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1. Metawebs (networks of potential interactions within a species pool) are a powerful abstraction
to understand how large-scale species interaction networks are structured.

2. Becausemetawebs are typically expressed at large spatial and taxonomic scales, assembling them
is a tedious and costly process; predictive methods can help circumvent the limitations in data
deficiencies, by providing a first approximation of metawebs.

3. Oneway to improve our ability to predictmetawebs is tomaximize available information by using
graph embeddings, as opposed to an exhaustive list of species interactions. Graph embedding is
an emerging field in machine learning that holds great potential for ecological problems.

4. Here, we outline how the challenges associated with inferring metawebs line-up with the ad-
vantages of graph embeddings; followed by a discussion as to how the choice of the species pool
has consequences on the reconstructed network, specifically as to the role of human-made (or
arbitrarily assigned) boundaries and how these my influence ecological hypotheses.

The ability to infer potential interactions could serve as a significant breakthrough in our ability to con-
ceptualize species interaction networks over large spatial scales (Hortal et al., 2015). Reliable inferences
would not only boost our understanding of the structure of species interaction networks, but also in-
crease the amount of information that can be used for biodiversitymanagement. In a recent overview of
the field of ecological network prediction, Strydom, Catchen, et al. (2021) identified two challenges of
interest to the prediction of interactions at large scales. First, there is a relative scarcity of relevant data
in most places globally – restricting the inference of interactions to locations where least required (and
leaves us unable to make inference in data scarce regions); second, accurate predictors are important
for accurate predictions, and the lack of methods that can leverage a small amount of accurate data is a
serious impediment to our predictive ability. Inmost places, ourmost reliable biodiversity knowledge is
that of a species pool where a set of potentially interacting species in a given area could occur: through
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the analysis of databases like the Global Biodiversity Information Facility (GBIF) or the International
Union for the Conservation of Nature (IUCN), it is possible to construct a list of species for a region of
interest; however inferring the potential interactions between these species still remains a challenge.

Following the definition of Dunne (2006), a metaweb is the ecological network analogue to the species
pool; specifically, it inventories all potential interactions between species for a spatially delimited area
(and so captures the 𝛾 diversity of interactions). Themetaweb itself is not a prediction of local networks
at specific locations within the spatial area it covers: it will have a different structure, notably by having
a larger connectance (see e.g. Wood et al., 2015) and complexity (see e.g. Galiana et al., 2022), from
any of these local networks. These local networks (which capture the 𝛼 diversity of interactions) are a
subset of the metaweb’s species and its realized interactions, and have been called “metaweb realiza-
tions” (Poisot et al., 2015). Differences between local networks and their metawebs are due to chance,
species abundance and co-occurrence, local environmental conditions, and local distribution of func-
tional traits, among others. Specifically, although co-occurrence can be driven by interactions (Cazelles
et al., 2016), co-occurrence alone is not a predictor of interactions (Blanchet et al., 2020; Thurman et
al., 2019), and therefore the lack of co-occurrence cannot be used to infer the lack of a feasible inter-
action. Yet, recent results by Saravia et al. (2021) strongly suggested that local (metaweb) realizations
only respond weakly to local conditions: instead, they reflect constraints inherited by the structure of
their metaweb. This sets up the core goal of predictive network ecology as the prediction of metaweb
structure, as it is required to accurately produce downscaled, local predictions.

