Main Manuscript for
A set of principles and practical suggestions for equitable fieldwork in biology.

Author Contributions: VRC, EPW, JF, SA, DW, RCKB, CC, JAM, RDT wrote the original manuscript. SS, EW, CC, JF, RDT wrote the original field safety plan. CC and RDT wrote the original permit checklist. All authors revised and reviewed the manuscript, field safety plan, permit checklist, and other supporting material.

Competing Interest Statement: The authors have no competing interests.

Preprint: 10.32942/osf.io/uszd7

Classification: Biological Sciences, Ecology

Keywords: Inclusion, diversity, natural history, safety, collections

This PDF file includes:

- Main Text
- Figure 1
- Figure 2
Abstract

Field biology is an area of research that involves working directly with living organisms in situ through a practice known as “fieldwork.” Conducting fieldwork often requires complex logistical planning within multiregional or multinational teams, interacting with local communities at field sites, and collaborative research led by one or a few of the core team members. However, existing power imbalances stemming from geopolitical history, discrimination, and professional position, among other factors, perpetuate inequities when conducting these research endeavors. After reflecting on our own research programs, we propose four general principles to guide equitable, inclusive, ethical, and safe practices in field biology: Be Collaborative, Be Respectful, Be Legal, and Be Safe. Although many biologists already structure their field programs around these principles or similar values, executing equitable research practices can prove challenging and requires careful consideration, especially by those in positions with relatively greater privilege. Based on experiences and input from a diverse group of global collaborators, we provide suggestions for action-oriented approaches to make field biology more equitable, with particular attention to how those with greater privilege can contribute. While we acknowledge that not all suggestions will be applicable to every institution or program, we hope that they will generate discussions and provide a baseline for training in proactive, equitable fieldwork practices.

Significance Statement

Parachute science, harassment, and discrimination during fieldwork perpetuate global inequalities in resource investment and career advancement. Many biologists are actively engaged in dismantling these inequities, yet there is no general set of best practices for biological fieldwork. Here we propose four organizing principles that are grounded in relevant literature, evidence-based practices, and input from field biologists representing different countries and cultures. The suggested actions and tools included herein can be useful to anyone, whether they are building a new field program or implementing small changes in long-standing collaborations. We believe that following these principles will help promote positive experiences that encourage diverse participation in field biology and facilitate collaborations between communities and researchers.

Main Text

Introduction

Field biology, the practice by which investigators seek out organisms in their natural habitats to collect samples and abiotic parameters, perform experiments, and/or record natural history observations, is essential for the description, analysis, and conservation of biodiversity (1). Fieldwork not only provides foundational materials in the form of vouchered and unvouchered biological samples (e.g., blood, feathers, skin clips), but it also produces vast amounts of scientifically valuable data on species’ natural history including distributions and abundances, habitat characteristics, environmental measurements, ecological interactions, and behaviors (2, 3). Moreover, voucher specimens obtained through fieldwork are invaluable for scientists aiming to quantify the effects of historical changes in climate, pollutants, diseases, and other features of the environment on biodiversity (4–6). The value of natural history collections to the broader research community is only increasing over time, as recent collection digitization initiatives have made remote inspection and analysis of the world’s biodiversity possible for anyone with internet access (7–10). Given ongoing biodiversity declines (11, 12), research that incorporates natural history collections and field data have garnered sustained interest (13). Thus, field
studies continue to be essential for the advancement of biology, while also serving as an impactful educational tool.

Despite the value of fieldwork and field-collected data, we recognize that this activity has been shaped by power asymmetries tied to the foundations of the modern world (14, 15). For example, the early history of biodiversity sampling was intimately associated with colonialism. Colonial nations and later industrialized countries sent scientists around the world with the aim of furthering scientific progress, but also often with capitalist goals and resource extraction in mind (16–19). Although many field biologists today are aware of this inequitable history and are working to make field biology more ethical, parachute science – a non-reciprocal practice wherein scientists conduct research with local help and then publish those data without further involvement of local communities – remains common (20). Moreover, research programs are often highly asymmetrical in terms of how the scientific benefits (e.g., authorship, funding, etc.) are distributed among team members (21–23). Additional quantitative surveys could help shape relevant solutions.

