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Abstract 6 

High population density is thought to exacerbate parasite exposure rates, leading to increased 7 

transmission and greater disease burdens. Different types of interactions exhibit different relationships 8 

with density, and therefore so do parasites that are spread by these interactions. Epidemiological 9 

models often assume a given density-transmission relationship, and the validity of this assumption 10 

impacts the accuracy of a model’s predictions. Despite its foundational relevance to epidemiology and 11 

disease ecology, density-transmission functions are generally identified post hoc rather than being 12 

predictable in advance. Developing a framework for predicting the shape and slope of these 13 

relationships could expedite epidemiological responses and improve ecological understanding. Such a 14 

framework must allow for both positive and negative correlations between density and infection, 15 

originating from non-linear changes in exposure, susceptibility, and a range of other confounders. Here, 16 

I argue that a general predictive framework is possible, built “bottom-up” from analyses of spatial and 17 

social behaviours. To lay the foundation, I define density dependence according to both spatial and 18 

social dimensions of behaviour, I present a series of challenges to address, and I outline a coherent 19 

integrative framework to conceptualise and understand density dependence of infection. Finally, I 20 

present suggestions for future work, including the collection, mining, and collation of cross-system 21 

behavioural and infection data, and experimental approaches that would allow us to extricate density’s 22 

effects from those of population size and a range of other confounders. Implementing these 23 

investigations may allow us to anticipate the epidemiological properties of a wide range of known and 24 

unknown parasites, as well as informing the uncertain future of human and animal disease in a rapidly 25 

changing and ever-densifying world. 26 

Keywords: Disease ecology, Epidemiology, Parasite transmission, Disease dynamics, Density 27 

dependence, Behaviour, Spatial analysis, Social networks, Predictive modelling 28 

  29 



2 

 

Contents 30 
 31 

Abstract ....................................................................................................................................... 1 32 

0. Introduction .............................................................................................................................. 3 33 

1. Defining density dependence ..................................................................................................... 5 34 

A. The evidence for density dependence ..................................................................................... 6 35 

B. Mechanisms that might complicate density effects on infection ................................................. 7 36 

2. Open questions in density dependence studies ........................................................................... 8 37 

A. Diversifying density-transmission functions .............................................................................. 8 38 

B. Incorporating spatial behaviour to differentiate frequency and density effects ........................... 9 39 

C. Deriving density-dependent interaction functions in behavioural systems ................................ 10 40 

D. Considering density-dependent changes in susceptibility as well as exposure .......................... 11 41 

E. Incorporating beneficial aspects of sociality for disease .......................................................... 12 42 

F. Expanding the range of available study systems .................................................................... 13 43 

G. Clarifying the spatiotemporal scale of density-infection interrelationships ................................ 14 44 

3. Moving towards a predictive framework .................................................................................... 15 45 

4. Future work ............................................................................................................................ 16 46 

5. Conclusions ............................................................................................................................ 18 47 

Acknowledgements ..................................................................................................................... 18 48 

Table 1: Published meta-analyses of sociality-infection relationships .............................................. 19 49 

Figure 1: Example density-transmission functions ......................................................................... 20 50 

Figure 2: Density, population size, geographic area, and interaction rates ...................................... 21 51 

Figure 3: Experimental designs to extricate density and frequency dependence .............................. 22 52 

Figure 4: Density and disease progression .................................................................................... 23 53 

References ................................................................................................................................. 24 54 

 55 

  56 



3 

 

0. Introduction 57 

Identifying how population structure and behaviour drive disease dynamics is vital for understanding 58 

the demography of natural populations (Tompkins & Begon 1999; Nunn et al. 2015a; Silk et al. 2019) 59 

and the evolution of sociality (Altizer et al. 2003; Kappeler et al. 2015; Ezenwa et al. 2016; Snyder-60 

Mackler et al. 2020; Hart & Hart 2021). The world is changing at an unprecedented rate, and animal 61 

societies within it (Fisher et al. 2021a), and these changes are likely to have complex consequences for 62 

the maintenance of disease and the emergence of novel parasites (Gibb et al. 2020; Townsend et al. 63 

2020; Albery et al. 2021a; Fisher et al. 2021a; Wang et al. 2021). A fundamental paradigm in disease 64 

ecology states that individuals living in areas of high local population density (i.e. individuals per unit 65 

of space; hereafter, “density”) will contact other individuals more often, so they are more often exposed 66 

to parasites (i.e., “density-dependent transmission” (McCallum et al. 2001; Lloyd-Smith et al. 2005; 67 

Wilson & Cotter 2009; Hopkins et al. 2020)). Parasites that spread via different interactions (defined as 68 

an event that might spread a pathogen -- e.g. direct contact, respiratory droplets, or indirect space 69 

sharing) are expected to vary in their relationships with host density: some will be positive, as expected, 70 

with linear, exponential, or sigmoidal relationships (Figure 1), while those that exhibit no relationship 71 

with host density are considered “frequency-dependent” or “density-independent” (Wilson & Cotter 72 

2009; Hopkins et al. 2020), and some can in fact be negatively correlated with density (Buck et al. 73 

2017; Albery et al. 2020). Although frequency dependence and density dependence are often posed as 74 

a dichotomy, many density-transmission functions occur somewhere on a continuum between these 75 

extremes (Antonovics et al. 1995; Ryder et al. 2007; Smith et al. 2009; Borremans et al. 2017b), and 76 

considerable research effort is invested in discovering how host density drives infection rates for a 77 

range of parasites (reviewed in (Hopkins et al. 2020)). 78 

Understanding density-infection relationships is important for several reasons: First, greater parasite 79 

exposure is expected to be a primary cost of living in dense social groups (Cote & Poulin 1995; Altizer 80 

et al. 2003; Poulin & Filion 2021), and the benefits of group living may directly counteract this cost 81 

(Almberg et al. 2015). A deeper understanding of how density covaries with social connectedness and 82 

infection could therefore inform how complex social systems have evolved in spite of (or because of) 83 

disease-related costs (Altizer et al. 2003; Kappeler et al. 2015; Meunier 2015; Ezenwa et al. 2016; Hart 84 

& Hart 2021). Second, density dependence is a fundamental assumption of many epidemiological 85 

models, and fitting inaccurate density-transmission functions risks making inaccurate predictions or 86 

drawing unfounded conclusions (McCallum et al. 2001; Lloyd-Smith et al. 2005; Hopkins et al. 2020). 87 

Different density-transmission relationships can produce fundamentally different expectations for a 88 

parasite’s responses to interventions (McCallum et al. 2001) and global change (e.g. (Wang et al. 89 

2021)), and therefore the success of many modelling-driven interventions ultimately rests on the 90 

accuracy of the chosen function. Third, human population density is quickly increasing, especially in 91 

urban areas: human population is projected to reach 10 billion by the latter half of the 21st century 92 

(United Nations Department of Economic Affairs 2019); wild areas are being converted to human-93 

inhabited land at unprecedented rates, with urban population size and land cover projected to increase 94 

substantially (Chen et al. 2020; Gao & O’Neill 2020); and dense cohabitation is likely to become 95 

increasingly important for living sustainably (Goldstein et al. 2020). Predicting density’s impacts on 96 

disease burdens across multiple scales in the near future should therefore be an important public health 97 

priority. Finally, novel parasites are emerging in human populations from wild and domestic animals at 98 

increasing rates, posing a substantial threat to human health (Woolhouse & Gowtage-Sequeria 2005; 99 

Jones et al. 2008; Gibb et al. 2020). Many of these parasites are poorly understood prior to their 100 

emergence, which reduces our ability to anticipate their epidemiological properties once they have 101 
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emerged; being able to predict their relationships with density for use in epidemiological modelling 102 

could therefore greatly benefit public health responses. 103 

Despite its foundational relevance to disease ecology and epidemiology, the density dependence of a 104 

given parasite is generally assessed post hoc rather than being predictable a priori. This inherently 105 

slows epidemiological responses and inhibits our empirical understanding of the drivers of infection, 106 

while introducing uncertainty into the future of disease on a rapidly densifying planet. For example, 107 

researchers successfully fitted a saturating density-dependent transmission curve to SARS-CoV-2 by 108 