Because the metaweb represents the joint effect of functional, phylogenetic, and macroecological pro-
cesses (Morales-Castilla et al., 2015), it holds valuable ecological information. Specifically, it represents
the “upper bounds” on what the composition of the local networks, given a local species pool, can be
(see e.g. McLeod et al., 2021); this information can help evaluate the ability of ecological assemblages
to withstand the effects of, for example, climate change (Fricke et al., 2022). These local networks may
be reconstructed given an appropriate knowledge of local species composition and provide information
on the structure of food webs at finer spatial scales. This has been done for example for tree-galler-
parasitoid systems (Gravel et al., 2018), fish trophic interactions (Albouy et al., 2019), tetrapod trophic
interactions (J. Braga et al., 2019; O’Connor et al., 2020), and crop-pest networks (Grünig et al., 2020).
In this contribution, we highlight the power of viewing (and constructing) metawebs as probabilistic
objects in the context of low-probability interactions, discuss how a family of machine learning tools
(graph embeddings and transfer learning) can be used to overcome data limitations to metaweb infer-
ence, and highlight how the use of metawebs introduces important questions for the field of network
ecology.

1

A metaweb is an inherently probabilistic object

Treating interactions as probabilistic (as opposed to binary) events is a more nuanced and realistic way
to represent them. Dallas et al. (2017) suggested that most interactions (links) in ecological networks
are cryptic, i.e. uncommon or hard to observe. This argument echoes Jordano (2016): sampling eco-
logical interactions is difficult because it requires first the joint observation of two species, and then
the observation of their interaction. In addition, it is generally expected that weak or rare interactions
will be more prevalent in networks than common or strong interactions (Csermely, 2004), compared
to strong, persistent interactions; this is notably the case in food chains, wherein many weaker inter-
actions are key to the stability of a system (Neutel et al., 2002). In the light of these observations, we
expect to see an over-representation of low-probability (hereafter rare) interactions under a model that
accurately predicts interaction probabilities.

Yet, the original metaweb definition, and indeed most past uses of metawebs, was based on the pres-
ence/absence of interactions. Moving towards probabilistic metawebs, by representing interactions as
Bernoulli events (see e.g. Poisot et al., 2016), offers the opportunity to weigh these rare interactions
appropriately. The inherent plasticity of interactions is important to capture: there have been docu-
mented instances of food webs undergoing rapid collapse/recovery cycles over short periods of time
(e.g. Pedersen et al., 2017). Furthermore, because the structure of the metaweb cannot be known in ad-
vance, it is important to rely on predictive tools that do not assume a specific network topology for link
prediction (Gaucher et al., 2021), but are able to work on generalizations of the network. These consid-
erations emphasize whymetaweb predictions should focus on quantitative (preferentially probabilistic)
predictions, and this should constrain the suite of models that are appropriate for prediction.
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Figure 1 The embedding process (A) can
help to identify links (interactions) that may
have been missed within the original commu-
nity (represented by the orange dashed arrows,
B). Transfer learning (D) allows for the pre-
diction links (interactions) even when novel
species (C) are included alongside the origi-
nal community. This is achieved by learning
using other relevant predictors (e.g. traits) in
conjunction with the known interactions to in-
fer latent values (E). Ultimately this allows us
to predict links (interactions) for species exter-
nal from the original sample (blue dashed ar-
rows) as well as missing within sample links
(F).Within this context the predicted (and orig-
inal) networks as well as the ecological predic-
tors used (green boxes) are products that can be
quantified through measurements in the field,
whereas the embedded as well as imputed ma-
trices (purple box) are representative of a de-
composition of the interaction matrices onto
the embedding space

It is important to recall that a metaweb is intended as a catalogue of all potential (feasible) interactions,
which is then filtered for a given application (Morales-Castilla et al., 2015). It is therefore important
to separate the interactions that happen “almost surely” (repeated observational data), “almost never”
(repeated lack of evidence or evidence that the link is forbidden through e.g. trait mis-match), and in-
teractions with a probability that lays somewhere in between (Catchen et al., 2023). In a sense, that
most ecological interactions are elusive can call for a slightly different approach to sampling: once the
common interactions are documented, the effort required in documenting each rare interaction will
increase exponentially (Jordano, 2016). Recent proposals in other fields relying on machine learning
approaches emphasize the idea that algorithms meant to predict, through the assumption that they ap-
proximate the process generating the data, can also act as data generators (Hoffmann et al., 2019). High
quality observational data can be used to infer core rules underpinning network structure, and be sup-
plemented with synthetic data coming from predictive models trained on them, thereby increasing the
volume of information available for analysis. Indeed, Strydom, Catchen, et al. (2021) suggested that
knowing the metaweb may render the prediction of local networks easier, because it fixes an “upper
bound” on which interactions can exist. In this context, a probabilistic metaweb represents an aggre-
gation of informative priors on the biological feasibility of interactions, which is usually hard to obtain
yet has possibly the most potential to boost our predictive ability of local networks (Bartomeus, 2013;
Bartomeus et al., 2016). This would represent a departure from simple rules expressed at the network
scale (e.g. Williams & Martinez, 2000) to a view of network prediction based on learning the rules that
underpin interactions and their variability (Gupta et al., 2022).

