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Abstract: Background. Range maps are a useful tool to describe the spatial distribution of
species. However, they need to be used with caution, as they essentially represent a rough ap-
proximation of a species’ suitable habitats. When stacked together, the resulting communities
in each grid cell may not always be realistic, especially when species interactions are taken
into account. Here we show the extent of the mismatch between range maps, provided by the
International Union for Conservation of Nature (IUCN), and species interactions data. More
precisely, we show that local networks built from those stacked range maps often yield unre-
alistic communities, where species of higher trophic levels are completely disconnected from
primary producers. Methodology. We used the well-described Serengeti food web of mam-
mals and plants as our case study, and provide updated range maps for all predators by taking
into account food-web structure. We then used occurrence data from the Global Biodiversity
Information Facility (GBIF) to investigate where data is most lacking. Results. We found that
most predator ranges comprised large areas without any overlapping distribution of their preys.
However, many of these areas contained GBIF occurrences of the predator. Conclusions. Our
results suggest that the mismatch between both data sources could be due either to the lack of
information about ecological interactions or the geographical occurrence of preys. We finally
discuss general guidelines to help identify defective data among distributions and interactions
data, and we recommend this method as a valuable way to assess whether the occurrence data
that are being used, even if incomplete, are ecologically accurate.

1

Introduction

Finding a species in a certain location is like finding an encrypted message that traveled through
time. It carries the species’ evolutionary history, migration patterns, as well as any direct and
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indirect effects generated by other species (some of which we may not even know exist). Ecol-
ogists have been trying to decode this message with progressively more powerful tools, from
their field notes to highly complex computational algorithms. However, to succeed in this chal-
lenge it is important to have the right clues in hand. There are many ways we can be misled
by data - or the lack of it: taxonomic errors (e.g., due to updates in the taxonomy of a species),
geographic inaccuracy (e.g., approximate coordinates or lack of documentation about their ac-
curacy), or sampling biases (e.g. data clustered near roads or research centers) (Ladle and Hortal
2013; Hortal et al. 2015; Poisot et al. 2021). One way to identify - and potentially fix - these
errors is to combine many different pieces of information about the occurrence of a species, so
agreements and mismatches can emerge. Although previous studies have combined different
types of occurrence data to measure the accuracy of datasets (Hurlbert and Jetz 2007; Hurlbert
and White 2005; Ficetola et al. 2014), none have used different types of information so far
(i.e., ecological characteristics other than geographical distribution). Here we suggest jointly
analysing species occurrence (range maps and point occurrences) and ecological interactions to
identify mismatches between datasets.
Interactions form complex networks that shape ecological structures and maintain the essential
functions of ecosystems, such as seed dispersal, pollination, and biological control (Albrecht
2018; Fricke et al. 2022) that ultimately affect the composition, richness, and successional pat-
terns of communities across biomes. Yet, the connection between occurrence and interaction
data is a frequent debate in ecology (Blanchet, Cazelles, and Gravel 2020; Wisz et al. 2013).
For instance, macroecological models are often used with point or range occurrence data in or-
der to investigate the dynamics of a species with its environment. However, these models do not
account for ecological interactions, although it has been demonstrated that they might largely
affect species distribution (Abrego et al. 2021; Afkhami, McIntyre, and Strauss 2014; Araújo,
Marcondes-Machado, and Costa 2014; Godsoe et al. 2017; Godsoe and Harmon 2012; Gotelli,
Graves, and Rahbek 2010; Wisz et al. 2013). Some researchers argue that occurrence data can
also capture real-time interactions (see Roy et al. 2016; Ryan et al. 2018), and, because of that,
it would not be necessary to include ecological interaction dynamics in macroecological mod-
els. On the other hand, many mechanistic simulation models in ecology have considered the
effect of competition and facilitation in range shifts. For example, Gotelli et al. (2010) demon-
strate how conspecific attraction might be the main factor driving the distribution of migratory
birds; Afkhami et al. (2014) explores how mutualistic fungal endophytes are responsible or ex-
panding the range of native grass; many other examples are discussed in Wisz et al. (2013).
Although interactions across trophic levels are demonstrated to determine species range (Wisz
et al. 2013), the use of these interactions in mechanistic simulation models in macroecology