September 2020, 6 months after the pandemic reached the UK (Nightingale et al. 2020). SARS-CoV-2 109 

is the most intensely studied parasite in history, with an enormous volume of available data, and 110 

therefore likely forms an upper bound for the potential speed of post hoc understanding. In other cases, 111 

questions about a given parasite’s density dependence have been debated for decades: for example, 112 

rabies transmission in dogs appears to conform to neither frequency-dependent nor density-dependent 113 

models of transmission, hampering control efforts (Morters et al. 2013; Townsend et al. 2013; Rajeev 114 

et al. 2020). This lack of predictive capacity has prevailed despite the advent of broadly useful tools for 115 

analysing disease dynamics like spatial and social network analysis (Craft 2015; White et al. 2017; 116 

Albery et al. 2021a), the wider availability of behavioural information through GPS tracking and 117 

biologging (Kays et al. 2015; Smith & Pinter-Wollman 2021), and the profound growth in understanding 118 

of transmission dynamics for a range of specific parasites (Hopkins et al. 2020). Given our deepening 119 

understanding of how spatial behaviour drives the formation of social connections and vice versa (Firth 120 

& Sheldon 2016; Spiegel et al. 2016; Peignier et al. 2019), we may be able to identify how density 121 

alters behaviours, and therefore exposure rates, across a range of systems. Combined with an 122 

understanding of how exposures lead to infections, this information would allow us to model (i.e., 123 

predict) density dependence from a generative, “bottom-up” perspective, rather than identifying it from 124 

“top-down” demographic data. Already, this approach has been used to great effect in single systems 125 

(Borremans et al. 2017a). While predicting density-transmission functions in novel systems may seem 126 

a lofty goal, it is one worth pursuing; even identifying simple “first principles” rules that govern the 127 

shape or slope of such functions could be extremely useful for modelling novel host-pathogen systems 128 

about which we have relatively little information. 129 

Here, I argue that developing a predictive framework for density dependence is indeed possible, and 130 

requires answering two central questions. First, “how does adding more individuals in space alter 131 

interaction frequency?” Currently, much evidence for density-infection relationships is indirect, 132 

being either: i) mechanism-agnostic and phenomenological; ii) based on purely social metrics like group 133 

size, which are potentially unrelated to population density; or iii) based on experimental designs that 134 

alter population size alongside population density, such that the two are difficult to extricate. Much 135 

evidence in fact examines disease-related impacts of interaction frequency rather than density, while 136 

struggling to account for spatially distributed confounders. Directly modelling both spatial and social 137 

behaviour at the individual level could ameliorate these problems. Second, “how do density-related 138 

changes in exposure translate to realised changes in infection?” Historically the problem has 139 

mainly considered variation in interaction rates, with less research focussed on how density alters 140 

susceptibility to infection. Answering this question will be important for determining the downstream 141 

impacts of changes in density and contact rate, which could otherwise be counteracted. 142 

To help move us towards this predictive framework, I discuss how density affects the transmission and 143 

maintenance of disease in humans and animals. 1) I define density dependence in terms of both spatial 144 

and social dimensions of behaviour, and discuss the evidence base that could be used to broadly predict 145 
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density-infection relationships. 2) I identify the questions that we should answer to help build our 146 

perspective on density dependence, providing examples for where novel spatial-social approaches may 147 

be helpful. 3) I provide a novel framework for conceptualising and testing density effects in disease 148 

ecology. I clarify how density should drive interaction rates, and therefore the transmission of parasites, 149 

across a range of different interaction types and transmission modes; I further elaborate on density-150 

dependent trends that could affect disease in complex ways, including a series of impacts on 151 

susceptibility and other downstream disease processes. 4) Finally, I provide open questions and a series 152 

of empirical and theoretical approaches to inform our view of density-dependent disease dynamics in 153 

the future. Ultimately, I hope to provide a framework for future investigations, laying the groundwork 154 

for predictive models of density dependence in novel and existing host-parasite systems.  155 

1. Defining density dependence 156 

In general terms, density refers to a concentration of entities in a defined space, and greater density 157 

requires more individuals per unit of space. For this reason, metrics of “population density” must be 158 

expressed as “social divided by spatial”: for example, “individuals per km2” (McCallum et al. 2001; 159 

Begon et al. 2002; Hu et al. 2013). Density can be conceptualised by envisioning interacting individuals 160 

as molecules of gas moving in a chamber (Figure 2A-C). Simulations of phenomena like these are 161 

sometimes used to examine contact networks and transmission dynamics (e.g. (Hu et al. 2013; Pinter-162 

Wollman 2015)); as with a gas, making the chamber smaller, or increasing the number of molecules, 163 

increases the rate at which molecules encounter each other (i.e., interact). If these interactions can 164 

spread parasites, creating a higher-density population will favour parasite transmission on a per capita 165 

basis – i.e., each individual has greater exposure, rather than merely increasing exposure rate of the 166 

population as a whole – resulting in a greater proportion of infected individuals (Begon et al. 2002). 167 

Density-dependent transmission functions (Figure 1) examine how increasing density (i.e., adding more 168 

individuals per space) affects parasite transmission via altered interaction rates; here defined as the 169 

rate at which individuals encounter one another or environmental parasites.  170 

Importantly, “network density” is used in network science to mean “the number of edges present in 171 

the network as a proportion of the total number of potential edges” (Sosa et al. 2020). Contact network 172 

density should correlate positively with transmission probability (and with population density if the 173 

contact-relevant interactions are density-dependent), but opting not to specify which “density” is being 174 

discussed in a given scenario could lead to confusion regarding a parasite’s density dependence, and 175 

should be clarified where possible in social-spatial analyses.  176 

Density-independent parasites, meanwhile, are spread by interactions that do not become increasingly 177 

common with density (Figure 1), but with absolute numbers of exposure opportunities: interactions like 178 

copulation events, for example (Antonovics et al. 1995; Lloyd-Smith et al. 2004, 2005). Therefore 179 

density-independent transmission is expected to correlate with population size rather than population 180 

density (Lloyd-Smith et al. 2005; Hopkins et al. 2020). This phenomenon is also known as “frequency 181 

dependence”; however, all parasites are dependent on the frequency of the interactions that spread 182 

them, and therefore all parasites are technically “frequency dependent”. To avoid any confusion on this 183 

front, I use “density dependent” and “density independent” to discuss these cases, but I focus primarily 184 

on variation in the slope of the relationship, rather than on whether a parasite falls along a continuum 185 

from one to the other (see Section 2A). Importantly, it is often expected that increasing population size 186 

will increase density, but size and density can scale idiosyncratically (e.g. (Lunn et al. 2021)), so this is 187 

not necessarily true. 188 
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In ecology and animal behaviour, individuals’ movement patterns are unlikely to follow ideal gas laws 189 

(Begon et al. 2002; Hu et al. 2013): for example, if individuals are territorial or avoid each other, adding 190 

more individuals to the same space or reducing the habitat area may not increase the probability of 191 

interactions/collisions (Figure 2D-F). In these cases, many interaction types will not show a simple 192 

relationship with density. Animals can moderate their spatial behaviours independent of their social 193 

behaviours, and vice versa, or the two may interact – for example, where animals use social cues to 194 

determine their movement in space (Firth & Sheldon 2016; Spiegel et al. 2016; Peignier et al. 2019). 195 

Social behaviours alone therefore may not accurately represent density, particularly when modelling 196 

the interactions required for parasite transmission (Albery et al. 2021a). For example, although group 197 

size is often used as a proxy for density, if larger groups increase their ranging area linearly (or if group 198 

size linearly responds to the available ranging area), group size will in fact have a flat relationship with 199 

density; consequently, group size may not be informative concerning a disease’s density dependence. 200 

The reverse may also be true: for example, hantavirus transmission does not scale with density in bank 201 

voles (Myodes glareolus) because individuals reduce the size of their home ranges under higher-density 202 

conditions (Reijniers et al. 2020). Similar ranging-density relationships have also been demonstrated 203 

among leopards (Roex & Balme 2021) and foxes (Sanchez & Hudgens 2015). These complexities, 204 

among others, accentuate the need to consider spatial context when examining density’s effects on 205 

infection. 206 

A. The evidence for density dependence 207 

Accurately predicting density dependent trends will necessitate drawing on the extensive density 208 

dependence literature, which may require harmonising a variety of analytical and experimental 209 

approaches. Many studies have examined population-level epidemiological trends associated with 210 

specific parasites, verifying to what degree their dynamics align with the expectations of density-211 

dependent transmission models (extensively reviewed in (Hopkins et al. 2020)). Their findings have 212 

identified a mix of different density-infection functions, and plenty found no evidence for any 213 

relationship (e.g. (Ebert et al. 2000)). Other studies have empirically correlated density with infection, 214 

with a similarly mixed bag of findings (e.g. (Fong 2016)).  215 

Building a successful predictive framework will require cross-system syntheses that allow formal 216 

comparisons across systems and the identification of general rules. However, to date, all sufficiently 217 

broad analyses have investigated purely social metrics like group size or social connectedness, which 218 

do not explicitly consider spatial dimensions of behaviour (Table 1). Earlier examples either compared 219 

across multiple species and correlated their social structures with parasitism (Ezenwa 2004; Poulin & 220 

