scanned and data are summarized, showing
the three types of sheets necessary for the system. Panel (a) shows the format of the data input
sheet. Panel (b) shows how data from the spreadsheet in panel a are filtered by category. Panel (c)
shows the daily summary sheet, updated by date of last scan per cage and per category as well as the
date of the most recent note and the contents of the most recent note per cage.

 120

I set up a Google Sheet to scan the QR codes into, to summarize the scans, and to set up a system to 121

easily double-check and proof that care is being provided to each cage on the correct schedule. An 122

example of the whole spreadsheet, with individual sheets, the script to automatically add the date and 123

time, and the summary table is available at https://bit.ly/34vKAi6. This file can be copied and modified 124

for each lab’s individual requirements as necessary. 125

9

My system uses a Google Sheet workbook containing three types of sheets (Fig. 2). 126

The first sheet (“QR.scan.input”) is the location into which the QR tags are scanned and data are 127

inputted (Fig. 2a). This sheet has five main columns. Column A (“QRscan”) contains the scanned QR tags. 128

To scan the QR code, select the next empty cell in the QRscan column. Activate the wireless QR scanner 129

and start scanning tags. Each scan will add the text associated with each QR tag to a new row in the 130

QRscan column. Column B (“datetime”) automatically updates with the date and time each individual 131

QR code is scanned. This automatic date is added by using the Script Editor to write and save a Google 132

Apps Script snippet (Box 2). Column C (“notes”) provides an area to add any notes by hand after 133

scanning. Column D contains code to automatically split the information in the first column to separate 134

the cage numbers and the categories of tasks, which then appear in Columns D and E. 135

Box 2. Google Apps Script snippet to automatically add date/time (from tutorial by Dan Nguyen,
http://blog.danwin.com/how-to-automatically-timestamp-a-new-row-in-google-sheets-using-apps-
script/). From Google Sheets, select “Extensions” then “Apps Script”, paste the code below into the
script editor, and save it as a Code.gs file named “datetime auto adder”.

var SHEET_NAME = 'QRscan.input';

var DATETIME_HEADER = 'datetime';

function getDatetimeCol(){

 var headers = SpreadsheetApp.getActiveSpreadsheet().getSheetByName(SHEET_NAME).ge

tDataRange().getValues().shift();

 var colindex = headers.indexOf(DATETIME_HEADER);

 return colindex+1;

}

function onEdit(e) {

 var ss = SpreadsheetApp.getActiveSheet();

 var cell = ss.getActiveCell();

 var datecell = ss.getRange(cell.getRowIndex(), getDatetimeCol());

 if (ss.getName() == SHEET_NAME && cell.getColumn() == 1 && !cell.isBlank() && dat

ecell.isBlank()) {

 datecell.setValue(new Date()).setNumberFormat("yyyy-MM-dd hh:mm");

 }

};

 136

10

The second type of sheet serves as an intermediary between the first sheet, where data are input, and 137

the third sheet, where data are summarized. This second kind of sheet filters all the input data by 138

category in separate sheets (see Box 3). Figure 2b shows how data from the spreadsheet in Figure 2a are 139

filtered by category (here, showing the “HEALTH” category). Each category of QR codes that are tracked 140

should get its own filtered sheet. In our system, we use 6 intermediary sheets: a health check, logs of 141

water/food changes, spot cleaning, full cleaning, and enrichment, and a sheet for extra notes. These 142

intermediary sheets should not be edited during use of the system and are just used to facilitate 143

connecting the input sheet to the summary sheet. 144

Box 3. Google sheet code to automatically filter data by category from data input sheet. This is an
example showing how “health” data are filtered. We want to have the “good health”, “problem”, and
“recovering” scans all compiled in this sheet so that we can double-check that health was assessed
every day. In cell A2 of the “HEALTH” intermediary sheet, the following code is entered, which will
filter and import all relevant data from the data inputted into Sheet1. The category-only data are in
column E of Sheet 1.