remains insufficient (as discussed in Cabral, Valente, and Hartig 2017).
A significant challenge in this debate is the quality and quantity of species distribution and eco-
logical data (Boakes et al. 2010; Ronquillo et al. 2020; Meyer, Weigelt, and Kreft 2016) -
a gap that can lead to erroneous conclusions in macroecological research (Hortal et al. 2008).
Amongst the geographical data available are the range maps provided by the International Union
for the Conservation of Nature (IUCN). Such maps consist of simplified polygons, often created
as alpha or convex hulls around known species locations, refined by expert knowledge about the
species (IUCN Red List Technical Working Group 2019). These maps can be used in macroeco-
logical inferences in the lack of more precise information (Fourcade 2016; Alhajeri and Fourcade
2019), but it has been recommended that they are used with caution since they tend to under-
estimate the distribution of species that are not well-known (Herkt, Skidmore, and Fahr 2017)
(especially at fine scale resolutions; Hurlbert and Jetz (2007); Hurlbert and White (2005)), do
not represent spatial variation in species occurrence and abundance (Dallas, Pironon, and Santini
2020), and can include inadequate areas within the estimated range. Another source of species
distribution information is the Global Biodiversity Information Facility (GBIF), which is an on-
line repository of georeferenced observational records that come from various sources, including
community science programs, museum collections, and long-term monitoring schemes. A great
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source of bias in these datasets is the irregular sampling effort, with more occurrences origi-
nating from attractive and accessible areas and observation of charismatic species (Alhajeri and
Fourcade 2019). As for ecological data, a complete assessment is difficult and is aggravated by
biased sampling methods and data aggregation (Poisot et al. 2020; Hortal et al. 2015). Never-
theless, we have witnessed an increase in the availability of biodiversity data in the last decades,
including those collected through community science projects (Callaghan et al. 2019; Pocock et
al. 2015) and dedicated databases, such as Mangal (Poisot et al. 2016). This provides an oppor-
tunity to merge species distribution and ecological interaction data to improve our predictions
of where a species may be found across large spatial scales (e.g., continental and global).
It has been demonstrated that the agreement between range maps and point data varies geograph-
ically (Hurlbert and Jetz 2007; Hurlbert and White 2005; Ficetola et al. 2014). Adding ecolog-
ical interaction data to this comparison might help to elucidate where these (dis)agreements are
more likely to be true and which dataset better represent the actual distribution of species. In
this context, we elaborate a method that allows us to refine distribution data (more precisely
range maps) based on interaction data, considering the basic assumption that predators can only
be present in regions where they are connected to at least one herbivore - and thus indirectly
connected to primary producers. We used a Serengeti food web dataset (Baskerville et al. 2011)
(which comprises carnivores, herbivores, and plants from Tanzania) to demonstrate how a mis-
match between occurrence and interaction data can highlight significant uncertainty areas in
IUCN range maps. Finally, we add the GBIF occurrence points for the Serengeti species to the
investigation, discuss the mechanisms that can lead to the lack of agreement between data, and
build from that a vision for the next steps, reinforcing the importance of geographically explicit
interaction data.

2

Methods

Organisms cannot persist unless they are directly or indirectly connected to a primary producer
within their associated food web (Power 1992). Therefore, the range of a predator (omnivore or
carnivore) depends on the overlapping ranges of its preys. If sections of a predator’s range does
not overlap with at least one of its prey it will become disconnected from primary producers,
and therefore we would not expect the predator to occur in this area. This mismatch can be
the result of different mechanisms, like the misestimation of both the predator’s and the preys’
ranges (Ladle and Hortal 2013; Rondinini et al. 2006), taxonomic errors (Isaac, Mallet, and
Mace 2004; Ladle and Hortal 2013), or the lack of information about trophic links (i.e., the
lack of connection between the ranges of a predator and a primary producer may be due a third
species we don’t know is connected to both). Thus, given that herbivores are the main connection
between plant resources (directly limited by environmental conditions) and predators (Dobson
2009; Scott et al. 2018), here we adjusted the ranges of predators based on a simple rule: we
removed any part of a predator’s range that did not intersect with the range of at least one prey
herbivore species. So, unless the range of the predator overlapped with at least one prey item,
which in turn is directly connected to a primary producer (plants), we removed that section of
the predator’s range. Finally, we calculated the difference in range size between the original
IUCN ranges and those adjusted based on species interaction data.