The conscious need to confront power asymmetries gained traction in the USA after the murder of George Floyd in 2020, with a focus on addressing inequities for people of color, people with disabilities, women, Indigenous people, the LGBTQ+ (Lesbian, Gay, Bisexual, Transgender, Queer) community, and others (e.g., 24, 25). These conversations opened space to re-evaluate aspects of current scientific practices that perpetuate inequalities, including fieldwork. We are optimistic that self-reflective and action-oriented discussions, combined with proactive planning of research, will help address existing inequalities.

Core Principles for Equitable Fieldwork

In the last decade, many scientific institutions, societies, and conferences have adopted codes of conduct to clarify community norms and provide guidelines for reporting harassment or misconduct (e.g., 26–28). Likewise, most scientific disciplines that work directly with human participants, such as public health and anthropology, have established guidelines for ethical fieldwork (29–32). Furthermore, international agreements and regulations have helped to promote more equitable and conservation-oriented practices (e.g., Convention on Biological Diversity [CBD], Convention on the International Trade in Endangered Species [CITES], Nagoya Protocol for Access and Benefit Sharing [ABS]). In this spirit, and through assessment and reflection of our own field programs, we created a set of four general principles for biological fieldwork that are intended to help researchers from any country or career level engage proactively in equitable and inclusive practices (Box 1; Figure 1). Although some guidelines exist for field courses and stations (e.g., 33), here we focus our discussion specifically on field research programs that are not directly oriented towards commercialization.

**Figure 1.** Four principles to promote equitable fieldwork. Illustrations by Camila Pacheco Bejarano.

For institutions and research groups, we envision that these principles can foster discussions of field practices and act as a basis for generating or revising codes of conduct and designing pre-fieldwork training programs. For researchers starting a field program, we hope that the four principles provide a useful baseline for creating fieldwork plans that are intentionally ethical. By discussing how to apply these principles, research teams can increase awareness about how field activities affect other people(s) and communities, especially in contexts where pre-existing power imbalances and implicit biases exist. We note that the principles and suggestions described herein are derived from experiences mostly in the context of academic and natural history museum settings, and mostly involving researchers from the USA.
Fieldwork is diverse and involves many different types of communities and cultures, and not all of our suggestions are appropriate or feasible in every circumstance. However, we envision that the content of this perspective can apply to an array of scientists who conduct field research within their home country or internationally, especially when working in locations where local communities and/or scientists are less privileged than the organizing institution. To facilitate following the proposed principles, we provide a set of potential actions and considerations, an overview of permitting processes, and a field safety plan template, and a set of open questions that arose during the creation of this document (SI Appendix). Intentional planning that emphasizes inclusivity and equity in field biology is fundamental to the set of principles proposed herein.

**Be collaborative: We embrace collaborative science and fieldwork practices with our partners, field teams, and the communities with whom we work**

Equitable collaboration is necessary to conduct field operations safely, legally, and respectfully (34). The involvement of local collaborators in logistical but not intellectual aspects of research can perpetuate historical power imbalances and exclude those with more marginalized identities from a sense of co-ownership of the science being produced (21, 35). Such asymmetries may erode trust in the scientific enterprise and deter local interest in future scientific collaborations (20). Disrupting these structural imbalances requires a constant effort by everyone – but especially by those who have historically held positions of privilege globally and/or locally – towards decentralizing one’s own perspective and creating spaces for new perspectives in science. Furthermore, collaborations that equitably include people and scientists from host regions can help foster inclusivity and a diversity of ideas in field biology (36). Below are some suggestions to foster intentionally reciprocal and collaborative research among scientists from different regions.

**Communication among colleagues.** We encourage team leaders to discuss the research goals, responsibilities, and expected products before, during, and after fieldwork, allowing all collaborators to shape the fieldwork and research. It is also important to establish regular communication among collaborators throughout the research process, not only during fieldwork. Flexibility, fairness, and honesty about goals and limitations is key during these conversations, yet perceptions of fairness can be biased by one’s historical viewpoint and institutional norms, and desired outcomes may differ among collaborators. For example, institutions (e.g., academic vs. governmental) differ in whether they reward researchers for being first or last author, for having many publications rather than a few high-impact ones, or for bringing in infrastructure and funding. General research program goals also may differ depending on institutional interest and limitations (37). Understanding each parties’ desired outcomes at the outset, and discussing any changes as the project progresses, can help promote equality amongst all team members.