Filion 2021), simulated (Nunn et al. 2015b), or meta-analysed within-species estimates of group size 221 

effects (Cote & Poulin 1995; Rifkin et al. 2012; Patterson & Ruckstuhl 2013). More recently, with the 222 

growing popularity of network analysis in disease ecology (Craft 2015; White et al. 2017; Albery et al. 223 

2021a), meta-analyses have targeted social network studies to examine how individual-level sociality 224 

drives infection across a range of different systems (Lucatelli et al. 2020; Briard & Ezenwa 2021). 225 

Ultimately, if density drives greater social connectedness, the findings of these studies may be indicative 226 

of density dependent transmission; in fact, in species whose inhabited area grows in step with 227 

population size, social connectedness may be a more informative measure of transmission than density 228 

(Elliot & Hart 2010). While most earlier analyses mention density, at least to some extent (Cote & Poulin 229 

1995; Rifkin et al. 2012; Patterson & Ruckstuhl 2013; Nunn et al. 2015b), the more recent social 230 

network structure meta-analyses do not (Lucatelli et al. 2020; Briard & Ezenwa 2021). This may imply 231 

that social drivers of disease are increasingly being distinguished from density dependence.  232 
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Several of these studies (Table 1) either fitted transmission mode as an explanatory variable in their 233 

meta-analyses, or investigated different transmission modes using separate models to find different 234 

results (Cote & Poulin 1995; Rifkin et al. 2012; Patterson & Ruckstuhl 2013; Briard & Ezenwa 2021). 235 

These models produced some evidence that the effects of sociality differ across parasites of different 236 

transmission modes, but findings have varied substantially across studies. For example, (Cote & Poulin 237 

1995) found a positive effect for contagious parasites but a negative trend with mobile parasites; (Rifkin 238 

et al. 2012) found positive effects for all transmission modes except searching parasites; and (Briard & 239 

Ezenwa 2021) found no evidence for variation among transmission modes. 240 

This evidence base is therefore substantial and extremely varied, with some contradictory results. For 241 

example, a recent study of coccidia infection in carrion crows (Corvus corone) found no effect of social 242 

network metrics, but a significant positive effect of group size (Wascher 2021). Finding that group size 243 

explained more variation than social structure metrics disagrees with the expectations from the meta-244 

analyses (Lucatelli et al. 2020), and the study itself disagreed with earlier findings in the same species 245 

(Wascher et al. 2019). Moreover, many individual studies find context-dependent effects: for example, 246 

a recent analysis of Buggy Creek virus (BCRV) in swallows found positive group size effects in 247 

monospecific groups and negative group size effects in mixed flocks (Moore et al. 2021). This 248 

substantial between-system and between-study variation is a testament to the complexity of sociality-249 

disease relationships, and implies that there is plenty of testable variation in these relationships that 250 

might be explained by between-system differences. 251 

B. Mechanisms that might complicate density effects on infection 252 

Importantly, density can covary with or provoke a number of processes, potentially unlinked to 253 

interaction and transmission rates. If unaccounted for, these mechanisms could complicate observed 254 

density effects. Here, I briefly outline a selection of such processes, identifying the route via which they 255 

might occur and the potential direction of the effect (+/- in brackets). S denotes susceptibility-mediated 256 

processes; E denotes exposure-mediated processes. This list expands on our previously published 257 

framework outlining potential drivers of negative density dependence (Albery et al. 2020). 258 

Upstream (pre-exposure) effects include: 259 

1. Avoidance E (-): Individuals can avoid infected conspecifics (Poirotte et al. 2017) or parasites 260 

in the environment, such that the emergent society is structured and concentrated in areas of 261 

lowest disease risk (Weinstein et al. 2018; Albery et al. 2020). 262 

2. Condition S (-): Habitat selection behaviours draw individuals to areas with abundant 263 

resources, providing better nutrition, stronger immunity, and therefore reduced disease 264 

burdens. 265 

3. Competition S (+): More individuals in the same area may compete for the available 266 

resources, resulting in worse condition and weaker immunity (e.g. (Svensson et al. 2001)). 267 

4. Density-dependent prophylaxis S (-): Immunity is preferentially induced or upregulated in 268 

high-density contexts, pre-empting increased exposure and preventing infection. This 269 

upregulation may be dependent on viewing a sick individual (e.g. (Love et al. 2021)). 270 

Downstream (post-exposure) effects include: 271 

5. Fitness costs (-): Parasites cause mortality, reducing host density in highly diseased areas. 272 

6. Cooperation S E (-): Hosts at high densities have more partners to cooperate with, either 273 

reducing their disease burden directly (e.g. through grooming (Stewart & Macdonald 2003) or 274 



8 

 

allosuckling (Roulin & Heeb 1999)) or indirectly (e.g. through group hunting benefits (Almberg 275 

et al. 2015)). They may also provide beneficial microbes that prevent colonisation by parasites 276 

(Sassone-Corsi & Raffatellu 2015). 277 

7. Ostracism E (-): Highly parasitized individuals altruistically self-remove (e.g. (Rueppell et al. 278 

2010)), or are ostracised or murdered by their conspecifics (e.g. (Baracchi et al. 2012)). This 279 

decreases density in areas that are more highly parasitized. Similar to avoidance but occurs 280 

post-infection. 281 

8. Infection-induced behaviour changes (-): Parasitised individuals behave differently, move 282 

more when infected, or decide to leave areas in which they become highly infected, decreasing 283 

density in those areas. Similar to avoidance and ostracism. 284 

9. Mobile parasite encounter-dilution effects E (-): Mobile parasites exhibit a constant attack 285 

rate in space, which is diluted in high-density areas such that each individual has a lower 286 

parasite burden (Mooring & Hart 1992). 287 

10. Interspecific encounter-dilution effects E (-): Other species act as the source of 288 

transmission of parasites, with interspecific transmission occurring in space. This transmission 289 

is then diluted in high-density areas such that each individual has a lower parasite burden, in 290 

the same way as encounter-dilution effects (e.g. (Moore et al. 2021)). 291 

2. Open questions in density dependence studies 292 

Given the current state of knowledge and this array of contravening mechanisms, what do we need to 293 

do to begin predicting density-dependent disease dynamics? Here, I discuss seven questions that will 294 

help to do so, all of which are important and interesting research frontiers in their own rights. They 295 

include: A) considering a range of density- transmission functions; B) incorporating the role of spatial 296 

behaviour into density analyses; C) identifying density-dependent interaction functions using 297 

behavioural analyses; appreciating density-dependent changes in D) susceptibility effects and E) 298 

benefits of sociality; F) expanding the range of available study systems; and G) clarifying the spatial 299 

and temporal scale of density effects. To help considering these questions, I have outlined a range of 300 

processes that can alter density dependence of infection (Section 1B). 301 

A. Diversifying density-transmission functions 302 

One important step toward prediction is to appreciate the wide array of potential density-transmission 303 

relationships. Historically, “frequency dependent” and “density dependent” parasites were framed as a 304 

dichotomy or opposite ends of a single continuum; for example, the two have been modelled as 305 

alternative formulations of a Type II function (Antonovics et al. 1995). More recently, it has been 306 

demonstrated that density-dependent functions can take other shapes that do not fit into this 307 

framework, such as sigmoidal curves (Borremans et al. 2017a). Consequently, due to the growing 308 

revelation that there are many different density-transmission functions to choose from (Figure 1), it 309 

has become increasingly important to move beyond this dichotomy (Hu et al. 2013; Hopkins et al. 310 