2

Graph embedding offers promises for the inference of potential interactions

Graph (or network) embedding (fig. 1) is a family of machine learning techniques, whose main task
is to learn a mapping function from a discrete graph to a continuous domain (Arsov & Mirceva, 2019;
Chami et al., 2022). Their main goal is to learn a low dimensional vector representations of the graph
(embeddings), such that its key properties (e.g. local or global structures) are retained in the embedding
space (Yan et al., 2005). The embedding space may, but will not necessarily, have lower dimensionality
than the graph. Ecological networks are promising candidates for the routine application of embed-
dings, as they tend to possess a shared structural backbone (see e.g. Bramon Mora et al., 2018), which
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hints at structural invariants in empirical data. Assuming that these structural invariants are common
enough, they would dominate the structure of networks, and therefore be adequately captured by the
first (lower) dimensions of an embedding, without the need tomeasure derived aspects of their structure
(e.g. motifs, paths, modularity, . . . ).

2.1. Graph embedding produces latent variables (but not traits) Before moving further, it is im-
portant to clarify the epistemic status of node values derived from embeddings: specifically, they are
not functional traits, and therefore should not be interpreted in terms of effects or responses. As per
the framework of Malaterre et al. (2019), these values neither derive from, nor result in, changes in
organismal performance, and should therefore not be used to quantify e.g. functional diversity. This
holds true even when there are correlations between latent values and functional traits: although these
enable an ecological discussion of how traits condition the structure of the network, the existence of a
statistical relationship does not elevate the latent values to the status of functional traits.

Rather than directly predicting biological rules (see e.g. Pichler et al., 2020 for an overview), which may
be confounded by the sparse nature of graph data, learning embeddings works in the low-dimensional
space thatmaximizes information about the network structure. This approach is further justified by the
observation, for example, that the macro-evolutionary history of a network is adequately represented
by some graph embeddings [Random dot product graphs (RDPG); see Dalla Riva & Stouffer (2016)].
In a recent publication, Strydom et al. (2022) have used an embedding (based on RDPG) to project
a metaweb of trophic interactions between European mammals, and transferred this information to
mammals of Canada, using the phylogenetic distance between related clades to infer the values in the
latent subspace into which the European metaweb was projected. By performing the RDPG step on re-
constructed values, this approach yields a probabilistic trophic metaweb for mammals of Canada based
on knowledge of European species, despite a limited (≈ 5%) taxonomic overlap, and illustrates how the
values derived from an embedding can be used for prediction without being “traits” of the species they
represent.

