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1. Metawebs, i.e. networks of potential interactionswithin a species pool, are a powerful abstraction
to understand how large-scales species interaction networks are structured.

2. Becausemetawebs are typically expressed at large spatial and taxonomic scales, assembling them
is a tedious and costly process; predictive methods can help circumvent the limitations in data
deficiencies, by providing ‘draft’ metawebs.

3. One way to improve the predictive ability is to maximize the information used for prediction,
by using graph embeddings rather than the list of species interactions. Graph embedding is an
emerging field in machine learning that holds great potential for ecological problems.

4. In this perspective, we outline how the challenges associated with inferring metawebs line-up
with the advantages of graph embeddings; furthermore, becausemetawebs are inherently spatial
objects, we discuss how the choice of the species pool has consequences on the reconstructed net-
work, but also embeds hypotheses about which human-made boundaries are ecologically mean-
ingful.

Being able to infer potential interactions could be the catalyst for significant breakthroughs in our abil-
ity to start thinking about species interaction networks over large spatial scales (Hortal et al., 2015).
Understanding species interactions holds enormous potential to not only understand and more rapidly
learn about species interactions andmetawebs, but also how changes inmanagement of a single species
may impact non-target species. In a recent overview of the field of ecological network prediction, Stry-
dom, Catchen, et al. (2021) identified two challenges of interest to the prediction of interactions at large
scales. First, there is a relative scarcity of relevant data in most places globally – paradoxically, this re-
stricts our ability to infer interactions for locations where inference is perhaps the least required (and
leaves us unable to make inference in regions without interaction data); second, accurate predictions
often demand accurate predictors, and the lack of methods that can leverage small amount of accurate
data is a serious impediment to our global predictive ability. In most places, our most reliable biodi-
versity knowledge is that of a species pool (i.e. a set of potentially interacting species in a given area):
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through the analysis of databases like GBIF or IUCN, it is possible to construct a list of species in a
region of interest; but inferring the potential interactions between these species is difficult.

Following the definition of Dunne (2006), a metaweb is the ecological network analogue to the species
pool; specifically, it inventories all potential interactions between species for a spatially delimited area
(and so captures the 𝛾 diversity of interactions). The metaweb is not a prediction of the network at a
specific point within the spatial area it covers: it will have a different structure, notably by having a
larger connectance (see e.g. Wood et al., 2015) and complexity (see e.g. Galiana et al., 2022), from any of
these local networks. These local networks (which capture the 𝛼 diversity of interactions) are a subset of
themetaweb’s species and their interactions, and have been called “metaweb realizations” (Poisot et al.,
2015). Differences between local networks and their metawebs are due to chance, species abundance
and co-occurrence, local environmental conditions, and local distribution of functional traits, among
others. Yet, recent results by Saravia et al. (2021) strongly suggest that the local realizations only respond
weakly to local conditions: instead, they reflect constraints inherited by the structure of their metaweb.
This establishes the metaweb structure as the core goal of predictive network ecology, as it is a required
information to accurately produce downscaled, local predictions.

Because the metaweb represents the joint effect of functional, phylogenetic, and macroecological pro-
cesses (Morales-Castilla et al., 2015), it holds valuable ecological information. Specifically, it is the
“upper bounds” on what the composition of the local networks, given the local species pool, can be
(see e.g. McLeod et al., 2021); this information can help evaluate the ability of ecological assemblages
to withstand the effects of, for example, climate change (Fricke et al., 2022). These local networks may
be reconstructed given an appropriate knowledge of local species composition and provide information
on the structure of food webs at finer spatial scales. This has been done for example for tree-galler-
parasitoid systems (Gravel et al., 2018), fish trophic interactions (Albouy et al., 2019), tetrapod trophic
interactions (Braga et al., 2019; O’Connor et al., 2020), and crop-pest networks (Grünig et al., 2020).
In this contribution, we highlight the power in viewing (and constructing) metawebs as probabilistic
objects in the context of rare interactions, discuss how a family of machine learning tools (graph em-
beddings and transfer learning) can be used to overcome data limitations to metaweb inference, and
highlight how the use of metawebs introduces important questions for the field of network ecology.