2020). Particularly given that positive density trends could be accelerating or sigmoidal (Figure 1), the 311 

observed variation that occurs between given “density-dependent” systems could be greater than the 312 

difference between such a “density-dependent” system and a flat “frequency-dependent” system; as 313 

such, moving beyond the dichotomy to clarify the slope and shape of these relationships can be vital 314 

for understanding a system’s dynamics (Hu et al. 2013; Hopkins et al. 2020). 315 

Importantly, all parasites are dependent on the frequency of the interactions that spread them and are 316 

therefore strictly “frequency dependent”; the distinction comes where some interactions are dependent 317 
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on density, and therefore only parasites spread by these interactions specifically are “density 318 

dependent,” while frequency dependent parasites could be more accurately described as “only 319 

frequency dependent”. Framing frequency dependent parasites more often as “density independent” 320 

(Hopkins et al. 2020) might counter this confusion. Frequency dependent parasites are expected to 321 

scale with population size but not population density, while density dependent parasites are expected 322 

to scale with population density (and with population size if the population remains in an area of the 323 

same size, and is therefore related to density). Increasingly modelling density-contact relationships over 324 

a wider range of density values (see section G below), may help to clarify this distinction (Hu et al. 325 

2013; Hopkins et al. 2020), and may buffer for the fact that a sigmoidal relationship can appear 326 

exponential or saturating depending on the chosen range of density values (Figure 1, bottom row). 327 

B. Incorporating spatial behaviour to differentiate frequency and density effects 328 

As detailed above, many synthetic, cross-system approaches have relied on purely social metrics like 329 

group size or social network positions. Despite being widely used to great interest, these purely social 330 

metrics may not capture the central definition of density as “individuals per space”, and rather represent 331 

network connectedness or contact number. Some studies use the volume of individuals’ spatial overlaps 332 

or intersections (e.g. (Schauber et al. 2007)), which likewise do not represent density per se (Hopkins 333 

et al. 2020). The incomplete approximation to density could reduce their ability to detect density-334 

infection relationships. For example, Rifkin et al. (2012)’s finding of no encounter-dilution effect for 335 

mobile parasites could have originated from the use of group size as a metric rather than density. 336 

Encounter-dilution effects are predicated on a spatially distributed parasite attack rate, where a given 337 

burden of parasites is shared among the numbers of individuals in that space, such that larger groups 338 

dilute the threat (Mooring & Hart 1992). Using group size as a proxy for this effect implicitly relies on 339 

the idea that the groups are inhabiting similar areas (or at least areas of similar sizes); if larger groups 340 

range over larger areas, this proxy might be unable to detect an encounter-dilution effect. Despite the 341 

increased sophistication of social network approaches, it is likewise unlikely that they would be able to 342 

detect these spatially explicit effects. The same is true of studies that use annual measures of a single 343 

population’s size (in terms of numbers of individuals): this metric does not offer information on density 344 

itself, unless it can be reliably inferred that the population in question is inhabiting an identical enclosed 345 

area (Begon et al. 2002) – as with some island populations (e.g. the Soay sheep of St Kilda (Wilson et 346 

al. 2004)). In contrast, repeating similar analyses with spatial density measures (or at least controlling 347 

for spatial behaviour or spatial context) might succeed in identifying encounter-dilution effects across 348 

systems.  349 

Although much evidence for density dependence emerges from density manipulations in laboratory 350 

populations, these methods often result in an in-step manipulation of interaction frequency that may 351 

make density dependence difficult to conclusively identify. For example, one of the most interesting 352 

density-dependent trends that laboratory populations have revealed is density-dependent prophylaxis 353 

(Section 1B; (Wilson & Cotter 2009). In this scenario, greater host densities provoke greater preemptive 354 

(“prophylactic”) immune responses, such that each individual in the population is better prepared to 355 

respond to parasite exposure. Conventionally, experiments to examine density effects like these 356 

generally involve increasing the number of individuals in a given space (e.g. (Wilson et al. 2002; Cotter 357 

et al. 2004; Wilson & Graham 2015)), which increases both density and population size (i.e., interaction 358 

frequency). It is therefore possible that immune upregulation could be frequency-dependent (i.e., 359 

dependent on the absolute number of social contacts) in the same way as frequency-dependent parasite 360 

exposure, rather than being density-dependent (i.e., dependent on the number of social contacts per 361 
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space). For example, the mere sight of (sick) conspecifics could result in the preemptive upregulation 362 

of immunity as it does in canaries (Love et al. 2021). Yet, frequency-dependent prophylaxis has never 363 

been investigated or discussed (and the phrase returns no results on google), although it has been 364 

suggested that density might not be the most appropriate metric to use to detect prophylactic immunity 365 

(Elliot & Hart 2010). If true, this mechanism almost certainly wouldn’t change the conclusions of 366 

investigations into density-dependent prophylaxis, but might produce different predictions for disease 367 

dynamics, just as frequency- and density-dependent transmission do.  368 

To investigate how this size-density confounding might influence inferred disease dynamics, it would 369 

be interesting to explicitly alter density and population size along separate axes, and then to investigate 370 

their impacts on transmission and susceptibility (Figure 3). For example, how does housing 10 371 

individuals in one container compare with housing 100 individuals in an area that is 10x larger (thereby 372 

maintaining density, but increasing group size)? How do these findings compare with housing 100 373 

individuals in the smaller area versus 10 individuals in the larger area (thereby modifying density in 374 

both cases)? This exercise could be combined with experiments that ask how infection status affects 375 

others’ immune expression (e.g. (Love et al. 2021)), to investigate whether such responses are context-376 

dependent based on perceived disease risk rather than being dependent solely on the number or density 377 

of individuals. 378 

Despite the lack of broad, cross-system meta-analyses, some empirical studies have used continuous, 379 

within-population density measures to empirically infer density-infection dynamics. One recent analysis 380 

in European badgers (Meles meles) found negative density effects in a range of parasites (Albery et al. 381 

2020), and no trends with social network metrics, indicating that spatially explicit density effects could 382 

produce fundamentally different findings in other systems. Similarly, as outlined above, many studies 383 

have fitted epidemiological models to longitudinal data on infection prevalence and demography to 384 

identify a suite of density dependence functions (e.g. (Smith et al. 2009; Mariën et al. 2020)). Given 385 

the abundance of such studies (Hopkins et al. 2020), it may be possible to conduct a formal meta-386 

analysis to begin identifying the determinants of density-transmission functions that they have 387 

identified. 388 

C. Deriving density-dependent interaction functions in behavioural systems 389 

Most epidemiological models use phenomenological or mechanism-agnostic density-dependent 390 

interaction curves (Hopkins et al. 2018, 2020), rather than empirically identifying how a given 391 

interaction rate increases with density. Where researchers know the specific behaviours that allow 392 

transmission (space sharing, den sharing, air sharing, direct contact, mating, fighting, etc. (Gilbertson 393 

et al. 2020; Albery et al. 2021a; Briard & Ezenwa 2021)), epidemiological models could be built “from 394 

the ground up,” based on extrapolating the effect of density on the relevant contact behaviour to predict 395 

its effect on transmission. This first-principles framework would require identifying, across a range of 396 

systems, how increasing local density affects the rates of these interactions, and using this knowledge 397 

to predict density-interaction functions in other systems. For example, it is still unknown whether certain 398 

behaviours differ predictably in their slope (e.g. does density increase fighting more rapidly than it does 399 

mating?) or their shape (e.g. are certain behaviours more likely to be exponential, linear, or 400 

saturating?). Answers to these questions could be surprisingly easy to attain, as analyses that uncover 401 

general rules like these are not uncommon: for example, a recent analysis found that group size and 402 

interaction number scale super-linearly across animal species (Rocha et al. 2021). A similar analysis 403 

could examine density-interaction relationships across a range of systems to identify how they adhere 404 

to a range of shapes (Figure 1), and what moderates the slope of the relationship.  405 
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While several studies have uncovered positive correlations between aspects of sociality and density 406 

(Vander Wal et al. 2014; Sanchez & Hudgens 2015; Webber & Vander Wal 2020; Albery et al. 2021b) 407 

and others have correlated spatial and social proximity (e.g. (Robert et al. 2012; Sanchez & Hudgens 408 

