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Abstract

Ecology and evolutionary biology, like other scientific fields, are experiencing an exponential
growth of academic manuscripts. As domain knowledge accumulates, scientists will need
new computational approaches for identifying relevant literature to read and include in
formal literature reviews and meta-analyses. Importantly, these approaches can also
facilitate automated, large-scale data synthesis tasks and build structured databases from
the information in the texts of primary journal articles, textbooks, grey literature, and
websites. The increasing availability of digital text, computational resources, and
machine-learning based language models have led to a revolution in text analysis and
Natural Language Processing (NLP) in recent years. NLP has been widely adopted across
the biomedical sciences, but is rarely used in ecology and evolutionary biology. Applying
computational tools from text mining and NLP will increase the efficiency of data synthesis,
improve the reproducibility of literature reviews, formalize analyses of research biases and
knowledge gaps, and promote data-driven discovery of patterns across ecology and
evolutionary biology. Here we present recent use cases from ecology and evolution, and
discuss future applications, limitations, and ethical issues.
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Why use text mining?

The volume of scientific literature is growing exponentially [1], with over three million
peer-reviewed academic articles published each year [2]. In ecology-specific journals over
80,000 articles have been published since 1980 [3]. Digesting this overwhelming amount of
material is an insurmountable task, making literature syntheses and compilation of
literature-based datasets increasingly difficult. As bodies of literature continue to grow,
highly cited papers are more likely to be cited compared to recent work, which can result in
slowing of scientific progress as transformative ideas are less likely to permeate and make
substantive impact [4]. Adopting computational approaches for analysis of scientific texts
allows researchers to rapidly and systematically identify relevant publications and
synthesize larger amounts of literature compared to manual approaches. Beyond literature
syntheses, computational tools can be used to efficiently extract information from texts and
update existing literature-based databases, ultimately increasing the value of published
research.

When humans read, we interpret information in text through the meaning of words and
grammatical contexts. To a computer, human language is complex and difficult to convert to
structured formats, such as tabular or relational databases commonly used in scientific
research. Therefore, raw text is commonly referred to as “unstructured”. To convert
unstructured data in scientific texts to a format ready for statistical analysis, we can apply a
diverse set of computational approaches. These tools broadly fall under the umbrella of “text
mining”, but often come from Natural Language Processing (NLP), a field that focuses on
computational interpretation of human language, blending theory and approaches from
linguistics, computer science, statistics, and artificial intelligence. NLP comprises an
extremely broad set of computational methods that allow us to gather, sort, translate, and
understand written documents.

Tools for mining scientific texts have seen wide-scale adoption in other fields, such as
biomedical sciences, where models have been developed to recommend relevant literature,
and extract data for further analysis. Exciting examples include the construction of large
scale databases of protein-protein interactions [5], drug-drug interactions [6], gene-disease
relations [7], chemical-disease relations [8], and interfaces to extract information using
structured searches [9]. Applications of NLP in ecology & evolution are relatively rare
compared to biomedical sciences (Fig. 1). The disparity in onset and magnitude of adoption
suggests that ecology and evolution researchers could look to biomedical studies for
inspiration on applying classical and cutting edge NLP approaches in their projects.

NLP itself is a rapidly growing field with many approaches applicable to ecology and
evolution. In recent years, ecologists and evolutionary biologists have begun to develop
similar domain-specific approaches, but their applications have largely been restricted to the
analysis of publishing trends and related metrics. Given the growing and diverse types of
literature, the importance of research syntheses, and increasing computational literacy in the
field, ecology and evolutionary biology are a prime candidate for the application of more
advanced text mining and NLP approaches.
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Using NLP to create literature-based databases holds particular value for comparative
studies and biodiversity syntheses. These models of research can be greatly accelerated by
improving the reproducibility and efficiency of data integration [10], and the aggregation of
key biodiversity data enables analyses that would not otherwise be possible [11]. While
peer-reviewed literature in journals represents the most common source of scientific texts,
application of NLP to other texts, such as preprints [12], could highlight emergent and
rapidly-changing science including the COVID-19 pandemic [13,14]. Considerable ecological
knowledge is also stored in texts associated with archival samples and natural history
collections [15], but recent advances in digitization (e.g., from printed or handwritten labels)
mean NLP approaches are now feasible and promising [16]. Similarly, there exist vast
amounts of text published alongside online genetic sequence databases such as GenBank
or the Gene Expression Omnibus [17]. With increasing digitization efforts and availability of
associated texts, adoption of text mining in ecology and evolution could greatly expand
metadata and maximize the utility of these ever-growing resources.

