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Abstract: 17 

1) Estimates of species’ population abundances have important ramifications for 18 

conservation decision-making. Conservation practice, however, often has to rely on 19 

indices of relative abundance rather than absolute estimates. Attempts to estimate 20 

large-scale abundance estimates of species are limited by both the availability of data 21 

and statistical challenges. New opportunities are, however, emerging as a result of the 22 

development of an open data culture.  23 

2) Here we integrate information from two distinct citizen science data sources, 24 

opportunistic occurrence data and targeted standardized distance-sampling survey 25 

data, to estimate the population size of an alpine bird - the willow ptarmigan, Lagopus 26 

lagopus - in Norway between 2008 and 2017. Our model combines the strengths of the 27 

occurrence data (widespread but coarse) and standardised survey data (spatially 28 

restricted but detailed) to estimate ptarmigan population size at both local and 29 

national-scales. Using simulations, we also examined the sensitivity of the population 30 

size estimates to each data type to guide future data collection. 31 

3) An occupancy-detection model fit to the occurrence data predicted that willow 32 

ptarmigan were present in 29% of 5 x 5 grid cells across Norway. Occupancy 33 

probability was most strongly affected by habitat covariates. The distance-sampling 34 

model predicted that ptarmigan density in the area covered by the line-transect surveys 35 

was, on average, 13 individuals per km2, and most strongly affected by climatic 36 

variables. On integration, we predicted a mean annual population size of c. 1.2 million 37 

individuals.  38 

4) Most of the uncertainty in the national population size estimate was driven by 39 

uncertainty in occupancy in western and central Norway. Hence, data collection 40 
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activities might be encouraging in these regions to increase the precision of population 41 

size estimate.  42 

5) Synthesis and applications: Our study shows the possibilities of new data sources and 43 

modelling approaches to provide absolute estimates of species’ population sizes, 44 

which are often more revealing than relative abundance indices for understanding 45 

species’ population dynamics and trends. Ecologists can take advantage of the open 46 

data revolution, and especially the relative strengths of different available data types, 47 

to estimate species’ abundance at large spatial scales. 48 

 49 

Keywords: citizen science; data integration; integrated distribution models; population 50 

abundance; population size; species monitoring; synthesis51 
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Introduction  52 

Species’ abundance plays a central role in most ecological and evolutionary processes 53 

(Kunin 1998; McGill & Collins 2003). Monitoring programs typically collect abundance data 54 

to create indices of the relative abundance of species (Van Strien, Pannekoek & Gibbons 55 

2001; Collen et al. 2009), which are sufficient for many questions about trends (Dornelas et 56 

al. 2019) and drivers of trends (Kolecek et al. 2014). However, estimates of species’ total or 57 

absolute abundances are also important, such as to inform the IUCN red list assessment 58 

(IUCN 2012), for reference levels to define conservation targets (Reed et al. 2003), or to 59 

assign sustainable harvest quotas  (Eriksen, Moa & Nilsen 2018). However, few monitoring 60 

schemes aim to go beyond abundance indices to estimate the total number of individuals 61 

within a population, especially at large spatial scales. With the current reliance on abundance 62 

indices, there is a risk that the value of absolute population abundance estimates is overlooked 63 

for understanding species’ population dynamics and trends. 64 

The main challenge to the quantification of species abundances at large spatial scales 65 

is imperfect detection and spatial heterogeneity in abundance (Yoccoz, Nichols & Boulinier 66 

2001; Jones 2011). Imperfect detection arises because some individuals are almost always 67 

missed during a survey within a target area (Kéry  & Royle 2016). Abundance models that 68 

ignore imperfect detection make the simplistic assumption that species’ detection probabilities 69 

are constant among different places and at different times (i.e. similar fractions of individuals 70 

are missed during a survey) (Pollock et al. 2002; Johnson 2008). By contrast, models that 71 

account for imperfect detection allow for variation in species’ detectability and can therefore 72 

provide better information on spatial and temporal patterns in species abundance (Pollock et 73 

al. 2002; Hewson et al. 2018). Species’ detection probabilities, and in turn total abundance 74 

estimates, can be estimated using methods for marked (i.e., tagged) individuals, e.g., mark-75 

recapture (McCrea & Morgan 2014), or for unmarked individuals, such as distance-sampling 76 
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methods (Buckland et al. 2001) or repeat surveys (Botsch, Jenni & Kery 2020). However, 77 

these methods are costly in terms of sampling frequency or effort, which means that they tend 78 

to be only possible at a small spatial scale for local abundance estimates. Estimating 79 

abundance at large spatial scales remains a challenge due to spatial variation in abundance, 80 

which means that surveyed areas might be a poor representation of the wider landscape 81 