2015; Firth & Sheldon 2016)), there have been few direct investigations into how density drives 409 

interaction frequencies. Studies generally use discretised between-year or between-population variation 410 

in population density or size (e.g. (Webber & Vander Wal 2020)), rather than continuous within-411 

population metrics, which often provides too few unique density values to draw a non-linear relationship 412 

between density and interaction rate. This is not universally true, and some systems feature sufficient 413 

spatiotemporal replication – particularly rodent trapping studies. (Davis et al. 2015) offer an notable 414 

example in Microtus agrestis field voles, where replicates of annual space use networks across multiple 415 

sites allowed them to fit reliable and interesting density-interaction curves, while (Borremans et al. 416 

2017a) used over 20 years of monthly density estimates for a population of multimammate mice 417 

(Mastomys natalensis) to fit a sigmoidal density-contact function. In this case, the model was used 418 

further in an epidemiological simulation model, supporting the potential value of the “behaviour-up” 419 

approach to density modelling (Borremans et al. 2017a). Notably, interaction frequencies can depend 420 

simultaneously on both overall population size and local population density (e.g. in red deer; (Albery et 421 

al. 2021b)), so it may be important to fit both in statistical models. 422 

As density increases, many interaction types will become relatively less likely on a per capita basis, or 423 

even on an absolute basis. For example, if a given animal is more likely to copulate in private than in a 424 

group, it is possible that adding more individuals per space will make sexual transmission events in that 425 

space less probable. Similarly, if there is a risk of cheaters in a population, cooperative events that cost 426 

the individual (e.g., grooming or open resource sharing; see Section 2E) could become less likely in an 427 

absolute sense at greater densities, which might increase rates of infection. These effects are likely to 428 

cause infection to saturate or decrease at higher densities. 429 

Adding complexity, density dependent transmission functions will not necessarily be universal, even for 430 

a given host-pathogen system: they will fundamentally depend on the surrounding environment. For 431 

example, when considering fine-scale density dependence in humans, it may be reasonable to expect 432 

that adding more individuals to a conference centre will result in a linear (or exponential) increase in 433 

handshake interactions; however, adding more individuals to the street will not do the same. Similarly, 434 

adding more people into the same church during a choral service may result in a steep increase in air 435 

sharing (a dynamic that became very important in the SARS-CoV-2 pandemic (Hamner et al. 2020)), 436 

but the same may not be true of a train carriage or a music festival. Some environments may be more 437 

conducive to avoidance behaviours than others, and this may be taken into consideration when 438 

selecting a habitat in the first place (Buck et al. 2018; Weinstein et al. 2018). For example, structurally 439 

complex habitats produced greater re-encounter rates in sleepy lizards (Tiliqua rugosa; (Leu et al. 440 

2016)), and avoiding infected individuals could be more difficult in these complex environments. All 441 

these phenomena could drive variation in density’s relationship to interaction frequencies among 442 

populations and environments, which introduces critical uncertainty into density-transmission functions. 443 

As such, understanding these drivers of variation is likely to be critical to building a robust predictive 444 

framework that is able to accommodate a range of host-parasite systems. 445 

D. Considering density-dependent changes in susceptibility as well as exposure 446 

Despite much discussion around how sociality impacts host susceptibility (Almberg et al. 2015; Ezenwa 447 

et al. 2016), it is unclear how density itself correlates with susceptibility, and therefore how density-448 

dependent parasite transmission translates to realised variation in disease burden. This relationship is 449 
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important because it determines how density will result in changes in infection rather than just 450 

transmission; for example, if density increases susceptibility while also increasing exposure, does 451 

burden increase exponentially? As an example, if there are more individuals per area they will likely be 452 

competing more for the same resources (Svensson et al. 2001; Body et al. 2011; Sanchez & Hudgens 453 

2015; Hasik et al. 2021) and will therefore likely have worse nutritional states. Because immunity is 454 

costly and therefore often relies on having sufficient resources to mount an immune response (Cressler 455 

et al. 2014; Becker et al. 2018; Budischak et al. 2018; Pike et al. 2019), individuals living in areas of 456 

greater density may have weaker immunity (Das et al. 2022). Crowding stress can also increase the 457 

frequency of aggressive interactions or inhibit immune expression (Collie et al. 2020; Edmunds et al. 458 

2021), which could drive strong correlations between density and infection without necessarily driving 459 

greater interaction rates. As such, these susceptibility effects could (for example) masquerade as 460 

density-transmission relationships or make a linear density-transmission function appear exponential. 461 

Alternatively, these effects could counteract each other: for example, individuals living in areas of higher 462 

density could have lower susceptibility because they seek out areas of good nutrition, such that the 463 

population centres on high-quality areas, and therefore density and infection are negatively correlated 464 

through confounding rather than through a causal relationship. There is some evidence that high-465 

quality habitats can be more attractive even if disease is present (Mierzejewski et al. 2019), implying 466 

that even greater exposure may not be sufficient to prevent aggregation around resource-rich patches. 467 

Similar confounders act in human contexts: for example, it is unclear whether SARS-CoV-2 spread 468 

quickly through dense urban populations solely due to the density itself, or because these populations 469 

were commonly inhabited by vulnerable individuals with low socioeconomic status (Nightingale et al. 470 

2020). Negative density dependence could be driven through disease avoidance as well as by habitat 471 

selection. Infection’s spatial distribution is highly heterogeneous and ultimately depends on a 472 

combination of biotic and abiotic drivers (Becker et al. 2020; Albery et al. 2022). Because disease 473 

reduces hosts’ fitness, this spatial heterogeneity motivates animals to avoid hotspots of infection (Buck 474 

et al. 2018; Weinstein et al. 2018). If animals select their habitat based on its propensity to support 475 

parasite transmission, individuals in high density areas may be observed with few parasites while those 476 

in low density areas have more (Albery et al. 2020). Such relationships will depend on how animals 477 

weigh up nutritional needs against disease threats (Hutchings et al. 2006; Buck et al. 2018). 478 

Other similar upstream confounders include mortality and changes in behaviour (Section 1B). For 479 

example, if disease is spatially distributed and causes mortality or emigration from the highly infested 480 

areas, an apparent negative correlation could emerge between density and disease (Albery et al. 2020). 481 

Accounting for these upstream confounders may be challenging in these systems, potentially requiring 482 

a very rich dataset in terms of host demography and behaviour. 483 

E. Incorporating beneficial aspects of sociality for disease 484 

Sociality comes with it many beneficial interactions that could reduce disease burdens or alleviate their 485 

costs (Altizer et al. 2003; Kappeler et al. 2015; Ezenwa et al. 2016; Snyder-Mackler et al. 2020; Hart & 486 

Hart 2021). Because the frequency of such interactions is likely to correlate with density, such benefits 487 

could complicate observed density-infection relationships. These interactions could include beneficial 488 

microbe transfer (Sassone-Corsi & Raffatellu 2015; Ubeda et al. 2017), grooming (Stewart & Macdonald 489 

2003), or suckling one another’s young (Roulin & Heeb 1999), among others. If, for example, grooming 490 

interactions scale with density in exactly the same way as direct contact events that spread fleas, and 491 

if grooming interactions directly counteract flea burden, fleas may show no relationship with density 492 

and get classed as density-independent (despite potentially showing classical density-dependent 493 
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transmission). Many of these interactions could act through changes in susceptibility like those detailed 494 

in Section D: for example, if microbiota are acquired through social contact (Dill-McFarland et al. 2019; 495 

Raulo et al. 2021) and if those microbiota help protect against colonising parasites (Sassone-Corsi & 496 

Raffatellu 2015), social contact could directly increase resistance to infection, producing a density-497 

dependent pattern. Greater density could also confer better cumulative cognitive capacity to apply to 498 

disease mitigation: for example, (Mikheev et al. 2013) found that larger groups of fish were better at 499 

avoiding parasite infection.  500 

Perhaps most importantly, improved foraging efficiency is a prominent benefit of sociality for many 501 

species (Silk 2007; Cantor et al. 2020) which could likewise ameliorate the costs of disease (Almberg 502 

et al. 2015); however, this effect will depend on the balance of competition versus cooperation in the 503 

population and the social system in question, particularly given the effects of crowding stress outlined 504 

above (Collie et al. 2020; Edmunds et al. 2021). As such, understanding how changing density 505 

translates to realised changes in infection may require understanding a range of complex and 506 

contrasting density trends, for a range of different interactions and susceptibility drivers that are not 507 

necessarily related to transmission itself.  508 

F. Expanding the range of available study systems 509 

Density-transmission relationships may be easier to identify and generalise if we examine them in a 510 

larger number of wild systems. In particular, many researchers experimentally manipulate density in 511 

the laboratory, compare populations with different social structures, or correlate species-level means 512 

for social structures and parasite traits. While these approaches have been practical and highly revealing 513 

solutions to answering these questions, a number of difficulties could prevent their findings from being 514 

used to build predictive density-transmission functions. 515 

In captive or wild animal populations, density may be directly manipulated by altering the number of 516 

individuals that inhabit a given container (e.g. (Raffel et al. 2010; Buck et al. 2017; Hasik et al. 2021)) 517 

or by changing the volume of the container itself (e.g. (Modlmeier et al. 2019)). This avoids underlying 518 

confounders like resource availabilities (Section 1B) more effectively than any other approaches; 519 

however, because laboratory environments are by definition restrictive and simplify away these 520 

potentially important confounders, they may not accurately approximate wild environments. For 521 

example, animals are often able to avoid infected individuals (Poirotte et al. 2017; Stroeymeyt et al. 522 