**Forming inclusive research teams.** We encourage researchers to reflect on the diversity of their field teams and to provide opportunities for individuals of identities historically excluded from fieldwork (e.g., women, LGBTQ+, Black, Indigenous, People of Color, disabled individuals, low-income communities). Examples include training, invitations to join expeditions, inclusive hiring practices, and inclusion in decision-making. Students, including from local communities, can also benefit from financial support, especially if they are undertaking thesis work that might otherwise be financed with personal funds (38). Involving social scientists in the research process can help identify power imbalances and promote inclusion and equity at all stages of field research. Equitably structured and reciprocally designed collaborations (e.g., inviting local researchers to serve on student committees) can diversify and enhance the research programs of each group by providing new ideas that draw on different forms of expertise.
Compensation. Planning ahead for fair compensation of field assistants and other team members is necessary to conduct equitable fieldwork (38). We suggest working in advance with collaborators to set salary rates or organize other types of compensation (e.g., providing training, equipment, or resources) that reflect local norms and are fair for the work being undertaken (see also Be Respectful). When recruiting assistants to find specific organisms, we recommend paying by the hour or day as it is important to pay for effort even if it is unsuccessful. Overall, communication with local collaborators about how their research programs can be supported shows reciprocity and helps reinforce the value of host-region research (see also Figure 2). Finally, we note that inequitable access to funding is likely a major source of power imbalance in multinational or multiregional teams. In our Open Questions section (SI Appendix, Box S1), we encourage the global research community to consider how to increase the resources that are directly available to less-privileged researchers.

Sample and data management. An agreement among parties on how to equitably share and store research products such as specimens, tissues, photographs, recordings, etc., is recommended prior to conducting fieldwork. We strongly recommend that all products of fieldwork and their associated metadata be deposited in a collection where they will be taken care of and made accessible to others. Research materials that are held in private or non-curated collections (e.g., personal lab freezers) risk getting lost or discarded. When permits require information about where materials will be deposited, researchers should communicate with personnel during the application process to confirm that the intended repository is able to house the materials. Given ongoing financial challenges faced by museums (39, 40), funding could be provided to help with curation and student training (41).

Material sharing or repository agreements often require that specimens and samples be deposited or subdivided among participating institutions. These agreements should be equitable and reciprocal and have the added benefit of insuring against the risk of catastrophic loss. Pertinent examples include the destruction of the California Academy of Sciences in the 1906 San Francisco Earthquake, the loss of museums in Dresden, Hamburg, and Manila during World War II, the destruction of the collection at Museo La Salle in Bogotá during the 1948 riots, and the more recent losses by fire of priceless specimens and documents in Portugal, Brazil, South Africa, and India. Special consideration should be given to the disposition of type specimens. As recommended by the International Code of Zoological Nomenclature (ICZN) and the International Code of Nomenclature for algae, fungi, and plants (ICN), type specimens are best deposited in collections publicly accessible to researchers. The disposition of holotypes in their country of origin recognizes that country's natural heritage, while depositing paratypes or toptypes across multiple collections facilitates access to comparative material and protects against complete loss of reference material for a species. We recommend working on a case-by-case basis with local collaborators to decide where to deposit type specimens, and to follow any legal obligations outlined by permits. To increase access to materials stored outside of their countries of origin, museums could adopt a policy of prioritizing loans of collection materials (or returns in cases of unethical possession) to institutions from those respective countries. In countries or regions without a collection, collaborators affiliated with a museum can agree to hold specimens in trust until local institutions reclaim them, although we recognize that such an arrangement may face logistical and legal challenges. Further, collaborators can help set up local teaching collections as a way of educating students and the community about local biodiversity and potentially generating institutional interest in starting a research collection.

Researchers also can take steps to ensure that field data are documented in an accessible and reproducible manner (42, 43) and shared with team members. Digitization and/or duplication of field notes and data provides a timely resource documenting recent work. In addition, collaborators can help implement collection management systems that follow Darwin Core data standards (44), establish portals that provide access to regional biodiversity resources (e.g., 45), and register museums with the national CITES authority to facilitate exchange of CITES-listed species (see SI Appendix, Scientific Permit
Checklist). Collection management systems can track the current location of specimens (important if materials are divided among institutions), manage sample loans or exchanges, link to publications, and protect sensitive data (e.g., locality data for endangered species), among other features.