2.2. Ecological networks are good candidates for embedding Foodwebs are inherently low-dimensional
objects, and can be adequately represented with less than ten dimensions (J. Braga et al., 2019; M. P.
Braga et al., 2021; Eklöf et al., 2013). Simulation results by Botella et al. (2022) suggested that there is no
dominant method to identify architectural similarities between networks: multiple approaches need to
be tested and compared to the network descriptor of interest on a problem-specific basis. This matches
previous results on graph embedding, wherein different embedding algorithms yield different network
embeddings (Goyal & Ferrara, 2018), calling for a careful selection of the problem-specific approach to
use. In tbl. 1, we present a selection of common graph and node embedding methods, alongside ex-
amples of their use to predict interactions or statistical associations between species. These methods
rely largely on linear algebra or pseudo-random walks on graphs. All forms of embeddings presented
in tbl. 1 share the common property of summarizing their objects into (sets of) dense feature vectors,
that capture the overall network structure, pairwise information on nodes, and emergent aspects of the
network, in a compressed way (i.e. with some information loss, as we later discuss in the illustration).
Node embeddings tend to focus on maintaining pairwise relationships (i.e. species interactions), while
graph embeddings focus on maintaining the network structure (i.e. emergent properties). Neverthe-
less, some graph embedding techniques (like RDPG, see e.g. Wu et al., 2021) will provide high-quality
node-level embeddings while also preserving network structure.

Graph embeddings can serve as a dimensionality reduction method. For example, RDPG (Strydom et
al., 2022) and t-SVD [truncated Singular Value Decomposition; Poisot et al. (2021)] typically embed net-
works using fewer dimensions than the original network [the original network has asmany dimensions
as species, and as many informative dimensions as trophically unique species; Strydom, Dalla Riva, et
al. (2021)]. However, this is not necessarily the case – indeed, one may perform a PCA (a special case of
SVD) to project the raw data into a subspace that improves the efficacy of t-SNE [t-distributed stochastic
neighbor embedding; Maaten (2009)]. There are many dimensionality reductions (Anowar et al., 2021)
that can be applied to an embedded network should the need for dimensionality reduction (for example
for data visualization) arise. In brief, many graph embeddings can serve as dimensionality reduction
steps, but not all do, neither do all dimensionality reduction methods provide adequate graph embed-
ding capacities. In the next section (and fig. 1), we show how the amount of dimensionality reduction
can affect the quality of the embedding.
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2.3. Graph embedding has been under-used in the prediction of species interactions Onepromi-
nent family of approacheswe do not discuss in the presentmanuscript is GraphNeural Networks [GNN;
Zhou et al. (2020)]. GNN are, in a sense, a method to embed a graph into a dense subspace, but belong
to the family of deep learning methods, which has its own set of practices (see e.g. Goodfellow et al.,
2016). An important issue with methods based on deep learning is that, because their parameter space
is immense, the sample size of the data fed into themmust be similarly large (typically thousands of in-
stances). This is a requirement for the model to converge correctly during training, but this assumption
is unlikely to be met given the size of datasets currently available for metawebs (or single time/location
species interaction networks). This data volume requirement is mostly absent from the techniques we
list below. Furthermore, GNN still have some challenges related to their shallow structure, and con-
cerns related to scalability (see Gupta et al., 2021 for a review), which are mostly absent from the meth-
ods listed in tbl. 1. Assuming that the uptake of next-generation biomonitoring techniques does indeed
deliver larger datasets on species interactions (Bohan et al., 2017), there is nevertheless the potential for
GNN to become an applicable embedding/predictive technique in the coming years.

Table 1 Overview of some common graph embedding approaches, by type of embedded objects, alongside ex-
amples of their use in the prediction of species interactions. These methods have not yet been routinely used to
predict species interactions; most examples that we identified were either statistical associations, or analogues to
joint species distributionmodels. 𝑎 : application is concerned with statistical interactions, which are not necessar-
illy direct biotic interactions; 𝑏 :application is concerned with joint-SDM-like approach, which is also very close to
statistical associations as opposed to direct biotic interactions. Given the need to evaluate different methods on a
problem-specific basis, the fact that a lot of methods have not been used on network problems is an opportunity
for benchmarking and method development. Note that the row for PCA also applies to kernel/probabilistic PCA,
which are variations on the more general method of SVD. Note further that tSNE has been included because
it is frequently used to embed graphs, including of species associations/interactions, despite not being strictly
speaking, a graph embedding technique (see e.g. Chami et al., 2022).
Method Object Technique Reference Application
tSNE nodes statistical

divergence
Hinton &
Roweis
(2002)