2018), food (Moleón et al. 2017), faeces (Poirotte & Kappeler 2019), or geographic transmission 523 

hotspots (Albery et al. 2020), distributing their population in space according to disease risk (Weinstein 524 

et al. 2018). Confining large numbers of individuals to a small area, such that their movement is 525 

artificially restricted, may therefore provide inaccurate insights into parasite transmission in the wild 526 

(Figure 2). Similar to the difficulties with experimental manipulations for density-dependent prophylaxis 527 

outlined above, these approaches also confound changes in density with changes in population size 528 

(see Section 2B), which could be remedied using novel experimental designs (Figure 3). 529 

Some ecological studies examine multiple discrete populations or aggregations of the same host 530 

species, where each population has a different size or density (e.g. (Mbora et al. 2009; Downs et al. 531 

2015; Webber & Vander Wal 2020; Fisher et al. 2021b)). Others use the same population but with 532 

different population sizes or densities at different times (e.g. annually) (Coltman et al. 1999; Body et 533 

al. 2011). Although experimental manipulations of such populations are promising and evade many of 534 

the problems of laboratory populations (e.g. (Mugabo et al. 2015; Buck et al. 2017; Webber & Vander 535 

Wal 2020)), due to operational restrictions multi-population studies often rely on relatively few 536 
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replicates – for example, densities are regularly discretised into “high” and “low” (Coltman et al. 1999; 537 

Fisher et al. 2021b) – and in these cases nonlinear relationships may be very difficult to observe. 538 

Similarly, as outlined throughout this section, and in Section 1B and Figure 4, density has many 539 

covarying confounders that may confuse relationships with infection (Body et al. 2011); statistically, 540 

the use of several discrete populations reduces a study’s ability to identify density effects and distinguish 541 

them from the underlying confounders and susceptibility effects (Section 1B). Low replicate numbers 542 

like these have long been appreciated as a difficulty investigating density dependence in wild animals 543 

(Lloyd-Smith et al. 2005). Finally, these populations could suffer from variation in space use in the same 544 

way as laboratory populations: if different populations are designated as being at different densities, 545 

but the populations use space in very different ways, density effects could be obfuscated (Begon et al. 546 

2002). 547 

Finally, between-species comparisons (e.g. (Ezenwa 2004)) may be confounded by coevolutionary 548 

processes: in particular, parasites impose selection pressures on social behaviour, so species’ social 549 

structures may have evolved in response to parasite transmission rather than driving observed variation 550 

in burden (Cote & Poulin 1995; Altizer et al. 2003; Poulin & Filion 2021). Moreover, summarising these 551 

variables at the species levels risks losing resolution and sample size, and may run into similar 552 

confounders as the between-population comparisons above. On the positive side, these facts may lend 553 

such studies to identifying species-level compensatory social evolution better than others (e.g. (Poulin 554 

& Filion 2021)). 555 

All these processes could be complicating links between socio-spatial behaviour and disease in such 556 

studies, so that density effects might be difficult to detect. For these reasons, within-population 557 

analyses of local population density’s effects on behaviour and infection may offer the most power and 558 

reliability when identifying density effects (Albery et al. 2021a); however, if sufficient replication can 559 

be achieved, multiple populations (or long-term observation of the same population) can be highly 560 

productive (e.g. (Davis et al. 2015; Borremans et al. 2017a)). 561 

G. Clarifying the spatiotemporal scale of density-infection interrelationships  562 

For a predictive framework to be maximally useful, we must also clarify the scale at which density 563 

dependence might occur, and be able to predict its effects at a given resolution (Antonovics 2017). 564 

Scale-dependent findings are extremely common in disease ecology (Cohen et al. 2016; Lachish & 565 

Murray 2018; Morand et al. 2019), and deciding on the right spatiotemporal sampling scale is likely to 566 

be extremely important for detecting density-transmission relationships. For example, transmission may 567 

be density-independent within groups but density-dependent between groups (Loehle 1995; Schmid-568 

Hempel 2017; Webber & Vander Wal 2020). Similarly, Morogoro virus correlates positively with the 569 

density of multimammate mice (Mastomys natalensis), but with a time lag of several months (Mariën 570 

et al. 2020), so selecting the correct temporal scale is important for successfully identifying a density-571 

dependent effect. The direction and magnitude of these effects will depend intimately on host and 572 

parasite traits like movement, reproduction, and mortality. 573 

To illustrate this point, conventional wisdom states that mobile parasites will not correlate positively 574 

with density due to the encounter-dilution effect (Section 1B; (Mooring & Hart 1992; Cote & Poulin 575 

1995; Patterson & Ruckstuhl 2013)). However, even mobile parasites cannot exist without some hosts 576 

to parasitise in the vicinity; as such, at some point of low density, there will be too few hosts for the 577 

parasites to survive in a given area, which inherently imposes density dependence on those parasites. 578 

That is, at some spatiotemporal scale, even highly mobile parasites must be density dependent. As 579 



15 

 

expected, discovery of encounter-dilution effects does indeed depend on the spatial scale of the 580 

investigation (Buck et al. 2017). The same may be true at very coarse population scales – for example 581 

where large, dense populations of hosts spread over a large area are able to sustain a large number of 582 

mobile parasites. Comparing this large population with a smaller population that is less able to sustain 583 

the same abundance of parasites could reveal a positive density trend between populations, even if an 584 

encounter-dilution effect produces a negative density trend within populations. Similarly, for mobile 585 

parasites that are nevertheless able to reproduce quickly on the population of known hosts (relative to 586 

the hosts’ movement ability), the resources presented by greater host density could flip the relationship 587 

and produce a positive density effect, regardless of the parasite’s movement capacity.  588 

Context-dependent density trends are true of other parasite transmission modes: for example, there is 589 

some evidence that sexually transmitted parasites are density-dependent at low host densities, but 590 

frequency-dependent at high host densities (Hopkins et al. 2020). This is a non-linear density 591 

relationship, where the slope of the density-transmission relationship changes according to host density 592 

(Figure 1). This general problem is especially important when it comes to practical applications of 593 

density dependence theory: for fundamental epidemiology, it would be useful to understand not only 594 

fine-scale density effects (e.g. “how does adding more individuals to this room affect the probability of 595 

an outbreak of airborne parasites”) but also broad-scale epidemiological trends (e.g. “will this parasite 596 

preferentially break out in densely inhabited cities”). One of the greatest challenges in the onward 597 

development of a predictive framework will require bridging these two scales of question to achieve a 598 

synthetic predictive framework. 599 

3. Moving towards a predictive framework 600 

To summarise, we would benefit from a clearer understanding of some fundamental aspects of density-601 

dependent transmission (how density alters interaction frequency and therefore exposure), as well as 602 

the more complex interrelationships (e.g. density’s correlations with susceptibility, mortality, or 603 

beneficial interactions). Even identification of the general (non-)linearity of different interaction types 604 

could form an important fundamental basis to make predictions from. Given these challenges, how do 605 

we address the problem of predicting density dependence? Ameliorating these research gaps to build 606 

a predictive framework is not an insurmountable task; in fact, it may require relatively few changes to 607 

ongoing research directions. This will involve conducting a range of within-population analyses 608 

examining how spatial density measures drive interaction frequency alongside either susceptibility or 609 

infection, potentially mirrored by experimental manipulations that alter population size and density 610 

separately (Figure 3). Ideally, these studies will incorporate density-driven variation in 1) transmission 611 

probability and 2) susceptibility to infection, alongside a range of other confounders (Section 1B). These 612 

studies should then be meta-analysed to identify how a broad selection of host and parasite factors 613 