2.1. Data We investigated the mismatch between savannah species ranges and interactions in
Africa (fig. 1). These ecosystems host a range of different species, including the well-characterized
predator-prey dynamics between iconic predators (e.g., lions, hyenas, and leopards) and large
herbivores (e.g., antelopes, wildebeests, and zebras), as well as a range of herbivorous and car-
nivorous small mammals. The Serengeti ecosystem has been extensively studied and its food
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web is one of the most complete we have to date, including primary producers identified to
the species level. Here we focus on six groups of herbivores and carnivores from the Serengeti
Food Web Data Set (Baskerville et al. 2011). These species exhibit direct antagonistic (predator-
prey) interactions with one another and are commonly found across savannah ecosystems on the
African continent (McNaughton 1992). Plants in the network were included indirectly in our
analyses as we do not expect the primary producers to significantly influence the range of her-
bivores for several reasons. Firstly, many savannah plants are functionally similar (i.e., grasses,
trees and shrubs) and cooccur across the same habitats (Baskerville et al. 2011). Secondly, her-
bivores in the network are broadly generalists feeding on a wide range of different plants across
habitats. Indeed, out of 129 plants in our dataset, herbivores (n = 23) had a mean out degree
(mean number of preys) of around 22 (std = 17.5). There is also an absence of global range
maps for many plant species (Daru 2020), which prevents their direct inclusion in our analysis.
Therefore, we assume that plants consumed by herbivores are present across their ranges, and as
such the ranges of herbivores are not expected to be significantly constrained by the availability
of food plants.
From the wider ecological network presented in Baskerville (2011), we sampled interaction data
for herbivores and carnivores. This subnetwork contained 32 taxa (23 herbivores and 9 carni-
vores) and 84 interactions and had a connectance of 0.08. Although self-loops are informative,
we removed these interactions to allow for the original IUCN ranges of predators with canni-
balistic interactions to be adjusted. We treated this overall network as a metaweb since it should
contain all potential species interactions between mammalian taxa occurring across savannah
ecosystems such as the Serengeti.
We compiled IUCN range maps for the 32 species included in the metaweb from the Spatial Data
Download portal (www.iucnredlist.org/resources/spatial-data-download), which we rasterized
at 10 arc-minute resolution (~18 km at the equator). We restricted the rasters a spatial extent
comprised between latitudes 35°S and 40°N and longitudes 20°W and 55°E. We then combined
interaction data from the metaweb and cooccurrence data generated from species ranges to create
networks for each raster pixel. This generated a total of 84,244 pixel-level networks. These
networks describe potential predation, not actual interactions: the former is derived information
from the metaweb, and the latter is contingent on the presence of herbivores.

2.2. Range overlap measurement We calculated the geographical overlap, i.e. the extent
to which interacting predator and prey species co-occurred across their ranges, as 𝑎∕(𝑎 + 𝑐),
where 𝑎 is the number of pixels where predator and prey cooccur and 𝑐 is the number of pixels
where only the focal species occur. This index of geographical overlap can be calculated with
prey or predators as the focal species. Values vary between 0 and 1, with values closer to 1
indicating that there is a large overlap in the ranges of the two species and values closer to 0
indicating low cooccurrence across their ranges. For each predator species, we calculated its
generality to understand whether the level of trophic specialization (i.e., number of prey items
per predator) affects the extent to which the ranges of the species were altered. One would
assume that predators with a greater number of prey taxa (i.e., a higher generality) are less likely
to have significant changes in their range as it is more likely that at least one prey species is
present across most of their range.

2.3. Validation For each species in the dataset we collated point observation data from GBIF
(www.gbif.org). We restricted our queries to the data with spatial coordinates and which were
inside the spatial extent of our rasters. We did not use continental or date filters to retrieve as
much data as possible. However, a few observations were localized in the ocean near latitude
0° and longitude 0°. We assumed these were errors and removed all observations falling in the
extent between latitudes 2°S and 2°N and longitudes 2°W and 2°E to keep only mainland sites.
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We then converted the occurrence data into raster format by determining which pixels had a
least one GBIF occurrence. This allowed us to remove the effect of repeated sampling in some
locations. These data were used to validate the range adjustments made based on species in-
teractions (see beginning of Methods section). To do so, we calculated the proportion of GBIF
presence pixels occurring within both the original IUCN species range and the adjusted one. We
then compared these proportions for the predators to verify if the range adjustments removed lo-
cations with GBIF observations, hence likely true habitats.