Beyond supporting the efficient creation and expansion of literature-derived databases, using
scripted and archived computational processes for text analysis can dramatically improve
transparency, and help the reproducibility in all phases of research, from identifying relevant
papers, analyzing research trends, constructing and expanding datasets, and automated
translation of text into data ready for statistical analysis. Here we outline current and future
applications of text mining in ecology and evolutionary biology, and discuss current barriers
to implementation.

Recent applications in ecology & evolution

Detecting trends and topics

The most common uses of text analysis in ecology and evolution have been under the
umbrella of bibliometrics: quantitative research that studies trends in subject matter,
authorship, and impact of publications. For example, Anderson et al. (2021) [18] analyzed
over 130,000 articles to explore the increasing diversity of ecological hypotheses and
theories published over the past 80 years. Similar studies of publishing trends have explored
ecological topics in high impact journals [19], showed the emergence of conservation
biology as a separate discipline from ecology [20], analyzed the growth of interdisciplinarity
in biodiversity science [21], tracked shifting popularity of topics within industrial ecology [22]
and fish ecology [23], identified research themes in disease ecology [24], and pinpointed
critical research gaps in conservation science [25] and pollination ecology [26]. Outside of
academic articles, text mining can reveal important trends for environmental management
and biodiversity conservation [27]. In conservation science, analysis of online texts and
social media posts led to the development of conservation culturomics, a field that evaluates
public interest in nature [28], tracks opinions on conservation topics [29], and quantifies
people’s experiences in nature [30]. Beyond tracking trends, text analysis can be used to
gather evidence supporting the success of conservation actions and develop more
culturally-relevant policies.
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Evidence synthesis and literature reviews

The growth of scientific literature is making evidence synthesis an increasingly difficult task,
leading to an ever widening “synthesis gap” [31]. For both narrative and systematic reviews,
text mining is projected to become a necessary tool to circumvent literature overload [32].
Text analysis can be implemented at multiple phases of a review, from identifying search
terms using keyword co-occurrence networks [33], to applying predictive approaches to
screen studies for inclusion [31]. Abstract screening using text mining and machine learning
can be a precise and efficient alternative to the common practice of screening abstracts with
two reviewers [34], which may help limit individual biases by providing a consensus
annotation, but is time consuming and can be error-prone. The future of systematic
reviewing will likely necessitate the interaction of humans and machine learning algorithms
to tackle the rapid growth in publications [35]. Overall, implementing computational
processes can dramatically expand literature assessments to include more diverse texts,
increase the efficiency of reviews and literature syntheses, and allow rapid reproducibility
and updating as new literature is published [32]. However, these tools need to be properly
calibrated and validated to ensure accuracy compared to manual search and screening
[31,36,37].

Expanding literature-based datasets

Large-scale studies in ecology are often based on data compiled from previously published
research and typically involve significant manual investment for literature searching,
acquisition, screening, data extraction, and harmonization of species names, place names,
measurement units, experimental designs, and terminology with inconsistent definitions [11].
As such, these studies require substantial effort to update as new papers are published. In
NLP, the sub-field of information retrieval develops search algorithms and models that
suggest articles of potential interest. In a recent ecological application, Cornford et al.
(2021) [38] train machine learning models to classify literature as relevant to the PREDICTS
database [39], a literature-based database of biodiversity responses to human impacts. Their
best models could distinguish relevant from non-relevant articles with over 90% accuracy
based only on title and abstract text, significantly improving the speed and ease with which
new articles can be screened for database inclusion. A similar machine learning approach
was used by Roll, Correia, and Berger‐Tal (2018) to identify articles using the term
‘reintroduction’ in a conservation context (release of organisms into their historical native
habitat), rather than a non-ecological context. Outside of search engines, a number of
machine learning models for text classification have been developed in recent years [41], but
are rarely used in ecology and evolutionary biology [42]. The ability to continually flag and
integrate relevant publications will help transition from static ecological datasets to living
ones, and help promote more efficient and impactful science.
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Extraction and integration of primary biodiversity data

Integrating data from across the life sciences is currently a major challenge, but will likely
foster the interdisciplinary research needed to address pressing global issues [43]. Applying
NLP approaches, unstructured texts can be transformed into structured data commonly
analyzed in ecological and evolutionary studies. With dictionaries containing terms of
interest (e.g., species names, traits, keywords describing an ecological interaction), the
frequency of term co-occurrences can be used to discover associations [44]. For example, by
quantifying the co-occurrence frequencies of ant species names and terms describing
ant-plant mutualisms, [45] were able to identify ant species associated with mutualistic
behaviours, and used the compiled dataset to study the evolution of plant mutualisms.
Similar approaches have been used to infer inter-species associations via descriptions from
the Encyclopedia of Life [46], and NCBI and PubMed [47,48]. Ecologists have also used text
from Twitter to gather biodiversity data and infer spatiotemporal ecological patterns [49].