(e.g. transmission mode, host mobility, and population dynamics) drive variation in density effects 614 

across host-parasite systems.  615 

To help conceptualise these interrelationships, I summarise the steps from initial contact through to 616 

onward transmission for infection with a given parasite, including the effects of environment, spatial 617 

behaviour, and density (Figure 4). Regardless of host traits (e.g. social system, mobility, or life history) 618 

or parasite traits (e.g. transmission mode, taxon, or life cycle), there are certain necessary universal 619 

traits of a predictive framework, which must include identifying 1) how density will alter the rate of a 620 

given interaction that drives parasite exposure, and 2) how density will covary with other processes 621 
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that could change the outcome of this exposure (i.e., whether it results in a successful infection, and if 622 

so what the intensity of infection will be). 623 

Host individuals have home ranges, within which they move. If two individuals’ home ranges overlap, 624 

they may interact indirectly; if they overlap in space at the same time, they can interact directly. Adding 625 

more individuals into the same space (or reducing the size of the space) generally makes these 626 

interactions more likely, but this relationship is more strongly positive for some interactions (e.g. air 627 

sharing) than for others (e.g. copulation events) and uncertain or intermediate for some (e.g. 628 

handshakes). How these interactions change with density could depend on the spatial behaviours of 629 

the population (e.g. avoidance or territoriality), and often a given interaction’s relationship with density 630 

will depend on the location itself. For example, air sharing in a plane cabin will be highly sensitive to 631 

the density of people in the cabin, while air sharing in an open field will be far less density-dependent. 632 

Similarly, copulation events may be more density-dependent in mating grounds than elsewhere in the 633 

species’ habitat. More subtly, handshakes may be more density-dependent at a conference than in the 634 

street. 635 

The above covers density-dependent transmission; where we are interested in density-dependent 636 

infection, susceptibility and other within-host processes must be considered. All else being equal, we 637 

expect positive density dependence of infection when density increases the frequency of interactions 638 

that spread parasites, or of interactions that are disadvantageous in other ways (and which therefore 639 

increase the probability of successful transmission following an exposure event); for example, greater 640 

competition for the available resources or more aggressive interactions leading to stress, both of which 641 

could weaken parasite resistance. In contrast, we expect negative density dependence when density 642 

correlates with beneficial between-individual interactions that increase parasite resistance (e.g. 643 

grooming or microbe transfer) or alleviate the costs (e.g. improved resource acquisition); when 644 

behavioural mechanisms can reduce exposure to parasites and produce negative density correlations 645 

(e.g. avoidance, murder, or ostracism); or when population density is correlated with other traits that 646 

increase immune resistance and therefore reduce infection (e.g. resource availability). Alternatively, 647 

greater mortality in highly parasitised areas may create a negative density trend. Finally, encounter-648 

dilution effects could create negative density trends by dividing a given local burden of parasites among 649 

the available hosts, faster than they can reproduce on those costs. The outcome of changes in density 650 

for disease will depend on the balance of all these processes at the chosen spatiotemporal scale. 651 

4. Future work 652 

Practically, a range of empirical approaches could contribute to delivering this framework. First, the 653 

evidence base could benefit from a wider variety of empirical analyses that control for the confounders 654 

I have outlined here. These could involve more spatial density metrics and within-population analyses, 655 

and large population-level analyses, across a wider variety of systems. The growth in spatial and social 656 

network analyses in disease ecology will contribute to this task (Craft 2015; White et al. 2017; Albery 657 

et al. 2021a), as will the use of biologging approaches that produce large datasets of behavioural data 658 

(Kays et al. 2015; Smith & Pinter-Wollman 2021). For example, a recent analysis investigated how 659 

widespread anthropogenic disturbance altered animal space use using telemetry data from a wide 660 

variety of different systems (Doherty et al. 2021). The ecological data revolution is becoming particularly 661 

fruitful at the intersection of disease and behavioural ecology: disease datasets are now being built up 662 

by data mining approaches (Han et al. 2020; Poulin et al. 2021) and there are a growing number of 663 

large, open-source datasets with available host-parasite association or prevalence data (Cohen et al. 664 
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2020; Gibb et al. 2021), as well as widely available behavioural datasets like the animal social network 665 

repository (ASNR; (Sah et al. 2019)) and demographic datasets like the TetraDENSITY database of 666 

vertebrates’ population density estimates (Santini et al. 2018a). Datasets like these are already being 667 

integrated to answer questions at the sociality-disease interface: for example, (Poulin & Filion 2021) 668 

combined the global mammal parasite database (GMPD; (Stephens et al. 2017)) with the ASNR (Sah 669 

et al. 2019) to investigate how primate species’ social networks might have evolved in response to 670 

parasite pressure. Similar data-synthesising approaches will be important in answering the questions I 671 

have put forward in this review in a general context, giving us the best possible chance to build a 672 

generalisable framework for understanding and predicting density-dependent disease dynamics. 673 

This meta-dataset could be supplemented with further laboratory or captive systems that allow 674 

experimental manipulation of densities separate from population sizes, as outlined above and in Figure 675 

3, and/or with experimental investigation of specific immune and behavioural traits. To draw a parallel, 676 

a broad GPS-facilitated investigation like (Doherty et al. 2021)’s study of anthropogenic noise impacts 677 

on disease might be supplemented by experimental investigations of the effects of traffic on ex situ 678 

immune function (e.g. (Brumm et al. 2021)), and the same could be done for density effects both 679 

across wild populations and within captive contexts. 680 

When more studies have been carried out and more data collated, newly revisiting large-scale cross-681 

system analyses of social behaviour, and incorporating spatial components, could reveal much about 682 

the underlying drivers of density dependence and social costs for disease. So far, large-scale 683 

investigations into social drivers of wildlife disease have meta-analysed a range of other studies’ effect 684 

estimates or conducted species-level comparisons (Table 1). Another approach to meta-analysis 685 

involves collecting raw datasets and applying standardised analyses across them, and then meta-686 

analysing the results (e.g. (Albery et al. 2022)). Although this approach requires substantial additional 687 

data manipulation and analysis, it reduces extraneous variation introduced by methodological 688 

differences between modelling approaches, and facilitates the application of specialised approaches. 689 

These approaches may include spatial analyses that are relatively rarely applied in disease ecology and 690 

ecoimmunology (Becker et al. 2020; Albery et al. 2021a). Carrying out these high-power analyses may 691 

allow us to move between scales, from within-population to between-population to between-species, 692 

to resolve the problems of scale dependence outlined in Section 2G, and to anticipate compensatory 693 

evolutionary changes in behaviour between species (Altizer et al. 2003; Poulin & Filion 2021). 694 

Finally, these findings should be extrapolated to their applied contexts, both in animals and in humans. 695 

There are already species-level analyses of the determinants of animals’ population density (Santini et 696 

al. 2018b) and similar species-level model formulations have been used regularly for informing on 697 

mammals’ zoonotic risk, but without uncovering conclusive roles of population density in driving risk 698 

(Olival et al. 2017). Carrying out these analyses at within- and between-population levels, supplemented 699 

with higher-resolution disease data, might inform the roles of population density in driving zoonotic risk 700 

in the future. For example, by combining epidemiological models and species distribution models, 701 

(Wang et al. 2021) predicted that global change-related changes in mammal community composition 702 

will drive a decrease in density-dependent infections in mammals, but an increase in frequency-703 

dependent ones, using a dichotomous formula for the two. A sophisticated generative model for 704 

density-infection functions could elaborate on these predictions by introducing variation in the slope 705 

and shape of the effects of density. 706 

In humans, ideally, we will be able to examine how adding more individuals to the same rooms, areas, 707 

and populations will drive infection with a named parasite based as few traits as possible. As well as 708 
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allowing us to build density-dependent transmission functions for use in epidemiological models, 709 

developing the framework in an applied context may help to answer some persistent questions; for 710 

example, answering whether pathogens spread through urban populations because of greater density, 711 

or because these populations are associated with economic deprivation and increased susceptibility 712 