2.4. Software We performed all analyses using Julia v1.7.2 (Bezanson et al. 2017). We used
the packages SimpleSDMLayers.jl (Dansereau and Poisot 2021) to manipulate the raster lay-
ers, EcologicalNetworks.jl (Poisot et al. 2019) to construct and manipulate the interaction
networks, and GBIF.jl (Dansereau and Poisot 2021) to retrieve the species occurrences from
GBIF. We also used GDAL (GDAL/OGR contributors 2021) to rasterize the IUCN range maps
(initially available as shapefiles from the Spatial Data Download portal). All the scripts required
to reproduce the analyses are available at https://doi.org/10.5281/zenodo.6842861.

3

Results

Mammal species found in the Serengeti food web are widespread in Africa, especially in grass-
lands and savannahs (first panel of fig. 1). However, most local networks (83.2%) built using the
original IUCN range maps had at least one mammal species without a path to a primary pro-
ducer (second panel of fig. 1). On average, local food webs had almost the third of their mammal
species (mean = 30.5%, median = 14.3%) disconnected from basal species. In addition, many
networks (16.6%) only had disconnected mammals; these networks however all had a very low
number of mammal species, specifically between 1 and 4 (from a total of 32). As expected, the
proportion of carnivores with a path to a primary producer was conditional on the total number
of mammal species in each local network (third panel of fig. 1).

3.1. Specialized predators lose more range Predators with fewer prey lose more range
with our method (fig. 2). For instance, both Leptailurus serval and Canis mesomelas have only
one prey in the Serengeti food web (tbl. 1), each of them with a very small range compared to
those of their predator. This discrepancy between range sizes promotes significant range loss.
On the other hand, predators of the genus Panthera are some of the most connected species, and
they also lose the least proportion of their ranges. This mismatch between predators and preys
can also be a result of taxonomic disagreement between the geographical and ecological data.
Although Canis aureus has the same number of prey as Caracal caracal, none of the prey taxa
of the former occurs inside its original range (tbl. 1), which results in complete range loss.
There was a high variation in the overlap of predator and prey ranges (fig. 3). The high density of
points on the left-hand side of fig. 3 indicates that most preys have small ranges in comparison to
those of the set of carnivores in the networks, resulting in either low overlap between both ranges
(bottom) or high overlap of ranges because much of that of the prey is within predators’ range
(top). The top-right side of the plot encompasses situations where the ranges of both predator
and prey are similar and overlapping, while the bottom-right part of the plot represents a situation
where the range of the predator is smaller than that of its prey and much of it occurs within the
preys’ range. For example, Panthera pardus had many preys occurring inside its range, with
highly variable levels of overlap (tbl. 1). In general, species exhibited more consistent values of
prey-predator overlap, than predator-prey overlap – indicated by the spread of points along the
x-axis, yet more restricted variation on the y-axis (fig. 3). There was also no overall relationship
between the two metrics, or for any predator species.
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Figure 1 (a) Spatial distribution of species
richness according to the original IUCN
range maps of all 32 mammal species of the
Serengeti food web. (b) Proportion of mam-
mal species remaining in each local network
(i.e., each pixel) after removing all species
without a path to a primary producer. (c)
Proportion of mammal species remaining in
each local network as a function of the num-
ber of species given by the original IUCN
range maps.

Figure 2 Negative relationship between
the out degree of predator species and their
relative range loss. More specialized preda-
tors lose a higher proportion of their ranges
due to mismatches with the ranges of their
preys.
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Figure 3 Geographical similarity between
the original IUCN range maps of preda-
tors and preys. Dots represent predator-prey
pairs, with different symbols corresponding
to different predators. For a given pair of
species, the number 𝑐 of pixels where the fo-
cal species is present but not the other and the
number 𝑎 of pixels where the predator and
prey cooccur, were calculated. Geographic
similarities were given by 𝑎∕(𝑎+ 𝑐), with the
predator being the focal species in the preda-
tor to prey similarity (x-axis), while the prey
is the focal one in the prey to predator sim-
ilarity (y-axis). One of the predators, Canis
aureus, is not represented in the image be-
cause it is an extreme case (where all its range
is suppressed by the absence of preys) and
it would make the interpretation of the data
more difficult.