Rethink authorship criteria. Recent proposals have been made to expand the CRRediT authorship criteria system to recognize that collaborators who, for instance, secure permits, foster important relationships, and act as the responsible authority in the field are often integral to project success and thus deserve to be involved in the writing process and offered co-authorship (21, 46). Additionally, local experts who participate in data collection can be included as authors (47). It is important to have a conversation with collaborators and community members to ask what attribution or credit they would value most, and to recognize that authorship may not always be meaningful, or may not be requested due to norms surrounding workplace hierarchy (21). The process of obtaining Prior Informed Consent (PIC; see Be Respectful) can inform these decisions. If community members are not interested in being co-authors, they can still be included in the acknowledgments section along with the proper name of their communities. In general, we recommend discussing and working collaboratively with local team members to decide on authorship.

Publishing and sharing research results. Language can present a substantial barrier to sharing and obtaining scientific knowledge (48–50). To help lower this barrier, investigators can translate their research results into national and local language(s) and include it in the supplementary material of Open-Access publications or on other forums such as ResearchGate, preprint servers, trip reports, etc., when publishing via Open Access journals is not affordable (51, 52). Resources such as DeepL or Google Translate can facilitate translations for some languages. Making translation more common could be valuable to local scientists and policymakers, while also showing academic goodwill that is locally impactful and strengthens international collaboration (49, 53, 54).

Be respectful: We prioritize local sovereignty and long-term benefits for the community, and we invest time and effort in learning about and respecting local history and cultures.

Many researchers are drawn to different countries or regions to collect data and study the flora and fauna. Interacting respectfully with local communities is fundamental to ensuring reciprocally beneficial long-term relationships. Moreover, aligning research goals with in-region rules, expectations, and needs is fundamental for ethical fieldwork.

Honoring local sovereignty. Conducting fieldwork often means that local communities open their territory (and sometimes their homes) to researchers. It is important to be respectful and to prioritize the perspectives of the local community in these situations (32). Moreover, working with communities to collaboratively assess whether project goals are relevant and realistic helps researchers generate positive and long-lasting impacts for local communities (Figure 2). Community peer review methodologies, including Prior Informed Consent (PIC) and Free Prior Informed Consent (FPIC)—specific rights that give indigenous peoples and other ethnic communities the ability to give or withhold access to work that affects their territory, as well as negotiate the terms of work and/or withdraw consent at a later time—offer models of how to incorporate community feedback (55, 56). PIC and FPIC are often legally required to conduct commercial or high-impact activities; however, PIC/FPIC may not be legally required for non-commercial scientific research. Thus, we recommend asking for consent in any circumstance and to approach this process with humility and from an equity perspective, as one’s expectations, knowledge, and experiences are not universal or more important than those of another. Furthermore, there is no single conception of “nature” or of what it means to “use nature”; how we interact with a territory and its inhabitants (organisms and otherwise) is a cultural construction (57). Thus, we
suggest that researchers respectfully engage in discussions about views on non-humans that do not necessarily align with their own and to pay particular attention to respecting spiritual or ceremonial areas and species. Fluency in at least one of the local language(s) is critical for discussions to take place on a level playing field. Thus, team leaders in particular should make a concerted effort to gain a working fluency in the local language (if different from their own), and groups can invest in paid translators or guides when that is not possible. Questions about the impact of the research, source of funding, methods, accessibility of generated data, and beneficiaries of the project should be discussed.

Indigenous nations (e.g., Guna Yala in Panama, highland communities in Perú, Cherokee Nation in the USA) and African-descendant communities (e.g., San Basilio de Palenque in Colombia) may have explicit rules, laws, or constitutions that pertain to scientific sampling in their territories, including PIC/FPIC. This can be especially complex in countries such as Indonesia, where 1,300 ethnic groups are recognized (58). In general, it is important for researchers to follow national and local regulations and to work with regional collaborators to ensure proper communication with communities living in or near research sites. We suggest that territorial and local regulations hold precedence even if they are more restrictive than research permits allow.

Figure 2. Collaborate with local communities using Prior Informed Consent and/or other methods to maximize the immediate and long-term benefits of fieldwork for the region. Illustration by Camila Pacheco Bejarano. See Box S2 for more information.

Cross-cultural relationships. Diverse customs and communication styles, including within our own teams, are often encountered during both domestic and international field research (59, 60). Learning from cross-cultural interactions allows us to be more empathetic with our teams and local communities, to have a broader view of our research, and to avoid misunderstandings or conflict. Special considerations can be given to interpersonal distance, attire, host and guest behavior, monetary compensation (“tips”), preferred styles of communication, local culture surrounding work and holidays, and addressing community leaders/elders. An action that may be commonplace in one culture can have an unexpected meaning in another, so it is helpful to familiarize oneself with local norms while also reflecting on one’s own customs.