(Buckland & Johnston 2017). This is especially true when the survey was focused on the core 82 

habitat of a species.  83 

Upscaling of abundance estimates from local-scale abundance data may be possible by 84 

combining it with other data types that provide coarser but more widespread information on 85 

species’ populations (Pagel et al. 2014; Isaac et al. 2020; Farr et al. 2021). Opportunistic 86 

occurrence data that have been collected without a common survey protocol, typically from 87 

citizen scientists, can potentially provide data over a large spatial scale, including from both 88 

core and marginal areas for a species (Kery, Gardner & Monnerat 2010; Soroye, Ahmed & 89 

Kerr 2018). In the last decade, hierarchical models have been developed that deal with the 90 

inherent biases within such opportunistic citizen science data (van Strien, van Swaay & 91 

Termaat 2013; Isaac et al. 2014). Moreover, recent studies have also shown how different 92 

types of data, including abundance and occurrence, can be combined together to increase the 93 

sample size and spatial coverage (Miller et al. 2019; Isaac et al. 2020).  94 

Here, we show how occurrence data and abundance data can be combined by using 95 

integrated modelling to estimate total abundance for an iconic alpine species. More precisely, 96 

we estimate the national population size of the willow ptarmigan Lagopus lagopus in Norway. 97 

This species is thought to have already undergone a large decline in the 20th century 98 

(Lehikoinen et al. 2019). Moreover, as an alpine species, it is especially vulnerable to on-99 

going and future climate change (Bowler et al. 2020). We combined information on density, 100 

from distance-sampled line-transect surveys that targeted the core alpine habitat of the 101 
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ptarmigan, with occurrence data that provided information on the larger distribution of bird 102 

species across Norway. Moreover, we examined the uncertainty of the model to identify 103 

which geographic regions might be further sampled to improve the national population size 104 

estimate.105 
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Materials and methods 106 

Occurrence data 107 

Occurrence data for Norway were downloaded from GBIF and the Species map service of the 108 

Norwegian Biodiversity Information Centre. Data are collected by variable methods and are 109 

best regarded as opportunistic i.e., without a consistent sampling protocol. We downloaded 110 

two sets of data: (1) occurrence data for willow ptarmigan and (2) occurrence data for all 111 

birds (Fig. 1). Data for all bird occurrences were used in the statistical analysis to control for 112 

spatial and temporal variation in the sampling effort of ornithologists across Norway. The 113 

willow ptarmigan occurrence dataset included some observations from the line-transect 114 

surveys; however, we did not discard them from the occurrence data set since they still 115 

provided valid occurrence observations. Both sets of data were filtered by removing: duplicate 116 

observations (with the same date, species and geographic coordinates); those with coordinate 117 

uncertainty greater than 5 km; those with geographic coordinates with less than three decimal 118 

places and those outside our temporal scope of 2008-2017. We focused on records during the 119 

breeding season between May and September. The occurrence data were mapped to a 120 

reference grid comprising 5 x 5 km grid cells that covered the extent of Norway (limited to 121 

grids that overlapped at least 50% with mainland Norway). This resolution should account for 122 

limited local movement of the ptarmigan within the summer season and aligned with the 123 

mean length of the line-transect surveys (see next section).  124 

 125 

Line-transect survey data 126 

We used a dataset of line-transect surveys that covered almost the full latitudinal extent of 127 

mainland Norway for 2008–2017 (Fig. 1). The surveys come from a structured citizen science 128 

program that is coordinated by local and regional initiatives. The program targeted the willow 129 
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ptarmigan and focused on its core habitat in alpine areas. Volunteer surveyors follow a 130 

common survey procedure using distance-sampling methods, usually in August (Nilsen et al. 131 