Table 1 List of species analysed, their out and in degrees, total original range size (in pixels), and pro-
portion of their ranges occupied by their preys and predators (values between 0 and 1). Species are sorted
according to the groups identified by Baskerville et al. (2011). Notice how some species are isolated in
the network (Loxodonta africana) and how Canis aureus’s range does not overlap with any of its preys.

Species
Number
of preys

Number
of

predators
Total
range

size

Proportion
of range

occupied by
preys

Proportion
of range

occupied by
predators

Large carnivores
Acinonyx jubatus 8 1 15540 0.560 0.670
Crocuta crocuta 12 1 43307 0.848 0.252
Lycaon pictus 14 0 3873 0.916 -
Panthera leo 18 0 11384 0.934 -
Panthera pardus 22 0 68137 0.766 -
Small carnivores
Canis aureus 4 1 7358 0.000 0.780
Canis mesomelas 1 1 19872 0.190 0.995
Caracal caracal 4 0 47243 0.832 -
Leptailurus serval 1 1 38856 0.011 0.979
Small herbivores
Damaliscus lunatus 0 4 5567 - 1
Hippopotamus amphibius 0 0 3695 - -
Kobus ellipsiprymnus 0 4 26705 - 1
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Species
Number
of preys

Number
of

predators
Total
range

size

Proportion
of range

occupied by
preys

Proportion
of range

occupied by
predators

Ourebia ourebi 0 5 22380 - 1
Pedetes capensis 0 2 11901 - 1
Phacochoerus africanus 0 5 29963 - 0.999
Redunca redunca 0 5 17465 - 1
Rhabdomys pumilio 0 5 465 - 0.998
Tragelaphus oryx 0 2 20852 - 0.991
Tragelaphus scriptus 0 3 36011 - 0.984
Large grazers
Aepyceros melampus 0 5 10579 - 1
Alcelaphus buselaphus 0 4 20761 - 1
Connochaetes taurinus 0 6 9650 - 1
Equus quagga 0 5 7070 - 1
Eudorcas thomsonii 0 6 463 - 1
Nanger granti 0 6 2303 - 1
Hyraxes
Heterohyrax brucei 0 1 17728 - 0.972
Procavia capensis 0 1 47697 - 0.647
Others
Giraffa camelopardalis 0 1 5418 - 0.470
Loxodonta africana 0 0 9654 - -
Madoqua kirkii 0 7 4002 - 1
Papio anubis 0 1 23171 - 0.938
Syncerus caffer 0 1 25223 - 0.250

3.2. Validation with GBIF occurrences The proportion of GBIF pixels (pixels with at least
one GBIF occurrence) falling within the IUCN ranges varied from low to high depending on the
species (fig. 4, left). The lowest proportions occurred for species with small ranges. Amongst
herbivores, Rhabdomys pumilio has a proportion of 22.6% of its presence pixels within its IUCN
range, while predators have this proportion above 55% (such as Lycaon pictus, with 55.1%, and
Canis aureus, with 56.2%). Nevertheless, some species with smaller ranges showed high data
overlap (such as Canis mesomelas, with 94.9%, and many herbivores). Overall, predators and
preys displayed similar overlap variations, and species with median and large ranges had higher
proportions of occurrences falling into their IUCN range.
The proportion of GBIF pixels in updated ranges can only be equal to or lower than that of
the original ranges, as our analysis removes pixels from the original range and does not add
new ones. Rather, the absence of a difference between the two types of ranges indicates that
no pixels with GBIF observations, hence likely true habitats, were removed by our analysis.
Here this proportion was mostly similar to that of the original IUCN ranges for most predator
species (fig. 4). Two species showed no difference in proportion while four species showed only
small differences (Crocuta crocuta lost 1.3% of the original data overlap; Acinonyx jubatus lost
1.9%; Panthera pardus lost 8.8%; and Caracal caracal lost 12.3%). On the other hand, three
species, Canis aureus, Canis mesomelas, and Leptailurus serval showed very high differences,
with overlaps lowered by 100%, 57.4%, and 100% respectively. These last two species are also
the only predators with a single prey in our metaweb. Canis aureus has four preys, but it has one
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Figure 4 Left panel: Distribution of the
proportion of GBIF pixels (pixels with at
least one occurrence in GBIF) falling into the
IUCN range for different range sizes. Right
panel: Differences between the proportion of
GBIF pixels falling into the IUCN and the
updated ranges for every predator species.
Arrows go from the proportion inside the
original range to the proportion inside the
updated range, which can only be equal or
lower. Overlapping markers indicate no dif-
ference between the types of layers. Species
markers are the same on both figures, with
predators presented in distinct colored mark-
ers and all herbivores grouped in a single
grey marker. Pixels represent a resolution of
10 arc-minutes.