These studies used dictionaries to identify relevant terms, but to go beyond lists of words,
terms can be linked to other datasets using ontologies. In linguistics, an ontology refers to a
set of terms and their relationships, forming a network of concepts in a domain [50].
Ontologies capture expert knowledge and allow users to translate concepts across
databases, disambiguate terms with different disciplinary meanings, or collapse terms into
larger concepts (much like a taxonomy allows collapsing species into genera, families,
orders, etc…). Ontologies have proven useful in biomedicine [51,52] and proven useful for
harmonizing data across diverse texts to study important problems within environmental
science, bacterial evolution, and comparative anatomy [53–58].

Ecology and evolution are rife with ambiguously defined terminology (e.g. the definition of
"virulence" depends on if the pathogen infects a plant or animal host, and often differs
between theory and empirical papers [59]), which slows research progress and limits the
ability to synthesize across studies [60,61]. Creating platforms with consistent naming
conventions and conceptual maps connecting concepts will facilitate data harmonization,
sharing and annotation, and aid collaborative research projects already common in
biodiversity science [62]. There exist a number of related ontologies describing ecological
observations [63], biological collections [64], phenotypes [65,66], and biodiversity science
[67]. Recent efforts have aimed to generate consensus definitions for ecological traits with
ontologies [68]. These act as resources for describing, accessing, and manipulating
phenotypic data by making phenotypic data more manipulable by computers [69], efficiently
extracting phenotypic data from taxonomic descriptions [70], structuring species
information [71], and harmonizing traits with taxa [72]. Developing standard vocabularies,
definitions, and relationships among concepts is crucial for dealing with the heterogeneous
nature of information in ecology and evolution, and these initiatives will lay the groundwork
for more automated text analyses in the future.
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Future uses of text mining and Natural Language Processing in ecology &
evolution

Given the current limited use of NLP approaches in ecology and evolution, we suggest that
their adoption will have the greatest impact on the construction of large scale comparative
databases. We highlight three tasks that are likely to be extremely useful: document
classification, tagging domain-specific entities in text, and building structured databases
through relation extraction (Figure 2). Each of these tools can be generalized to future
research projects, or linked together to build a workflow from raw texts to a structured
database ready for analysis. Below we assume that some source texts (corpus) have already
been identified, either through targeted literature searches, or choice of an existing body of
literature. We do not discuss article search strategies, as detailed guides exist [73], but note
that this is an important consideration when gathering a corpus and designing a text mining
project.

Document classification

The success of document classification by Cornford et al. [38] demonstrates the potential
for document-level predictive models to aid the updating of large-scale comparative
databases. As a general template, if databases derived from published articles can be linked
with abstracts or full texts, classifiers can be trained to predict whether subsequently
published articles are likely to contain relevant data. Training a classifier requires examples
of both positive and negative cases (e.g. relevant and irrelevant articles). Databases that
report discarded literature are great resources of positive and negative examples. However,
because existing databases rarely document these, “irrelevant” papers may be identified by
sampling papers in the discipline, such as the use of general ecology papers by Cornford et
al. [38]. These irrelevant articles are similar to the use of “background” or “pseudo-absence”
data in species distribution models [74] in that they may contain undocumented positives
(i.e. relevant articles), but the assumption is that the majority will be irrelevant and provide a
useful contrast to those in existing databases.

The choice of negative examples for training should reflect future search strategies, whether
it be searching through all ecology papers, or a more specific set. If the source database
clearly outlines their strategy for literature inclusion (i.e. search terms, targeted journals,
publication dates), it may be possible to compile more targeted sets of negative examples
for training. Future development of document classifiers should explore the influence of
these different approaches for generating negative training data on accuracy, and validate
these predictive models on articles which have been expert-validated rather than assumed to
be irrelevant (Fig. 2). In addition to periodic updating, using predictive models to expand
existing datasets will lay the foundation for systems that can automatically alert researchers
of relevant papers as they are published, and automatically extract data from these papers.
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Identifying entities specific to ecology & evolution