(Cieslak et al., 2020, species-environment
responses 𝑎) (Gibb et al., 2021, host-virus network
representation)

LINE nodes stochastic
gradient
descent

Tang et al.
(2015)

SDNE nodes gradient
descent

D. Wang et
al. (2016)

node2vecnodes stochastic
gradient
descent

Grover &
Leskovec
(2016)

HARP nodes meta-strategy H. Chen et
al. (2017)

DMSE joint
nodes

deep neural
network

D. Chen et
al. (2017)

(D. Chen et al., 2017, species-environment
interactions 𝑏)

graph2vecsub-
graph

skipgram
network

Narayanan
et al.
(2017)

RDPG graph SVD Young &
Scheiner-
man
(2007)

(Dalla Riva & Stouffer, 2016, trophic interactions)
(Poisot et al., 2021, host-virus network prediction)

GLEE graph Laplacian
eigenmap

Torres et
al. (2020)

DeepWalkgraph stochastic
gradient
descent

Perozzi et
al. (2014)

(Wardeh et al., 2021, host-virus interactions)

GraphKKEgraph stochastic
differential
equation

Melnyk et
al. (2020)

(Melnyk et al., 2020, microbiome species
associations 𝑎)
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Method Object Technique Reference Application
FastEmbedgraph eigen decom-

position
Ramasamy
&
Madhow
(2015)

PCA graph eigen decom-
position

Surendran
(2013)

(Strydom, Catchen, et al., 2021, host-parasite
interactions)

Joint
meth-
ods

multiple
graphs

multiple
strategies

S. Wang et
al. (2021)

The popularity of graph embedding techniques in machine learning is more than the search for struc-
tural invariants: graphs are discrete objects, and machine learning techniques tend to handle contin-
uous data better. Bringing a sparse graph into a continuous, dense vector space (Xu, 2021) opens up a
broader variety of predictive algorithms, notably of the sort that are able to predict events as probabilities
(Murphy, 2022). Furthermore, the projection of the graph itself is a representation that can be learned;
Runghen et al. (2021), for example, used a neural network to learn the embedding of a network in
which not all interactions were known, based on the nodes’ metadata. This example has many parallels
in ecology (see fig. 1 C), in which node metadata can be represented by phylogeny, abundance, or func-
tional traits. Using phylogeny as a source of information assumes (or strives to capture) the action of
evolutionary processes on network structure, which at least for food webs have been well documented
(M. P. Braga et al., 2021; Dalla Riva & Stouffer, 2016; Eklöf & Stouffer, 2016; Stouffer et al., 2012; Stouf-
fer et al., 2007); similarly, the use of functional traits assumes that interactions can be inferred from the
knowledge of trait-matching rules, which is similarly well supported in the empirical literature (Bar-
tomeus, 2013; Bartomeus et al., 2016; Goebel et al., 2023; Gravel et al., 2013). Relating this information
to an embedding rather than a list of network measures would allow to capture their effect on the more
fundamental aspects of network structure; conversely, the absence of a phylogenetic or functional sig-
nal may suggest that evolutionary/trait processes are not strong drivers of network structure, therefore
opening a new way to perform hypothesis testing.

3

An illustration of metaweb embedding

In this section, we illustrate the embedding of a collection of bipartite networks collected by Hadfield et
al. (2014), using t-SVD and RDPG. Briefly, an RDPG decomposes a network into two subspaces (left and
right), which are matrices that when multiplied give an approximation of the original network. RDPG
has the particularly desirable properties of being a graph embedding technique that produces relevant
node-level feature vectors, and provides good approximations of graphs with varied structures (Athreya
et al., 2017). The code to reproduce this example is available as supplementary material (note, for the
sake of comparison, that Strydom, Catchen, et al., 2021 have an example using embedding through
PCA followed by prediction using a deep neural network on the same dataset). The resulting (binary)
metawebℳ has 2131 interactions between 206 parasites and 121 hosts, and its adjacency matrix has
full rank (i.e. it represents a space with 121 dimensions). All analyses were done using Julia (Bezanson
et al., 2017) version 1.7.2, Makie.jl (Danisch & Krumbiegel, 2021), and EcologicalNetworks.jl (Poisot et
al., 2019).