of the smallest ranges in IUCN, which is not covered by any of its preys. This result reinforces
the concern raised in the literature on the use of IUCN range maps for species that are not well
known (Herkt, Skidmore, and Fahr 2017), demonstrating how small range species are likely to
have their distribution underestimated in the IUCN database. Additionally, the fact that Canis
aureus had such a conspicuous mismatch between both the original and updated IUCN range
maps, and between GBIF and IUCN data, may indicate a taxonomic incongruency between the
three databases used here, which we explore in the Discussion section. Our results delineate how
a mismatch between GBIF and IUCN databases differ greatly with small changes in herbivore
species ranges, and it is somewhat positively related to range size for predator species. Moreover,
we show that accounting for interactions does not necessarily aggravates this dissimilarity, but
it is relevant for species with little ecological information or specialists.

4

Discussion

The jackal is a widespread taxon in northern Africa, Europe, and Australasia, generally well
adapted to local conditions due to its largely varied diet (Tsunoda and Saito 2020; Krofel et
al. 2021). Because of that, we expected that the Canis species in our dataset would be the
ones losing the least amount of range, with a higher value of the proportion of GBIF pixels
within their IUCN range maps. However, the taxonomy of this group is a matter of intense
discussion, as molecular and morphological data seem to disagree in the clustering of species
and subspecies (Krofel et al. 2021; Stoyanov 2020). This debate probably influenced our results:
with originally only 56.2% of the GBIF pixels of the golden jackal (Canis aureus) overlapping
with the IUCN data, we suspect that many of the GBIF occurrences refer to other Canis species,
and that its taxonomic identification in the network database is probably outdated. This led to
a complete exclusion of Canis aureus from its original range in our analysis, despite the fact
that this species has four documented preys in our metaweb. This example illustrates how the
taxonomic, geographical and ecological data can be used to validate one another.
Here we show that when ecological interaction data (predator-prey interactions within food
webs) are used to refine species range maps, there are significant reductions in the IUCN range
size of predatory organisms. Despite showing the potential importance of accounting for species
interactions when estimating the range of a species, it remains unclear the extent to which the
patterns observed represent ecological processes or a lack of data.
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4.1. Connectivity, diversity and range preservation In the Serengeti food web there is a
positive relationship between the out degrees of predators and the size of their ranges. Here, we
showed that there is a negative relationship between the relative loss of predators’ ranges and
their number of preys, reinforcing the idea that generalist species can preserve their distributions
longer while losing interactions. The factors limiting the geographical range of a species in a
community can vary with connectivity and richness (Svenning et al. 2014). Younger communi-
ties may be more affected by environmental limitations because they are dominated by generalist
species, while older metacommunities are probably affected in different ways in the center of the
distribution, at the edge of ranges, and in sink and source communities (Svenning et al. 2014;
Godsoe et al. 2017; Cazelles et al. 2016; Bullock et al. 2000). Additionally, it is likely that
species with larger ranges of distribution and those that are more generalists would co-occur
with a greater number of other species (Dáttilo et al. 2020), while dispersal capacity of com-
petitive species modulate their aggregation in space and the effect of interactions on their range
limits (Godsoe et al. 2017).