2020). See Bowler et al. (2020) for more details. We excluded observations made at distances 132 

greater than 200 m from the transect line, as well as detections by the surveyor, and not by the 133 

trained pointing dogs, at distances > 10 m away from the transect line. We used data from 585 134 

line-transects (mean length of 4.3 km) that were visited in at least 5 years (a median of 10 135 

years) during our study period.  136 

 137 

 138 

Fig. 1 Maps showing the distributions of each data set: (a) line-transect surveys from 139 

structured citizen science that targeted the willow ptarmigan and (b) presence and (c) absence 140 

observations for the willow ptarmigan (i.e. bird species were reported on a given date and 141 

place but not the willow ptarmigan) from opportunistic citizen science. 142 

 143 
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Environmental covariates 144 

Climate: We used the EuroLST dataset that provides summary temperature maps derived 145 

from reconstructed MODIS LST averaged for 2001–2013 at 250 m resolution (Metz, 146 

Rocchini & Neteler 2014). We used data on maximum temperature of the warmest month and 147 

minimum temperature of the coldest month.  148 

Habitat: We used a vegetation map of Norway, which used satellite data to classify land cover 149 

at 30 m resolution into 25 classes (Johansen, Aarrestad et al. 2009). The land classes were 150 

aggregated into percentage cover of: mountain birch forest; boreal/lowland forest; bogs with 151 

dense field layer; swamps/bogs with sparse field layer; open areas with dense field layer; open 152 

areas with sparse field layer and snowbeds, following Kvasnes et al. (2018) (Table S1). 153 

Treeline:  Elevation was extracted from a digital elevation model of Fennoscandia at 10 m 154 

resolution (https://kartkatalog.geonorge.no/). Treeline data at 100 m resolution was extracted 155 

from Blumenrath & Hanssen (2010). We calculated the deviation of the elevation from the 156 

predicted treeline for each grid cell. 157 

Region: We obtained spatial polygon data on the administrative regions that subdivide 158 

Norway (https://gadm.org/, level 2). 159 

Covariate data were matched to the occurrence data by averaging values within the 5 x 5 km 160 

grid cells and to the abundance data by averaging within circles (with areas of 25 km2 to 161 

match the area of the grid cells) centred on the centroids of each line-transect.  162 

 163 

 164 

 165 

 166 
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Statistical analysis 167 

 168 

Selection of environmental variables 169 

We included both linear and quadratic effects of all continuous covariates in the models 170 

described below. We used variable indicator selection by multiplying the Gaussian prior on 171 

each covariate with a Bernoulli indicator variable that modified whether the variable was 172 

included in the model or not (Rushing et al. 2019). Alternative approaches were considered 173 

but they gave similar results (see SI). 174 

 175 

Occurrence data 176 

To estimate the probability of occurrence of willow ptarmigan, we first constructed a 177 

detection history for each 5 x 5 km grid cell. The spatial and temporal unit of our analysis was 178 

a visit, defined by a list of species observations collected on a given date in a given grid cell. 179 

For each visit, we created a binary indicator to reflect whether willow ptarmigan was included 180 

among the reported bird species (1=yes, 0=no). Hence, following others (van Strien, van 181 

Swaay & Termaat 2013), absence data (non-detections) for ptarmigan were inferred from 182 

observations of other bird species on a given visit. We used occupancy-detection models to 183 

analyse the detection/non-detection of species on a visit, which have been used in previous 184 

studies using similar heterogeneous data (Kery, Gardner & Monnerat 2010; Outhwaite et al. 185 

2020) and tested in simulation studies (Isaac et al. 2014). In occupancy-detections models, the 186 

detection probability of a species is estimated by the number of times a species was/was not 187 

reported during repeat visits to the same grid. We assumed closure (i.e. period of no change in 188 

occupancy during repeat visits) between April and October of each year.  189 



11 
 

Letting 𝑧𝑖,𝑡 refer to the true occupancy status for a species in grid i in year t, we 190 

modelled occupancy probability (𝜓) as a function of fixed effects of the environmental 191 

covariates and a series of random effects to account for clustering of the data in space and 192 

time (spatial: administrative region and grid cell; temporal: year).  193 

Hence, our occupancy model was: 194 

𝑧𝑖,𝑡 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓𝑖,𝑡) 195 

𝑙𝑜𝑔𝑖𝑡(𝜓𝑖,𝑡)  = 𝛽0 + 𝛽𝑒 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑉𝑎𝑟𝑠𝑖 + 𝐺𝑟𝑖𝑑𝑖 +  𝑅𝑒𝑔𝑖𝑜𝑛𝑖 + 𝑌𝑒𝑎𝑟𝑡 196 