Incorporating local knowledge when publishing. When describing new species, it is worth acknowledging that local people are often familiar with their biology, behavior, meaning, value, uses and other aspects, long before they are described for science (61–64). Including local names, terms, and knowledge (65–67), and/or working directly with local communities to select new species names (68), are simple ways to honor and integrate communities with scientific pursuits and to generate local pride and awareness that can dovetail with conservation efforts (69). Reviewers and editors of manuscripts describing new species can suggest incorporating local knowledge if such data are not already included. PIC/FPIC should be discussed by having open conversations with community members about the work being done to gain consent, if any local knowledge or input may become part of a research product (56). Additional processes not addressed here are required when working with human-related data (70).

Designing locally impactful fieldwork. Researchers can intentionally plan activities that not only maximize immediate and long-term benefits for local communities (Figure 2, Box S2; 71–73), but also strengthen relationships with regional collaborators and create a better understanding of scientific practices in general. Communicating logistical details can also make a difference, such as teams formally introducing themselves and explaining research to local communities when a project begins, and discussing results, future collaborations and outreach, and preferred method of acknowledgement when the project ends.

Conflict resolution. Despite our best intentions, conflicts may arise within research teams and local communities. Because fieldwork often involves groups of researchers spending long periods of time
together in stressful conditions, training in conflict resolution can be important in smoothing team
dynamics. In addition, conflicts with the local community may arise. It is important to be aware of one’s
position in existing power structures and to try to reach an agreement that respects local sovereignty.

**Be legal:** We commit to obtaining all necessary permits, authorizations, and land permissions, and
to following all legal guidelines and requirements.

A key to successful fieldwork entails following the laws of the host country or region. While legality does
not always translate to justice, many legal frameworks are geared towards creating symmetrical and
ethical relationships. For centuries, researchers and collectors from high-income countries traveled
around the world to collect and export specimens to their home institutions for study or profit, without local
authorizations or credit to local contributions (17, 18; Table S1). The establishment of international laws
and regulations partially leveled the playing field by requiring that scientists obtain the necessary permits
and honor expectations for collaborative science. Unfortunately, the practices of conducting research
without appropriate permits, working with specimens of questionable origins, and bribing officials to
circumvent regulations continue today (20, 74, 75). These approaches are not only illegal and unethical,
but they also threaten biodiversity, deepen existing power imbalances, and create wariness among
researchers and between science and society. To facilitate tracking of legally sourced data and material,
we encourage researchers to associate permit numbers with samples in published works and online data
repositories. Moreover, some data aggregators require evidence of legality (e.g., 76). We encourage
journals to adopt and enforce policies requiring authors to provide information on permits as they do for
animal care protocols.

**Permit requirements.** Identifying and obtaining all the necessary documents to collect samples or data
can be a daunting challenge, often involving substantial time and effort, visits to multiple government
offices, and working closely with local institutions. We encourage institutions to provide clear, accessible
guidelines about permit requirements for researchers, especially because the permit landscape is
constantly changing. Many countries require research visas, Material Transfer Agreements (MTAs), and
Memoranda of Understanding (MOUs) or Agreements (MOAs), in addition to research, collecting, and/or
export permits, to conduct legal research (SI Appendix, Scientific Permit Checklist). In China, for example,
permits for aquatic animals are managed by the Ministry of Agriculture, while those for terrestrial animals
are managed by the National Forestry and Grassland Administration. In the United States, permit
requirements depend on national and state regulations, land ownership, and species. As mentioned,
commercializable research such as bioprospecting has additional requirements not discussed here and
may require its own set of guidelines. Field teams should always carry copies of permits, letters of
invitation from local institutions, and/or other legal documents while conducting fieldwork. These proactive
measures can help foster positive interactions with local community members and law enforcement
officials.

**International transfer of field-collected samples.** International agreements governing the movement of
genetic resources or endangered organisms add another layer of complexity to the permitting process
(77–79). For instance, the Nagoya Protocol on Access and Benefit Sharing outlines the equitable use of
genetic resources for biodiversity conservation and has important implications for how research is
conducted, collections are managed, and information is shared among collaborators (80). Likewise,
CITES regulates import/export of endangered organisms and species that are subject to international
trade (81), and may require additional permits.
Be safe: We work proactively to promote a safe physical and emotional working environment for all members of research teams and local communities with clear guidance and communication.