In fig. 2, we focus on some statistical checks of the embedding. In panel A, we show that the averaged
𝐿2 loss (i.e. the sum of squared errors) between the empirical and reconstructed metaweb decreases
when the number of dimensions (rank) of the subspace increases, with an inflection at 39 dimensions
(out of 120 initially) according to the finite differences method. As discussed by Runghen et al. (2021),
there is often a trade-off between the number of dimensions to use (more dimensions are more com-
putationally demanding) and the quality of the representation. In panel B, we show the increase in
cumulative variance explained at each rank, and visualize that using 39 ranks explains about 70% of
the variance in the empirical metaweb. This is a different information from the 𝐿2 loss (which is av-
eraged across interactions), as it works on the eigenvalues of the embedding, and therefore captures
higher-level features of the network. In panel C, we show positions of hosts and parasites on the first
two dimensions of the left and right subspaces. Note that these values largely skew negative, because
the first dimensions capture the coarse structure of the network: most pairs of species do not interact,
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Figure 2 Validation of an embedding for
a host-parasite metaweb, using Random Dot
Product Graphs. A, decrease in approxima-
tion error as the number of dimensions in the
subspaces increases. B, increase in cumula-
tive variance explained as the number of ranks
considered increases; in A and B, the dot rep-
resents the point of inflexion in the curve (at
rank 39) estimated using the finite differences
method. C, position of hosts and parasites in
the space of latent variables on the first and sec-
ond dimensions of their respective subspaces
(the results have been clamped to the unit in-
terval). D, predicted interaction weight from
the RDPG based on the status of the species
pair in the metaweb.

and therefore have negative values. Finally in panel D, we show the predicted weight (i.e. the result of
the multiplication of the RDGP subspaces at a rank of 39) as a function of whether the interactions are
observed, not-observed, or unknown due to lack of co-occurrence in the original dataset. This reveals
that the observed interactions have higher predicted weights, although there is some overlap; the usual
approach to identify potential interactions based on this information would be a thresholding analysis,
which is outside the scope of this manuscript (and is done in the papers cited in this illustration). Be-
cause the values returned from RDPG are not bound to the unit interval, we performed a clamping of
the weights to the unit space, showing a one-inflation in documented interactions, and a zero-inflation
in other species pairs. This last figure crosses from the statistical into the ecological, by showing that
species pairs with no documented co-occurrence have weights that are not distinguishable from species
pairs with no documented interactions, suggesting that (as befits a host-parasite model) the ability to
interact is a strong predictor of co-occurrence.

The results of fig. 2 show that we can extract an embedding of the metaweb that captures enough vari-
ance to be relevant; specifically, this is true for both 𝐿2 loss (indicating that RDPG is able to capture
pairwise processes) and the cumulative variance explained (indicating that RDPG is able to capture
network-level structure). Therefore, in fig. 3, we relate the values of latent variables for hosts to differ-
ent ecologically-relevant data. In panelA, we show that host with a higher value on the first dimension
have fewer parasites. This relates to the body size of hosts in the PanTHERIA database (Jones et al.,
2009), as shown in panel B: interestingly, the position on the first axis is only weakly correlated to body
mass of the host; this matches well established results showing that body size/mass is not always a di-
rect predictor of parasite richness in terrestrial mammals (Morand & Poulin, 1998), a result we observe
in panel C. Finally, in panel D, we can see how different taxonomic families occupy different positions
on the first axis, with e.g. Sciuridae being biased towards higher values. These results show howwe can
look for ecological informations in the output of network embeddings, which can further be refined
into the selection of predictors for transfer learning.