 197 

Detection probability (𝑝) was modelled for each visit j to a given grid in a given year, 198 

and allowed to vary with variables expected to be most associated with species visibility and 199 

abundance (open habitat cover, temperature and tree line). Following Outhwaite (2020), 200 

survey effort was modelled as a function of list length, i.e., number of species reported on a 201 

visit (a categorical variable – a single species, a short list (2-4 species), or a longer list – set as 202 

the reference level). Random effects for year and region were also included. 203 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖,𝑡,𝑗) =  𝛽0 +  𝛽𝑑𝑒𝑡 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑉𝑎𝑟𝑠𝑖 + 𝛽𝑠𝑖 𝑠𝑖𝑛𝑔𝑙𝑒_𝑙𝑖𝑠𝑡𝑗 +  𝛽𝑠ℎ 𝑠ℎ𝑜𝑟𝑡_𝑙𝑖𝑠𝑡𝑗 + 𝑌𝑒𝑎𝑟𝑡204 

+ 𝑅𝑒𝑔𝑖𝑜𝑛𝑖  205 

 206 

The observed detection data for the willow ptarmigan, y (0 for non-detection or 1 for 207 

detection) on each visit are then assumed to be drawn from a Bernoulli distribution 208 

conditional on the presence of the species in that grid cell and year: 209 

𝑦𝑖,𝑡,𝑗| 𝑧𝑖,𝑡  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧𝑖,𝑡 .  𝑝𝑖,𝑡,𝑗) 210 

 211 

The models were run in JAGS with 20,000 iterations and 10,000 burnin, with vague priors. 212 

The Rhat statistics and traceplots were used to check for convergence.  213 

 214 
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Line-transect survey data 215 

We fitted a distance-sampling detection model to estimate the effective strip width of each 216 

transect (Buckland et al. 2001). We modelled the perpendicular distances of ptarmigan 217 

observations from the transect line as a half-normal distribution, following an earlier study 218 

(Bowler et al. 2020). On the transect line, we assumed perfect detection – a common 219 

assumption in distance-sampling (Buckland et al. 2001). We modelled sigma - the parameter 220 

of the half-normal distribution that reflects the rate of distance-decay of detections - to be 221 

dependent on group size (i.e. the number of birds in each observation). To account for any 222 

spatial autocorrelation in sigma, we also included a random effect for region.  223 

𝑙𝑜𝑔(𝑠𝑖𝑔𝑚𝑎𝑖,𝑡) = 𝛽0 + 𝛽𝐺𝑆𝐺𝑟𝑜𝑢𝑝𝑆𝑖𝑧𝑒𝑖,𝑡 +  𝑅𝑒𝑔𝑖𝑜𝑛𝑖 224 

 225 

The effective strip width of each transect (i) in each year (t) was calculated from sigma 226 

by (Buckland et al. 2001): 227 

𝐸𝑆𝑊𝑖,𝑡 =  √
(𝜋 ∗ 𝑠𝑖𝑔𝑚𝑎𝑖,𝑡

2)

2
 228 

 229 

We then used the estimated effective strip width (ESW) and transect length (TL) to 230 

relate the total number of individuals observed along each transect, N, to the latent variable, 231 

ptarmigan density, D, (abundance per km2) for each transect i  in year t : 232 

𝑃𝑡𝑎𝑟𝑚𝑖𝑔𝑎𝑛_𝑂𝑏𝑠𝑖,𝑡 ~ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖,𝑡, 𝑟) 233 

𝑁𝑖,𝑡 = 𝐷𝑖,𝑡  ×  𝑇𝐿𝑖,𝑡  × 𝐸𝑆𝑊𝑖,𝑡  × 2 234 

We assumed that the number of individuals, 𝑁𝑖,𝑡 followed a negative binomial distribution 235 

with constant dispersion parameter r. Like for occupancy, density was modelled as a function 236 
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of fixed effects of the environmental covariates and random effects to account for clustering 237 

of the data in space and time (spatial: administrative region and grid cell; temporal: year). 238 

𝑙𝑛 𝐷𝑖,𝑡 = 𝛽0 + 𝛽𝑒 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑉𝑎𝑟𝑠𝑖 + 𝐺𝑟𝑖𝑑𝑖 +  𝑅𝑒𝑔𝑖𝑜𝑛𝑖 + 𝑌𝑒𝑎𝑟𝑡 239 