Working in the field comes with inherent risks, but field teams can reduce risks to themselves, to the communities in which they work, and to wildlife with proper preparation. Here we provide some examples of proactive safety practices that can be modified as needed. For more ideas and information, see the Field Safety Plan template (SI Appendix).

Field safety plans. Fieldwork is often fast-paced and presents novel situations (82), but having a safety plan for responding to dangerous, medical, or interpersonal scenarios can help mitigate or avoid risk (83). At their core, safety plans include information about nearby medical facilities, law enforcement authorities, and local contacts, as well as plans for specific emergencies such as medical evacuations and political instability. We also recommend developing a specific communication and check-in plan with an emergency contact, identifying multiple safety officers, and investing in the resources needed to facilitate check-ins (e.g., a satellite phone or spot tracker). Field plans should consider mental and emotional safety in addition to physical safety, especially for coping with Sexual Violence and Sexual Harassment (SVSH) or discrimination, which is not uncommon in field teams. In general, people with different identities (racial, ethnic, cultural, gender, sexual orientation, ability status, religion, caste), as well as job title (e.g., Principle Investigator vs. Field Assistant), may be more or less at risk of SVSH or health issues within the context of a research environment (24, 84–88). Ideally, field safety plans address SVSH by including procedures for dealing with inappropriate interactions within field teams and between field teams and local communities. Other considerations include having more than one SVSH contact, having team members work in pairs or groups, and including a set of responses team members can use in events of discrimination.

Biosafety. Teams should be careful to avoid contaminating local ecosystems (e.g., with soap, chemicals, or foreign biological material) and to protect themselves from potential biological dangers, including animals and pathogens. Any potentially dangerous chemicals or animals being used for research should be labeled clearly in all languages used by team members and locals. To mitigate the risk of spreading potentially detrimental pathogens and invasive species, teams can disinfect field equipment when moving between sites, before returning home, and/or between sampling individual organisms (89). The spread of white-nose syndrome, chytridiomycosis, and the possible transmission of viruses between wildlife and humans underscore the importance of these steps (90–93). In addition, scientists can consider undergoing wellness checks and quarantining before moving between sites where infecting local populations with diseases is possible (for example, in times of global pandemics like COVID-19). We recommend that team leaders (and other participants) take a wilderness first aid or responder course, provide personal protective equipment to all field members, and lead by example, always handling potentially dangerous wildlife, equipment, and materials in a safe manner.

Health care. Team leaders are responsible for emergencies that occur during fieldwork. Thus, being informed and prepared about local health care options, such as obtaining short-term travel insurance for all team members – including local collaborators – can facilitate response to emergencies. Additionally, team members may need to receive vaccinations and medications prior to fieldwork depending on the country and possible diseases present, the species that may be handled, and available health care infrastructure (e.g., getting an influenza vaccine could help prevent an outbreak in a region without regular access to flu vaccines).

Safety meetings. Field safety plans can be improved if teams meet prior to trips to provide input on procedures and scenarios (see examples in SI Appendix, Box S3), discuss codes of conduct, and
distribute hard copies. Although medical history is personal by nature and team leaders may be limited in what they can ask, knowledge about basic health including prescriptions (e.g., blood pressure), pre-existing conditions (e.g., asthma, extreme allergies), and blood group can make a critical difference in an emergency. Consider volunteering health information to team leaders when developing the safety plan, and/or sealing medical documents where they can remain confidential unless an emergency occurs.

Team leaders should be upfront (in a way that does not reveal sensitive identities) about specific challenges and dangers that team members may face because of health issues or personal identity (e.g., LGBTQ+, women). Further, team leaders can make a good faith attempt to defer to the group’s comfort levels, and to create space for private or subgroup conversations regarding safety (see 24). If a given area or field site is too dangerous for some members of the group, team leaders can reconsider whether it is appropriate to conduct field research there. In the field and afterward, we suggest that team leaders proactively check-in with team members and to ensure that everyone feels positive about the experience, as well as debrief afterward to improve future trips.