Once relevant texts are identified, the next task is extraction of relevant terms. If researchers
know exactly what they are looking for and terms of interest are completely known and can
be listed, simple methods such as text matching can be used to identify them. However,
given the diversity of specialized terms in ecology, this is unlikely to be the case. When
relevant terms are not known, or texts are expected to include never-before-seen terms,
Named Entity Recognition (NER) will be extremely useful. NER involves identifying real-world
objects (“named entities”) based on the context of their surrounding text, such as people,
locations, organizations, etc. In biomedical text analysis, specialized NER tools are built to
identify mentions of diseases, genes, proteins, cell types, and chemicals [75]. NER tools
designed for ecology and evolutionary biology are currently rare, but would greatly improve
literature exploration and information extraction. Contemporary NER tools are often created
by adapting deep learning based language models [76]. Therefore, given suitable training
data, NER models could be trained to recognize and disambiguate ecology-specific entities
(see Fig. 2 for examples).

Once named entities are recognized, a text analysis pipeline can take many different paths.
To better understand context, researchers may cross-reference terms with ontologies to
connect concepts or collapse terms into higher groups. For example, scispaCy v2.5.0
supports entity linking to biomedical ontologies including the Unified Medical Language
System (UMLS) [77] and the Medical Subject Headings (MeSH terms) [78], which in turn
allow them to be connected to a diverse array of databases. These may be used to group
organs into larger anatomical systems, or categorize proteins into enzymes, hormones, or
antibodies. While approaches have been developed to identify taxonomic, morphological,
and habitat entities [57,79], merge existing ontologies [80,81], and create standards for
publishing of biodiversity information [82], these initiatives remain disconnected, and have
not yet been integrated with contemporary NLP software.

Relation extraction & creation of structured datasets

Once entities are recognized, and disambiguated or linked to an ontology, multiple
approaches can be used to identify relationships among these entities (for examples, see
Fig. 2 & Table 1). One approach is analysis of term co-occurrences, as used by Kaur et al.
[45] to identify ant-plant mutualisms. Alternatively, the structure of the text itself can be used
to identify the relationships, through a task referred to as relation extraction. Relation
extraction can be done by incorporating linguistic information, such as semantic
relationships between entities, or through training of a deep-learning based language model
if one is available. For example, identifying protein-protein interactions in text has progressed
from using a dictionary of protein names and co-occurrences, to adding information about
parts of speech (e.g. verbs, nouns, adjectives), to supervised and deep learning approaches
that incorporate vector representations of articles as predictors [83]. Relation extraction can
also be used to identify relations between different classes of entities, such as disease-gene
interactions [7]. Relation extraction is often a complex task, which can be daunting for
researchers new to text mining. However, given the diversity and value of relational data in
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ecology and evolution, we suggest that relation extraction will be an increasingly important
means of generating structured, analysis-ready data in the future. This offers exciting new
frontiers for ecologists and evolutionary biologists to collaborate with computational
linguists and computer scientists.

Current barriers to adoption and pathways forward

Despite the promise of text mining to revolutionize literature synthesis and database
creation, several technical and social barriers currently limit widespread adoption in ecology
and evolution. These include a lack of knowledge of existing tools, best practices, and
shared vocabularies needed for collaboration with computational linguists [31]. Further,
there are inequalities in access to software, data, and academic literature [42,84,85]. To use
text mining and NLP in ecology and evolution to their full potential, we need to promote
awareness of these methods, improve access to scientific literature and article-level
metadata, facilitate cross-disciplinary collaborations, create domain-specific software, and
develop an ecosystem of scientific language tools that work across all the world’s
languages, not just English.

For primary literature, abstracts are among the most readily accessible documents and can
be sufficient for document classification and database creation [38,45,86]. However,
abstracts may not be available for more historical papers [18], and for some tasks, such as
relation extraction, analysis of full manuscripts consistently outperforms the use of
abstracts only [86]. Unlike abstracts, access to full academic texts is limited by institutional
subscriptions [84], with only half of publishers releasing manuscripts in a machine readable
format [87]. Access to paywalled articles and copyright issues will limit the reproducibility of
studies using text mining, and re-publishing or hosting source texts as supplementary
materials may be illegal. Recent projects such as The General Index [88], an open access
database of text sequences and keywords extracted from 107 million journal articles, offers
researchers the ability to perform specialized searches and analyze thematic trends in
scientific literature without barriers imposed by paywalls or institutional access. While such
databases can greatly improve interaction with published literature, their success relies on
publisher support of this distinct, technical use of their text. However, when analyzing large
volumes of papers, researchers should take care to cite primary sources appropriately.
Likewise, publishers need to recognize the benefit of hosting machine-readable texts and
better showcase their use by eliminating citation limits for online publications. Overall, the
reproducibility of text mining studies will be hindered until scientific articles are considered a
public good and made open access.