To spatially align the line-transect density predictions with the grid-level occupancy 240 

predictions, each line-transect was associated with the 5 x 5 km grid cell that overlapped with 241 

the line-transect centroid coordinates. The density per km estimated for each line-transect was 242 

then scaled to the associated 5 x 5 km grid by multiplying by 25, on the assumption that the 243 

line-transect was a representative sample of the grid. The models were run in JAGS with 244 

50,000 iterations and 25,000 burnin, with vague priors. The Rhat statistics and traceplots were 245 

used to check for convergence. 246 

 247 

Data integration 248 

We followed the principle of a zero-inflated model to predict species abundance per 5 x 5 km 249 

grid cell over the whole extent of mainland Norway. A zero-inflated model assumes that 250 

species abundance is generated by two processes: one governing whether a grid is suitable for 251 

occupation and a second process governing the abundance of the species at suitable grids. We 252 

used the aforementioned occupancy-detection model for the first process and the distance-253 

sampling model for the second process. Previous attempts to data integration have often used 254 

a joint-likelihood approach, which means that the ecological models were assumed as the 255 

same in each dataset (Miller et al. 2019). However, there is debate about whether occurrence 256 

and abundance are really outcomes of the same point processes governing the distribution of 257 

individuals (Kéry  & Royle 2016). In our case, we felt justified in modelling each dataset 258 

separately based on the large differences in spatial extent between the two datasets and 259 

geographic space – the line-transects specifically targeting the alpine habitat of the ptarmigan. 260 
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Moreover, our datasets were not entirely independent (some of the presence observations 261 

came from the line-transect surveys) and a joint-likelihood approach could have over-262 

estimated the precision in the estimated abundance.  263 

We integrated the information in each dataset via multiplication of samples from the 264 

posterior distribution of grid-level predictions from the occupancy model and the distance-265 

sampling model for each year. These models were used to make predictions of realized 266 

abundance to all grids across Norway, as follows:   267 

𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑖,𝑡 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐴𝑏𝑢𝑛𝑑𝑖,𝑡  ×  𝑃𝑟(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦)𝑖,𝑡 268 

 269 

To estimate the national population size, we summed the predictions across all grid 270 

cells. For comparison, we used a simpler approach, similar to the approach used by BirdLife 271 

International, which estimates total population abundance by multiplication of the estimated 272 

area of occupancy with estimated mean density. In our case, area of occupancy was based on 273 

the number of occupied grid cells predicted by the occupancy model (i.e. sum of the 𝑧 across 274 

all grid cells) while mean density was the mean density predicted across all line-transects.  275 

 276 

Model validation and predictive performance 277 

Within-sample: We carried our posterior predictive checks by calculating a Bayesian p-value.  278 

Bayesian p-values close to 0 or 1 would indicate poor model fit (Kéry  & Royle 2016). For the 279 

line-transect model, this was based on a Pearson chi-square statistics for the observed number 280 

of birds and for simulated values from the fitted model in comparison with the expectation of 281 

the linear predictor of the model. The p-value is then how often the discrepancy for the 282 

observed data is larger (or smaller) than the discrepancy for the simulated data. For the 283 

occupancy model, the Pearson chi-square statistic was calculated for the total number of birds 284 
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detected each year and for the simulated values from the fitted model, in comparison with the 285 

expected number from the fitted values (Tobler et al. 2015; Broms, Hooten & Fitzpatrick 286 

2016). We also used area under the curve (AUC) to quantify the discrimination of the 287 

occupancy model (Zipkin, Grant & Fagan 2012) and mean absolute deviation (MAD, average 288 

deviation between observation and predictions) for the line-transect model.  289 

Out-of-sample: The latitudinal range of the data was split into 25 blocks that were 290 

systematically assigned to one of five folds (Fig. S1). We repeated the models described 291 

above five times - training using four of the folds (e.g., folds 1-4) and using the remaining 292 

fold (e.g., fold 5) for testing. For each fold we calculated the AUC to quantify the 293 

discrimination of the occupancy model (Zipkin, Grant & Fagan 2012), and MAD for the line-294 

transect model. These statistics were calculated for the middle year of the time-series. 295 