4
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Figure 3 Ecological analysis of an embed-
ding for a host-parasite metaweb, using Ran-
dom Dot Product Graphs. A, relationship be-
tween the number of parasites and position
along the first axis of the right-subspace for all
hosts, showing that the embedding captures
elements of network structure at the species
scale. B, weak relationship between the body
mass of hosts (in grams) and the position along-
side the same dimension. C, weak relationship
between body mass of hosts and parasite rich-
ness. D, distribution of positions alongside the
same axis for hosts grouped by taxonomic fam-
ily.

The metaweb merges ecological hypotheses and practices

Metaweb inference seeks to provide information about the interactions between species at a large spatial
scale, typically a scale large enough to be considered of biogeographic relevance (indeed, many of the
examples covered in the introduction span areas larger than a country, some of them global). But as
Herbert (1965) rightfully pointed out, “[y]ou can’t draw neat lines around planet-wide problems”; any
inference of a metaweb must therefore contend with several novel, interwoven, families of problems.
In this section, we outline three that we think are particularly important, and can discuss how theymay
addressed with subsequent data analysis or simulations, and how they emerge in the specific context of
using embeddings; some of these issues are related to the application of these methods at the science-
policy interface.

4.1. Identifying the properties of the network to embed If the initial metaweb is too narrow in
scope, notably from a taxonomic point of view, the chances of finding another area with enough related
species (through phylogenetic relatedness or similarity of functional traits) to make a reliable inference
decreases. This is because transfer requires similarity (fig. 1). A diagnostic for the lack of similar species
would likely be large confidence intervals during estimation of the values in the low-rank space. In other
words, the representation of the original graph is difficult to transfer to the new problem. Alternatively,
if the initial metaweb is too large (taxonomically), then the resulting embeddings would need to repre-
sent interactions between taxonomic groups that are not present in the new location. This would lead
to a much higher variance in the starting dataset, and to under-dispersion in the target dataset, result-
ing in the potential under or over estimation of the strength of new predicted interactions. Llewelyn
et al. (2022) provided compelling evidence for these situations by showing that, even at small spatial
scales, the transfer of information about interactions becomes more challenging when areas rich with
endemic species are considered. The lack of well documented metawebs is currently preventing the
development of more concrete guidelines. The question of phylogenetic relatedness and distribution is
notably relevant if the metaweb is assembled in an area with mostly endemic species (e.g. a system that
has undergone recent radiation or that has remained in isolation for a long period of time might not
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have an analogous systemwithwhich to draw knowledge from), and as with every predictive algorithm,
there is room for the application of our best ecological judgement. Because this problem relates to dis-
tribution of species in the geographic or phylogenetic space, it can certainly be approached through
assessing the performance of embedding transfer in simulated starting/target species pools.

4.2. Identifying the scope of the prediction to perform The area for which we seek to predict the
metaweb should determine the species pool on which the embedding is performed. Metawebs can be
constructed by assigning interactions in a list of species within specific regions. The upside of this ap-
proach is that information relevant for the construction of this dataset is likely to exist, as countries
usually set conservation goals at the national level (Buxton et al., 2021), and as quantitative instru-
ments are consequently designed to work at these scales (Turak et al., 2017); specific strategies are
often enacted at smaller scales, nested within a specific country (Ray et al., 2021). However, there is
no guarantee that these arbitrary boundaries are meaningful. In fact, we do not have a satisfying an-
swer to the question of “where does an ecological network stop?”, the answer to which would dictate
the spatial span to embed/predict. Recent results by Martins et al. (2022) suggested that networks are
shaped within eco-regions, with abrupt structural transitions from an eco-region to the next. Should
this trend hold generally, this would provide an ecologically-relevant scale at which metawebs can be
downscaled and predicted. Other solutions could leverage network-area relationships to identify areas
in which networks are structurally similar (see e.g. Fortin et al., 2021; Galiana et al., 2022, 2018). Both
of these solutions require ample pre-existing information about the network in space. Nevertheless, the
inclusion of species for which we have data but that are not in the right spatial extentmay improve the
performance of approaches based on embedding and transfer, if they increase the similarity between
the target and destination network. This proposal can specifically be evaluated by adding nodes to the
network to embed, and assessing the performance of predictive models (see e.g. Llewelyn et al., 2022).