=filter(Sheet1!A2:E14995, (Sheet1!E2:E14995="good.health")+(Sheet1!
E2:E14995="problem")+(Sheet1! E2:E14995="recovering"))

 145

The final type of sheet is the summary and verification sheet, shown in Figure 2c. This sheet uses the 146

cage IDs (which were split into separate columns in D and E from the combined cage ID and category 147

information Column A of the input sheet) to summarize the date of the last scan by cage and category 148

(see details below). 149

Step 4: Add summarization and checking capability to the spreadsheet 150

Our summary sheet uses several methods to summarize and validate animal care. The summary sheet 151

shows the date of the most recent QR scan by cage and category, then conditional formatting rules 152

control and update the color of the cells based on the time since the last scan and the interval at which 153

each category of care needs to be completed (Fig. 2c). This sheet uses the cage IDs to query each 154

11

category of task (in the filtered sheets) to find the most recent scan of each cage for each category (see 155

Box 4). Column A contains these cage IDs (using the same format as in the two Column Ds in Fig. 2a and 156

2b). 157

Box 4. Google sheet code to return the date of the most recent scan by cage and category. This is an
example showing how “health” data are filtered. The example below is code in Cell B3 in Figure 2c,
showing how the intermediary sheet “HEALTH” (Fig. 2b) is queried for the most recent scan
completed for Cage01 (named in Cell A3 of Figure 2c). Similar code is used for all cages in this
category, with other categories calling the corresponding other intermediary sheets.

=large(filter(HEALTH!B2:$B,HEALTH!$D$2:$D=A4),1)

 158

To simplify validating the care schedule, I added conditional formatting to automatically update the 159

color of each cell in the summary table. To set or change the conditional formatting rules, select 160

“Format” then “Conditional formatting” in the Google Sheet to view the rule menu. In “Apply to range” 161

specify the cells which the rule applies to (here, conditional formatting is applied consistently across all 162

cages within each care category). In “Format rule”, choose “Custom formula is”, then add the 163

conditional formatting desired and choose the response color to use when the rule is satisfied. For an 164

example of our two rules for color-coding to identify whether a task has or has not been completed each 165

day, see Box 5. In our system, we set each cage’s cell to green when each care category has been 166

completed within the time limit set by the conditional formatting. Tasks which still need to be 167

completed are set to yellow. For example, Figure 2c shows that all the health checks and changes of 168

food and water have been completed “today” for all cages; if a cage has not been checked or had these 169

changed on the current date, the cell color turns yellow. 170

12

Box 5. Setting cell-level conditional formatting. This is an example showing how “health” summary
data are conditionally formatted to update the color of the cells based on when each cage was last
scanned. The example below are two conditional formatting rules applied to Cell B3 in Figure 2c.
Similar code is used for all cages in this category, with other categories calling the corresponding
other intermediary sheets.

If Cage01 has been scanned today, update the cell color to green:
=DATEDIF(TODAY(),B4,"D")=0

If Cage 01 has not been scanned today and needs care, update the cell color to yellow:
=DATEDIF(B4,TODAY(),"D")>0

 171

This summary table provides a quick and easy way to verify that care has been completed for each cage. 172

Any cage that was accidentally missed can be very quickly and easily identified and care can be 173

completed. This system also greatly aids in monitoring the schedule for tasks that are completed on a 174

different cycle. We find it especially useful in monitoring our enrichment schedule, which needs to be 175

offered to each cage at least once every two weeks but does not occur on a specific day each week. 176

Use and troubleshooting 177

In practice, we use this system as a two-step verification of care. The care team completes all care 178

activities for the day. Our last step is to scan all the cages to document the type of care provided. This 179

cage-by-cage scanning allows us to easily proof that care is complete: for example, before scanning each 180

tag, we do a final check that the health of all individuals is good, and that water and food have been 181

cleaned and replaced. If everything looks good, those QR codes for that particular cage are scanned 182

before moving on to the next cage. Any accidentally missed water or food containers can be identified 183

and rectified at this stage. At the end of scanning, we check the summary sheet to make sure that all 184

cage cells across all categories of care are green, which provides an additional verification that care to all 185