Random site and region effects were not included in the models for cross-validation since the 296 

levels within the training dataset were not always within the test dataset.  297 

 298 

Uncertainty analysis 299 

We used Monte Carlo simulation to examine how uncertainty in the grid-level predictions of 300 

occupancy and abundance led to uncertainty in the national population size estimates. We 301 

compared the effects of uncertainty of predictions for each grid and each data type by 302 

propagating uncertainty through for each grid and data type while holding constant the values 303 

for the remaining grids and data type. Specifically, uncertainty was examined by taking all 304 

grid values (except for one focal grid) for occupancy probability and abundance to be the 305 

mean of the posterior from the fitted model (i.e., the best estimate) but randomly sampling 306 

occupancy or abundance values from their posterior distributions for the remaining focal grid. 307 

For each random sample, a new total population size was arrived at calculating the realised 308 
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abundance (occupancy x abundance) of each grid and then summing the values across all 309 

grids. Random sampling was repeated 1000 times and the standard deviation of the total 310 

population sizes was calculated across the replicates.   311 

 312 

All analyses were performed in R 4.1.0. 313 

 314 
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Results 315 

Occupancy 316 

Observations of at least one bird species were reported in 75.7% (n = 8927) of the 5 x 5 km 317 

grids that covered mainland Norway. In the study period, willow ptarmigan were reported at 318 

least once in 21.3 % (n=1898) of the sampled grids. Mean detection probability (i.e. 319 

probability to detect a ptarmigan if it is present within a grid) was 0.16 (95% CI = 0.14, 0.18). 320 

Detection probability was lower on visits reporting single (95% CI = -0.64, -0.49) or short 321 

species lists (95% CI = -1.08, -0.91), and greater in areas with more open habitat (95% CI = 322 

0.47, 0.57), colder temperatures (95% CI = 0.29, 0.45) and higher tree lines (95% CI = 1.20, 323 

1.73). 324 

Mean occupancy probability across all grid cells was 0.29, but there was substantial 325 

spatial variation (Fig. 2). Occupancy probability was most positively affected by tree line 326 

(quadratic effect, with lower density at the highest tree lines), open dense vegetation, bog 327 

cover, mountain birch forest and temperature (Fig. S2). The Bayesian p-value was 0.47, 328 

suggesting no fit issues. AUCs were high (occupancy model median AUC = 0.97; detection 329 

model median AUC = 0.96). Cross validation showed that the detection model was weaker 330 

than the occupancy model, but AUCs on the test dataset were still reasonably good (Table 331 

S2). 332 
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 333 

Fig. 2 Occupancy probability estimates of willow ptarmigan across Norway (a) and standard 334 

deviation of the estimate (b) from the occupancy-detection model. Each pixel is a 5 x 5 km 335 

grid. 336 

 337 

Density 338 

The 585 line-transects were placed within 302 (2.6 %) of the 5 x 5 km grids. Along each 339 

transect, a median of six ptarmigan (interquartile range = 3–11) were observed each year. The 340 

average effective strip width of the line-transects was 100 m (interquartile range = 90–110 m) 341 

and was positively affected by ptarmigan group size (95% CI of coefficient on sigma = 0.37, 342 

0.40), i.e., larger groups had higher detection probability at greater distances. Mean density of 343 

willow ptarmigan per km2 was estimated as 13 (interquartile range = 9–16) across all line-344 

transects (Fig. 3). Variable indicator selection supported the importance of variables related to 345 

temperature (maximum and minimum temperature) and tree line (Fig. S3). For fit measures, 346 
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the model predictions were strongly correlated with the observed data (r = 0.93; Fig S4); the 347 

mean absolute deviation was 2.39 (for the line-transect mean count) or 4.9 (for year-specific 348 

transect predicted count), and the Bayesian p-value was 0.58, suggesting no fit problems. 349 

Also, cross-validation suggested no great loss of fit between the test versus training datasets 350 

(Table S2).  351 

 352 

Fig. 3 Ptarmigan density estimates (abundance per km2) (left) and standard deviation of the 353 

estimate (right) from the distance-sample model of the line-transect survey data. Each dot 354 

reflects the location of a line-transect. 355 

 356 

Data integration and total population size 357 

Abundance was highest in central Norway and lowest in the southeast and north (Fig. 4). 358 

Summed across all grids, total abundance, on average across years, was 1,164,379 (95% CI = 359 