Parallel to variation in access to scientific publications, the dominance of English in science
has led to data from non-English publications being omitted from ecological syntheses [89].
There also exist systematic inequalities in the representation and performance of NLP
technologies across languages [85,90]: largely because of the historical dominance of
English as the lingua franca of scientific publishing, current scientific language models are
designed only for English texts [91,92]. As training data and models for previously
overlooked languages continue to grow [93], the future looks promising for expansion of NLP
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approaches to non-English scientific texts. This could promote broader inclusion in science
by facilitating translation of publications across languages, easing barriers for researchers
to publish in their chosen languages, and allowing broader inclusion of non-English scientific
texts in synthetic research.

Conclusion

The application of text mining and Natural Language models to domain-specific text in
ecology and evolutionary biology shows great promise for summarizing historical research
and current gaps in knowledge, efficiently identifying pertinent literature, constructing
structured databases from unstructured texts, and developing real-time biodiversity
surveillance for issues such as emerging diseases and conservation threats. We urge early
career scientists and established researchers alike to explore and apply these tools in their
own research, and to contribute their expertise to the growing collection of open-source and
expert-created datasets for processing of texts in ecology and evolution.
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Figures & Tables

Figure 1. Publication trends indicating an earlier adoption, and greater A) absolute number
and B) proportion of papers involving text mining in biomedical publications compared to
ecology and evolutionary biology. Data were from two Web of Science (WOS) searches: one
with “*medic*” and the other with “ecology” OR “evolutionary biology” OR “biodiversity” in the
Topic field, plus “text mining” OR “Natural Language Processing” OR “NLP” in All Fields for
each search. A total of 5,262 biomedical papers and 120 ecology / evolutionary biology
papers employing text mining or NLP were identified out of a total 2,355,632 biomedical and
354,798 ecology / evolution papers. Searches were conducted on September 10th 2021 via
the University of Toronto subscription. Note that variation in WOS search results varies due
to institutional subscriptions [84]. Search results were subset to the years 1990-2020
inclusive. Data and R code to reproduce the figure can be accessed at
https://github.com/maxfarrell/textmining_trends
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Figure 2. Potential applications of Natural Language models in ecology & evolution. The
simplest application is training and applying a document classifier to predict relevant
documents (top row). Given a training set of relevant and non-relevant documents (may
come from existing databases, a manually-curated training set, or documents tagged by a
set of rules), the relevance of new documents may be predicted and prioritized for manual
screening and curation, or downstream information extraction. Manual screening may be
used to validate predictive models, or re-train and fine-tune the original classifier. Once a set
of relevant documents is identified, the subjects of the documents can be explored through
named entity recognition (NER; middle row). Named entities can be identified by comparing
text strings to a dictionary. If a complete set of entities is not known or available, a machine
learning based NER tool can be used to predict entities and identify never-before-seen terms.
Given a training set, NER can be used to identify terms in a text (for example, species, genes,
proteins, locations, morphological structures) and tag their locations in a text. Once
components of a document are tagged (parts of speech, named entities, numbers),
relationships among them can be identified to create structured datasets for analysis
(bottom row). Relationships may be inferred through term co-occurrence frequencies,
sentence structures (dependency parsing), or through machine learning-based models that
predict the nature of the relationship. Relational data can take a variety of forms including
species interactions, biological measurements and their associated units, or networks of
different relationship types (ontologies).
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Example of relation Example text

Measurements and units “The average length of human gestation is 280 days”

Model-specific parameters “R0 was estimated to be 1.13”

Species interactions “Anoplocephala manubriata parasitizes Asian elephants”

Protein-protein interactions “Pleiotropic drug resistance 1p (Pdr1p) regulates Pdr5p”

Habitat associations “Ribes mandschuricum is found in shady areas”

Species occurrences “Cercopia moths were collected from sites throughout
Massachusetts ”

Linnaean taxonomy /
common names / synonyms

“Boops boops, commonly called the bogue, is a species of
seabream native to the eastern Atlantic”

Anthropogenic impacts “Inversodicraea botswana is threatened by sewage discharge”

Table 1. Table of common relationship types in ecology and evolution, and example texts.
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