13

cages has been completed, and no cages have been accidentally overlooked. Any cage with a cell that is 186

not colored green is re-checked and re-scanned. 187

The most common errors we have seen in using this system are (1) running out of new rows in the input 188

sheet, (2) adding new rows to the input sheet but forgetting to continue the splitting code, (3) adding 189

cage ID or category codes that do not match the criteria in the spreadsheet, (4) accidentally scanning QR 190

codes into a sheet other than the input sheet, and (5) missing scans. To address running out of new 191

rows, just go to the bottom of the input sheet and add the desired number of new rows. To fix errors 192

with cells not having the splitting code, when new cells are added, just drag the splitting code in Column 193

D to apply it to all of the new rows in that column. To ensure cage ID or category codes match, check the 194

QR code generation procedures to make sure that the codes generated match the desired cage ID and 195

category formats and check the filtering criteria in the intermediary and summary sheets. To correct 196

erroneously scanning QR codes into a sheet other than the data input sheet, put a warning label on the 197

scanner handset (when discovered, the “undo” function can also reset cells to the proper contents and 198

cages can be re-scanned with the data input sheet). To address scans that are not properly received by 199

the central computer, the QR codes just need to be re-scanned. In our experience, missed scans are 200

relatively rare, but most commonly occur for the very first scan of a session. 201

Conclusions 202

Our animal care monitoring system is low cost and flexible way to document and verify animal care. 203

Paired with simple scripts in a cloud-based spreadsheet, the scanned QR code data can be summarized 204

to provide real-time verification of care that can be checked by any member of the team with access to 205

the Google Sheet and an internet connection. Our team has found this system to be very reassuring 206

both to people completing care as well as supervisors monitoring care. As care is being completed, the 207

summary sheet can be checked while workers are still in the animal care room to double-check that care 208

14

has been provided to all cages and quickly address any deficits. Remotely, other team members can 209

access the spreadsheets and easily verify whether care has been provided each day. 210

This system is highly customizable and can be adapted for a wide range of species receiving many 211

different types of care. Any research group caring for many individuals across separate cages, tanks, or 212

enclosures, and especially when multiple categories of care are required and when care activities are 213

completed on a non-daily schedule, would benefit from a system like this one. 214

Acknowledgments 215

Thanks to Sanjay Prasher and Alexis Williams, who helped design an early prototype of the system 216

described here and to Sanjay Prasher, Claire O’Connell, Chelsea Carminito, and Xavier Francis, who 217

helped test and refine the system. During preparation of this work, EAH was supported by NSF IOS 218

2015932. 219

 220

References 221

Diazgranados M, Funk VA. 2013. Utility of QR codes in biological collections. PhytoKeys. 25(25):21. 222
doi:10.3897/PHYTOKEYS.25.5175. 223

Green T, Smith T, Hodges R, Fry WM. 2017. A simple and inexpensive way to document simple 224
husbandry in animal care facilities using QR code scanning. Laboratory Animals. 51(6):656–659. 225
doi:10.1177/0023677217718004. 226

National Research Council. 2011. Guide for the Care and Use of Laboratory Animals, 8th Edition. 227
Washington D.C. 228

Oteyo IN, Toili MEM. 2020. Improving Specimen Labelling and Data Collection in Bio-science Research 229
using Mobile and Web Applications. Open Computer Science. 10(1):1–16. doi:10.1515/COMP-2020-230
0002/MACHINEREADABLECITATION/RIS. 231

Teh V, Onkelinx T. 2021. qrcode: Generate QRcodes with R. Version 0.1.4. 232

 233