1,053,149 to 1,307,195) (Fig. 5a). This estimate was generally similar for all three approaches 360 

taken to select the environmental variables for the most parsimonious model (Fig. S5). Year-361 
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specific predictions varied between 778,310 and 1,703,192 individuals, on average (Fig. 5b; 362 

see Bowler et al. 2020 for discussion on the drivers of cyclic dynamics). The simpler model to 363 

estimate total abundance (i.e., predicted number of occupied grids x mean density) led to a 364 

similar prediction of the total population size: 1,207,997.   365 

 366 

 367 

Fig. 4 Integrated model predictions of abundance within each 5 x 5 km grid (left) and its 368 

standard deviation (right). The predictions combine information from both the line-transect 369 

surveys and the occurrence observations. 370 

 371 
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 372 

Fig. 5 (a) Posterior distribution of the estimated national population size of willow ptarmigan. 373 

(b) Annual predictions of the population size; points are lines show means and 95% credible 374 

intervals (see Bowler et al. 2020 for analysis of the cyclic dynamics). 375 

 376 

Uncertainty analysis 377 

Uncertainty in the grid-level occupancy estimates had larger effects on the uncertainty of the 378 

national abundance estimate than uncertainty in the grid-level abundance estimates (median 379 

SD caused by each: 32 vs 81) (Fig. 6). Uncertainty in the grid-level occupancy estimates was 380 

most influential along the western coast of central and southern Norway (Fig. 6). Uncertainty 381 

in the abundance estimates had the greatest effect within the core alpine areas where the 382 

density of ptarmigan is the highest. The lowest uncertainty for both data types was in the 383 

forested areas of southeast Norway, explained by the expected low abundance and occupancy. 384 

Grids with high uncertainty in both occupancy and abundance were found in central Norway. 385 

 386 

 387 
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 388 

Fig. 6 The impact of grid-level uncertainty in the predictions of occupancy and abundance on 389 

the uncertainty (standard deviation of estimate) of the national population size. To facilitate 390 

comparison, the same colour scale is used for each map. 391 
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Discussion 392 

The cultural shift towards open data has created new opportunities for ecologists to model 393 

species’ populations, but at the same time, new challenges to develop ways to combine the 394 

different data types that are available. We show how abundance data and occurrence data can 395 

be combined to produce predictions of total population abundance for a species over a 396 

nationwide extent. Our approach takes advantage of the contrast between types of data and 397 

citizen science: coarse but spatially extensive occurrence data from opportunistic citizen 398 

science and detailed but spatially restricted abundance data from structured citizen science. 399 

We used the model to produce the first estimate of the national population size of our study 400 

species – an average of c. 1.2 million individuals of willow ptarmigan in Norway in the study 401 

period 2008-2017 – and to identify geographic regions where more data are needed to 402 

improve the national estimate.  403 

Our approach combines elements of past approaches for estimating avian population 404 

sizes but in a spatially-explicit hierarchical model. Previous approaches have typically 405 

extrapolated available density estimates over the known range of a species (Thogmartin et al. 406 

2006; Musgrove et al. 2013; Stanton et al. 2019). Callaghan et al. (2021) recently produced 407 

global population size estimates for bird species based on relationships between regional 408 

abundance estimates and the number of eBird observations. Birdlife International produces 409 

global population size estimates by combining average density information with estimates of 410 

area of occupancy (http://datazone.birdlife.org/species/spcpop). However, these models are 411 

typically not spatially-explicit and/or do not propagate all the uncertainty in the density and 412 

occupancy estimates.  413 

Recently, new approaches for data integration have been developed, combining 414 

different types of monitoring data, including presence-only, presence-absence and abundance 415 

(Miller et al. 2019). In so-called integrated distribution models, multiple data streams are 416 
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combined in the same hierarchical model that explicitly separates the observation/sampling 417 

process affecting the observed data from the true state or ecological process affecting the 418 

species (Isaac et al. 2020). Use of a Bayesian framework also simplifies the process of 419 

retaining all the underlying uncertainty in the different components of the model during 420 

integration. Several alternative approaches have been proposed for data integration (Pacifici et 421 

al. 2017; Miller et al. 2019; Simmonds et al. 2020), but the most commonly used method so 422 

far is based on a joint-likelihood approach, which uses different data streams to jointly infer 423 

the ecological processes, such as land-use and climate effects. The joint-likelihood approach 424 

has been most often applied to combine presence-only and presence-absence data (Simmonds 425 

et al. 2020), but there are also applications for combining abundance and occurrence data 426 