4.3. Minding legacies shaping ecological datasets In large parts of the world, boundaries that de-
lineate geographic regions are merely a reflection the legacy of settler colonialism, which drives global
disparity in capacity to collect and publish ecological data. Applying any embedding to biased data does
not debias them, but rather embeds these biases, propagating them to the models using embeddings to
make predictions. Furthermore, the use of ecological data itself is not an apolitical act (Nost & Gold-
stein, 2021): data infrastructures tend to be designed to answer questions within national boundaries
(therefore placing contingencies on what is available to be embedded), their use often drawing upon,
and reinforcing, territorial statecraft (see e.g. Barrett, 2005). As per Machen & Nost (2021), these biases
are particularly important to considerwhen knowledge generated algorithmically is used to supplement
or replace human decision-making, especially for governance (e.g. enacting conservation decisions on
the basis of model prediction). As information on networks is increasingly leveraged for conservation
actions (see e.g. Eero et al., 2021; Naman et al., 2022; Stier et al., 2017), the need to appraise and correct
biases that are unwittingly propagated to algorithmswhen embedded from the original data is immense.
These considerations are even more urgent in the specific context of biodiversity data. Long-term colo-
nial legacies still shape taxonomic composition to this day (Lenzner et al., 2022; Raja, 2022), and much
shorter-term changes in taxonomic and genetic richness of wildlife emerged through environmental
racism (Schmidt & Garroway, 2022). Thus, the set of species found at a specific location is not only as
the result of a response to ecological processes separate from human influence, but also the result of
human-environment interaction as well as the result legislative/political histories.

5

Conclusion: metawebs, predictions, and people

Predictive approaches in ecology, regardless of the scale at which they are deployed and the intent of
their deployment, originate in the framework that contributed to the ongoing biodiversity crisis (Adam,
2014) and reinforced environmental injustice (Choudry, 2013; Domínguez & Luoma, 2020). The risk of
embedding this legacy in our models is real, especially when the impact of this legacy on species pools
is being increasingly documented. This problem can be addressed by re-framing the way we interact
with models, especially when models are intended to support conservation actions. Particularly on
territories that were traditionally stewarded by Indigenous people, we must interrogate how predictive
approaches and the biases that underpin themcan be put to task in accompanying Indigenous principles
of land management (Eichhorn et al., 2019; No’kmaq et al., 2021). The discussion of “algorithm-in-
the-loop” approaches that is now pervasive in the machine learning community provides examples of
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why this is important. Human-algorithm interactions are notoriously difficult and can yield adverse
effects (Green & Chen, 2019; Stevenson & Doleac, 2021), suggesting the need to systematically study
them for the specific purpose of, here, biodiversity governance. Improving the algorithmic literacy of
decisionmakers is part of the solution (e.g. Lamba et al., 2019; Mosebo Fernandes et al., 2020), as we can
reasonably expect that model outputs will be increasingly used to drive policy decisions (Weiskopf et
al., 2022). Our discussion of these approaches need to go beyond the technical and statistical, and into
the governance consequences they can have. To embed data also embeds historical and contemporary
biases that acted on these data, both because they shaped the ecological processes generating them,
and the global processes leading to their measurement and publication. For a domain as vast as species
interaction networks, these biases exist at multiple scales along the way, and a challenge for prediction
is not only to develop (or adopt) new quantitative tools, but to assess the behavior of these tools in the
proper context.
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