4.2. Geographical mismatch and data availability The geographical mismatch between
predators and preys has ecological consequences such as loss of ecosystem functioning and
extinction of populations (Anderson et al. 2016; Dáttilo and Rico-Gray 2018; Pringle et al.
2016; Young et al. 2013). Climate change is one of the causes of this, leading, for instance, to
the decrease of plant populations due to the lack of pollination (Bullock et al. 2000; Afkhami,
McIntyre, and Strauss 2014; Godsoe et al. 2017). However, this mismatch can also be purely
informational. When the distribution of predators and preys does not superpose, it can mean
we lack information about the distribution of either species or about their interactions (e.g.,
predators may be feeding on different species than the ones in our dataset outside the Serengeti
ecosystem). Here we addressed part of this problem by comparing the IUCN range maps with
GBIF occurrences, which helped us clarify what is the shortfall for each species.
The lack of superposition between IUCN range maps and GBIF occurrences suggests that we
certainly do miss geographical information about the distribution of a certain species, but this is
not an indicator of the completeness of the information about ecological interactions. However,
if both GBIF and IUCN occurrences tend to superpose and still the species is locally removed,
this indicates we don’t have information about all its interactions. The combination of this ratio-
nale with our method of updating range maps based on ecological interactions allows us to have
a clearer idea of which information we are missing. For example, the lion (Panthera leo) was
one of the species with no difference between the original and the updated ranges, but 40.7% of
the GBIF occurrences for this species fell outside its IUCN range (fig. 4). In this particular case,
the IUCN maps seem to agree with species interaction data. However, the disagreement between
the IUCN and the GBIF databases is concerning and suggests that the IUCN maps might un-
derestimate the lion’s distribution. On the other hand, Leptailurus serval and Canis mesomelas
are two of the three species that lose the higher proportion of range due to the lack of paths to
a herbivore, but are also some of the species with the higher proportion of GBIF occurrences
inside IUCN range maps (fig. 4). This indicates that the information we are missing for these
two species is related to either the occurrence of an interaction or the presence of interacting
species. To illustrate that, we mapped the GBIF data for the prey of Leptailurus serval, with a
mobility buffer around each point (fig. 5). When considering GBIF data, approximately 42% of
the prey’s occurrences are within the portion of the serval’s range that was lost. With the buffer
area, this corresponds to 15% of the lost range. This means that by adding GBIF information,
we would reduce the loss of range (or information) for the predator by 15% since its distribution
is conditional on the occurrence of its preys.
Finally, the extreme case of Canis aureus illustrates a lack of both geographical and ecological
information: only half of its GBIF presence pixels and none of its preys occur inside its IUCN
range. We believe, therefore, that the validation of species distribution based on ecological inter-
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Figure 5 Mismatch between serval’s range
loss and GBIF occurrence of its prey. The
left panel shows the reduction of serval’s
range when we consider the IUCN data on
its prey. On the right panel, we added GBIF
data on both serval and its prey, with a buffer
for the prey to account for species mobility.

action is a relevant method that can further fill in information gaps. Nevertheless, it is imperative
that more geographically explicit data about ecological networks and interactions become avail-
able. This would help clarify when cooccurrences can be translated into interactions (Windsor
et al. 2022) and help the development of more advanced validation methods for occurrence data.

4.3. Next steps Here we demonstrated how we can detect uncertainty in species distribution
data using ecological interactions. Knowing where questionable occurrence data are can be cru-
cial in ecological modelling (Hortal 2008; Ladle and Hortal 2013), and accounting for these
errors can improve model outputs by diminishing the error propagation (Draper 1995). For in-
stance, we believe this is a way to account for ecological interactions in habitat suitability models
without making the models more complex, but by making sure (not assuming) that the input data
- the species occurrence - actually accounts for ecological interactions. It is important to notice,
however, that the quality and usefulness of this method are highly correlated with the amount
and quality of data available about species’ occurrences and interactions. With this paper, we
hope to add to the collective effort to decode the encrypted message that is the occurrence of
a species in space and time. A promising avenue that adds to our method is the prediction of
networks and interactions in large scales (Strydom et al. 2021; Windsor et al. 2022), for they can
add valuable information about ecological interactions where they are missing. Additionally, in
order to achieve a robust modelling framework towards actual species distribution models we
should invest in efforts to collect and combine open data on species occurrence and interactions
(Windsor et al. 2022), especially because we may be losing ecological interactions at least as
fast as we are losing species (Valiente-Banuet et al. 2015).
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