(Bowler et al. 2019; Farr et al. 2021). Simulation studies show that data integration in this 427 

way can increase the precision of parameter estimates, including covariate effects (Farr et al. 428 

2021) and temporal trends (Hertzog et al. 2021), by increasing the sample size of data 429 

informing the model. However, the joint-likelihood approach requires making the strong 430 

assumption about identical ecological processes generating each data type, and it remains 431 

unclear when joint-likelihood is robust to deviations from this assumption (Simmonds et al. 432 

2020; Suhaimi, Blair & Jarvis 2021). 433 

While it has been argued on theoretical grounds that abundance and occurrence are 434 

outcomes of the same processes affecting the distribution of individuals (Kéry  & Royle 435 

2016), empirical data analyses support different species dynamics for occupancy and 436 

abundance (Dennis et al. 2019). In our case, we allowed the models for occurrence and 437 

abundance to be independent and not to share information, justified by the large differences in 438 

spatial scale and habitats sampled by each dataset. The distance-sampling abundance survey 439 

was dedicated to the willow ptarmigan and targeted its core alpine habitats; by contrast, the 440 

occurrence datasets came from observers reporting any bird species across the range of 441 
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habitats available across Norway. Hence, we rather assumed that each dataset provided 442 

different information on the process affecting the species’ abundance and distribution, which 443 

was supported by the estimated covariate effects – land cover variables explained variation in 444 

occupancy while climatic variables mostly explained variation in abundance at occupied sites. 445 

Further simulation studies could explore how the optimal integration approach varies with the 446 

spatial scale and coverage of each data stream. 447 

Regardless of the data integration approach, population size estimates will always 448 

contain some uncertainty, which might limit the application for conservation and 449 

management. Recent studies have begun to consider how citizen scientists might be nudged to 450 

collect data in specific geographic regions to make the data more informative (Callaghan et al. 451 

2019). Often these regions include those with the least amount of data and hence 452 

proportionally under-sampled compared to other regions. However, the value of further data 453 

collection in a geographic region can be more complex and depend on factors such as the 454 

habitat preference and habitat breadth of the species. For the willow ptarmigan, regions with 455 

dense forest cover have low occupancy uncertainty, regardless of data availability, because it 456 

is not found in these habitats, and this can be easily modelled with the right covariates. Our 457 

analysis suggested that uncertainty in occupancy was especially high in western central and 458 

southern Norway, where habitat might be suitable but there are less data. Hence, targeted data 459 

collection in these areas may be most beneficial. However, as a caveat, this analysis did not 460 

consider other causes of uncertainty, including model structure, which also might be further 461 

investigated, but we used a typical range of habitat and climate covariates. 462 

We applied our method to the willow ptarmigan in Norway, which currently has the 463 

IUCN status of “least concern”, but like similar montane species, has been declining across 464 

Fennoscandia (Lehikoinen et al. 2019), although this was not evident during the recent time-465 

frame of our study. Hence, knowledge of its population size could be important for future red 466 
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list decisions. As this species interacts with a range of other species in alpine regions - as both 467 

a herbivore and as prey, its absolute abundance also has implications for other species in the 468 

food web (Bowler et al. 2020). Moreover, the ptarmigan is a game species and information on 469 

population size is one of the factors determining harvesting quotas (Eriksen, Moa & Nilsen 470 

2018).  471 

Methods for data integration arrive at a time when ecologists have increasing access to 472 

diverse open datasets on species’ occurrences and abundances. Since different datasets come 473 

with different strengths and weaknesses, stronger inferences can often be made by combining 474 

multiple sources rather than focusing on a single data source. Because of the rarity of large-475 

scale abundance data, the value of absolute population size estimates is increasingly 476 

overlooked in ecological research. Hence, data integration is particular exciting for studies of 477 

the abundance dynamics of species. Currently data integration is rather used retrospectively, 478 

for analysis of available data, but as the tools become commonplace, data integration might be 479 

planned already in the design stages of monitoring schemes to maximize the complementarity 480 

of different datasets and expected benefits of integration. 481 

 482 

 483 

 484 

 485 
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