(Nightingale et al. 2020).  713 

5. Conclusions 714 

1. Density dependent parasite transmission is a fundamental parameter in epidemiology and 715 

disease ecology, but our tendency to identify density dependence post hoc inhibits our 716 

understanding of disease dynamics and slows the development of interventions for a given 717 

parasite.  718 

2. Much purported evidence for density dependence so far is based on between-population 719 

comparisons and social behaviour rather than spatial behaviour, which complicates our 720 

identification of density effects per se. 721 

3. To better understand and eventually predict density dependence, we could benefit from 722 

considering a range of density- transmission functions; incorporating the role of spatial 723 

behaviour into density analyses; identifying density-dependent interaction functions using 724 

behavioural analyses; appreciating density-dependent changes in susceptibility effects and 725 

benefits of sociality; expanding the range of available study systems; and clarifying the spatial 726 

and temporal scale of density effects. 727 

4. By incorporating these viewpoints and empirical expansions, we may be able to predict how a 728 

given host-pathogen system is going to behave by considering a “bottom-up” approach based 729 

on the density dependence of a given behavioural interaction, with density-dependent 730 

susceptibility effects considered in addition. 731 

5. Implementing this framework could benefit from the wider availability of open datasets of 732 

behaviour and infection. Moving forward, addressing the questions I have presented here will 733 

help to further our understanding of the ecology of disease in an ever-densifying world in the 734 

coming century. 735 
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Table 1: Published meta-analyses of sociality-infection 741 

relationships 742 

 

(Cote & Poulin 1995) 

Title: “Parasitism and group size in social animals: a meta-analysis” 

Data: Meta-analysis of 6 studies of parasite prevalence and 15 studies of parasite intensity. 

Tested mobile and contagious parasites in separate models. 

Results: Consistent positive correlations between host group size and prevalence and intensity 

of contagious parasites. Intensity of infection by mobile parasites consistently decreased as host 

group size increased. 

 

(Ezenwa 2004) 

Title: “Host social behavior and parasitic infection: A multifactorial approach” 

Data: Original data concerning gastrointestinal parasite infection rates for 11 ungulate species. 

Results: Territorial host genera were more likely to be infected with strongyle nematodes than 

were nonterritorial hosts, and gregarious hosts were more infected than were solitary hosts. 

 

(Rifkin et al. 2012) 

Title: “Do animals living in larger groups experience greater parasitism? A meta-analysis” 

Data: Meta-analysis of 69 studies of the relationship between group size and parasite risk, as 

measured by parasitism and immune defences. Fitted transmission mode as an explanatory 

variable. 

Results: Similar positive effect of group size for all transmission modes except searching (no 

effect). 

 

(Patterson & Ruckstuhl 2013) 

Title: “Parasite infection and host group size: a meta-analytical review” 

Data: 70 correlations of parasite prevalence, intensity and species richness with host group size. 

Results: Parasite intensity and prevalence both correlated with group size. No relationship 

between host group size and parasite species richness. Mobile parasite intensity correlated 

negatively with group size of sedentary hosts, but not mobile hosts. 

 

(Nunn et al. 2015b) 

Title: “Infectious disease and group size: more than just a numbers game” 

Data: Meta-analysis of the association between group size and four network structure metrics in 

43 vertebrate and invertebrate species. Used a theoretical model to explore the effects of 

subgrouping on disease spread in socially structured populations. 

Results: Outbreaks reached higher prevalence when groups were larger, but subgrouping 

reduced prevalence. Subgrouping also acted as a ‘brake’ on disease spread between groups. 

 

(Briard & Ezenwa 2021) 

Title: “Parasitism and host social behaviour: a meta-analysis of insights derived from social 

network analysis” 
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Data: 210 associations between parasite burden and individual level network metrics extracted 

from 18 published articles. Included transmission mode (and congruence between transmission 

mode and social network compilation method) as a covariate. 

Results: Positive effect of social network metrics on parasite infection at the individual level. 

Found little evidence for transmission mode effect. 

 

(Lucatelli et al. 2020) 

Title: “Social interaction, and not group size, predicts parasite burden in mammals” 

Data: Meta-analysis of 43 studies examining group size-infection relationships and 32 examining 

social structure-infection relationships. 

Results: No relationship between group size and infection; some relationship between social 

structure and infection. 

 

(Poulin & Filion 2021) 

Title: “Evolution of social behaviour in an infectious world: comparative analysis of social network 

structure versus parasite richness” 

Data: Species-level parasite richness data (Stephens et al. 2017) and social network structure 

data from the Animal Social Network Repository (Sah et al. 2019). 

Results: Parasite richness correlates with degree heterogeneity, implying that parasite-related 

selective pressures have driven the evolution of social network structure. 

Table 1: Previously published cross-system analyses of sociality-infection relationships, in chronological order. NB 743 

none of these studies directly investigated density effects (i.e., individuals per unit of space), but some assume 744 

that sociality and density are positively correlated. 745 

 746 

Figure 1: Example density-transmission functions 747 

 748 

Figure 1: A selection of six simple theoretical relationships between density (X axis) and transmission (Y axis), 749 

demonstrating the potential variation in the shape of the relationship (i.e., density-dependent transmission 750 

functions). The top row, from left to right, depicts linear increasing, flat, and linear decreasing transmission; the 751 

bottom row depicts saturating, exponential, and sigmoidal curves. 752 
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Figure 2: Density, population size, geographic area, and 753 

interaction rates 754 

 755 

Figure 2: A simulated population’s spatial locations, depicting density’s relationship to ideal gas laws. In the top 756 

row, each individual’s location (black dots) is randomly placed within restrictions imposed by the environment 757 

(purple box). Each dot has been given a transparent ring to denote an arbitrary interaction distance; two 758 

individuals with overlapping rings are taken to be interacting. In panel a), there are 10 individuals. In panel b), 759 

there are 25 individuals in the same space, increasing the probability that they will touch (i.e., interact). In panel 760 

c), the habitable landscape is smaller, but with the same number of individuals inhabiting it as b), increasing the 761 

probability that they will interact. In the bottom row, the population is evenly spaced within the boundaries as a 762 

result of individual avoidance behaviours (each individual is attempting to maintain a certain distance from other 763 

individuals). This spacing means that adding more individuals to the same space in panel e) does not increase 764 

the probability that they will interact, but then making the habitat smaller in addition in panel f) does. 765 
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Figure 3: Experimental designs to extricate density and 766 

frequency dependence 767 

 768 

Figure 3: Experimental design can be used to extricate the effects of population size (or interaction frequency) 769 

and population density. Panel a) has 10 individuals living in a square with area 10. Panel b) has the same 770 

number of individuals living in a square 10x larger (area 100). Panel c) has 100 individuals living in area 10, 771 

while panel d) has 100 individuals living in area 100. Both panels a) and d) have a density of one individual per 772 

unit area. Therefore, moving between panels a) and b) alters population density without altering population size; 773 

moving between panels a) and c) alters population size and population density simultaneously; moving between 774 

panels a) and d) alters population size without altering population density. NB in this figure I have displayed two 775 

replicates of each, but it would be desirable to modify both dimensions using more than two replicates to 776 

produce a continuum of variation.  777 
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Figure 4: Density and disease progression 778 

 779 

Figure 4: Population density is part of a nexus of interacting processes related to parasite transmission, disease 780 

progression, and maintenance. Thick, coloured arrows represent steps along the process of an individual 781 

becoming infected with a given parasite. Thin black or grey arrows denote links between environmental 782 

resources, spatial behaviours, density, and the coloured steps. The light grey terms next to the coloured arrows 783 

name the processes or traits governing transitions between those two stages (e.g. the conversion of movement 784 

to encounters is the encounter rate; the transition from encounter to exposure is the dose dependence of the 785 

disease). These links are as follows: A) Density affects hosts’ susceptibility to the parasites and the parasites’ 786 

ability to replicate within the hosts (“suitability”), for reasons elaborated upon in Section 1B. B) Resources alter 787 

susceptibility and suitability by affecting the immune system; if there are more resources available per individual, 788 

each individual’s immune system may be more able to resist infection. C) The distribution of resources in the 789 

environment defines the distribution of hosts through habitat selection behaviours. D) Spatial behaviour (e.g. 790 

location in the environment) determines onward transmission of the parasite because some parasites develop 791 

and spread more easily in some environments than others. E) Spatial behaviours determine the density 792 

distribution of the hosts, and many spatial behaviours are density- or sociality-dependent, using social cues. F) 793 

Spatial behaviours directly influence movement through the environment, and therefore encounter rates.  794 
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