Concluding Remarks

Here, we present a set of principles based on our self-assessment of how to ingrain equity, reciprocity, access, benefit-sharing, and safety into field biology practices. While many of our suggestions are not new (94, 95) and could be applied more generally to other fields, we believe that compiling these ideas into a single document can help researchers plan intentionally inclusive fieldwork. We recognize that our suggested actions may not be applicable to all institutions, teams, or regions and that each group of collaborators will need to make decisions about how to carry out their own fieldwork as equitably and inclusively as possible. Conducting fieldwork can have a positive, transformative effect on an individual’s and a community’s relationship with science and nature; conversely, bad field experiences can discourage students from pursuing careers in STEM and can dissuade communities from collaborating with scientific researchers (20, 38, 96). We believe that following the proposed principles can help ensure positive outcomes.

In reflecting on our own research programs, we recognize that power imbalances are prevalent within field teams and that they can impact collaborative dynamics. Power imbalances can be a product of economic asymmetries (e.g., high- and low-income regions or countries), geopolitical history (e.g., former colonies and colonialist countries, indigenous communities, Black communities in the Americas), job title (e.g., field assistant), and discrimination of specific groups of people (e.g., women, LGBTQ+, racialized people, people with disabilities). In field biology, power imbalances can result in the formation of collaborative agreements and structural norms that consistently favor those with greater power (e.g., parachute science; 20). Recognizing and taking power dynamics into consideration can promote equity and safety in field biology, ultimately leading to a more inclusive scientific community and practice.

As power imbalances favor those in privileged positions by default, deliberate planning and proactive efforts, especially by privileged individuals and institutions, can allow for more equitable benefits in science. This could mean discussing each collaborator’s goals at the start of a project and asking rather than assuming what collaborators and communities expect and need out of the research program. We ask field researchers to be respectful by prioritizing the safety, comfort, and decisions of local communities in all stages of their field research. In being legal, we promote adherence to all relevant laws and hope that researchers will follow precedents by allowing local authorities to have the final decision on whether and how research is conducted. Finally, in thinking about field safety, we encourage team leaders to emphasize concerns and feedback from team members with less experience or power.
This document represents a collective agreement resulting from months of discussion among the authors. As such it does not entirely reflect each individual’s precise point of view, but instead captures ideas created by consensus that represent our shared goal of making field biology a more ethical, inclusive, and fair domain of knowledge production. During the process of writing this paper, numerous unresolved questions arose that we could not fully address, but we hope that reporting some of them here will initiate further discussion (SI Appendix, Box S1). We encourage other programs, institutions, and individuals to engage in such discussion and to join us by taking action to foster more inclusive and equitable fieldwork.

Acknowledgments. We thank many friends and collaborators who provided useful feedback during this project or on related topics over the years, including Dario Alarcón Naforo, Tatsuya Amano, Mileidy Betancourth-Cundar, John Bates, Omar Torres Carvajal, Chris Conroy, Ben Evans, Paul Fine, Pavel García, Shannon Hackett, Steve Hampton, Tyrone Hayes, Michelle Koo, Karem López, Michael Nachman, Maritza Naforo, James Patton, Lori Schlenker, Carol Spencer, Emma Steigerwald, Bryan Stuart, Carrie Tribble, Elizabeth Wommack, and the many other people involved in our field studies and beyond (many of whom inspired this manuscript) including field assistants, cooks, drivers, other scientists, community members, hosts and their families (including pets), protected area superintendents, indigenous peoples’ chieftains, local government representatives, among others. We also thank Camila Pacheco Bejarano who designed the beautiful illustrations in this manuscript. In addition, we thank the previous and ongoing work of many that strive to make scientific practices and communities diverse and equitable. Finally, we are extremely thankful for the opportunity to experience all the places that we have visited or lived in and the organisms that they hold.

References


Be collaborative

Be legal

Be respectful

Be safe
How can we give back to the communities where we work?

Educational opportunities
Share your research and collaboratively create educational products. Get to know the community and learn how knowledge is shared.

Collaborative science
Work reciprocally with local scientists by sharing logistical and intellectual support for local research programs.

Grassroots science
Conduct community-led (participatory action) research, which can provide tools to the local community and ensure that research is in line with local goals and interests.

Remuneration and infrastructure
Hire local workers. Fair compensation as well as providing training and infrastructure is crucial to support the community.

Broadcasting local issues and achievements
Remain informed about and share local issues and achievements. Promoting local efforts brings new allies and resources to communities.