1

The metaweb is an inherently probabilistic object

Treating interactions probabilistic (as opposed to binary) is a more nuanced and realistic way to repre-
sent interactions. Dallas et al. (2017) suggested that most links in ecological networks are cryptic, i.e.
uncommon or hard to observe. This argument echoes Jordano (2016): sampling ecological interactions
is difficult because it requires first the joint observation of two species, and then the observation of their
interaction. In addition, it is generally expected that weak or rare links to bemore prevalent in networks
than common or rare links (Csermely, 2004), compared to strong, persistent links; this is notably the
case in food chains, wherein many weaker links are key to the stability of a system (Neutel et al., 2002).
In the light of these observations, we expect to see an over-representation of low-probability interactions
under a model that accurately predicts interaction probabilities. Yet the original metaweb definition,
and indeed most past uses of metawebs, was based on the presence/absence of interactions. Moving
towards probabilistic metawebs, by representing interactions as Bernoulli events (see e.g. Poisot et al.,
2016), offers the opportunity to weigh these rare interactions appropriately. The inherent plasticity of
interactions is important to capture: there have been documented instances of food webs undergoing
rapid collapse/recovery cycles over short periods of time (e.g. Pedersen et al., 2017). These consider-
ations emphasize why metaweb predictions should focus on quantitative (preferentially probabilistic)
predictions; this should constrain the suite of appropriate models.

Yet it is important to recall that a metaweb is intended as a catalogue of all potential interactions, which
is then filtered (Morales-Castilla et al., 2015). In a sense, that most ecological interactions are elusive
can call for a slightly different approach to sampling: once the common interactions are documented,
the effort required in documenting each rare interaction will increase exponentially. Recent proposals
suggest that machine learning algorithms, in these situations, can act as data generators (Hoffmann et
al., 2019): high quality observational data can generate the core rules underpinning the network struc-
ture, and be supplemented with synthetic data coming from predictive models, increasing the volume
of information available for inference. Indeed, Strydom, Catchen, et al. (2021) suggested that knowing
the metaweb may render the prediction of local networks easier, because it fixes an “upper bound” on
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Figure 1 Overview of the embedding pro-
cess. A network (A), represented as its ad-
jacency matrix (B), is converted into a lower-
dimensional object (C) where nodes, sub-
graphs, or edges have specific values (see
tbl. 1). For the purposes of prediction, this low-
dimensional object encodes feature vectors for
e.g. the nodes. Embedding also allows to visu-
alize the structure in the data differently (D),
much like with a principal component analy-
sis.

which interactions can exist. In this context a probabilistic metaweb represents an aggregation of infor-
mative priors on the interactions, elusive information with the potential to boost our predictive ability
(Bartomeus et al., 2016).

2

Graph embedding offers promises for the inference of potential interactions

Graph embedding (fig. 1) is a varied family of machine learning techniques aiming to transform nodes
and edges into a vector space (Arsov &Mirceva, 2019), usually of a lower dimension, whilst maximally
retaining key properties of the graph (Yan et al., 2005). Ecological networks are an interesting candi-
date for the widespread application of embeddings, as they tend to possess a shared structural backbone
(Bramon Mora et al., 2018), which hints at structural invariants that can be revealed at lower dimen-
sions. Indeed, food webs are inherently low-dimensional objects, and can be adequately represented
with less than ten dimensions (Braga et al., 2019; Eklöf et al., 2013). Simulation results by Botella et
al. (2022) suggest that there is no best method to identify architectural similarities between networks,
and that multiple approaches need to be tested and compared to the network descriptor of interest.
This matches previous, more general results on graph embedding, which suggest that the choice of em-
bedding algorithm matters for the results (Goyal & Ferrara, 2018). In tbl. 1, we present a selection of
common graph embedding methods, alongside examples of their use to predict species interactions.
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Table 1 Overview of some common graph embedding approaches, by time of publication, alongside examples
of their use in the prediction of species interactions. These methods have not yet been routinely used to predict
species interactions; most examples that we identified were either statistical associations, or analogues to joint
species distribution models. 𝑎 : statistical interactions; 𝑏 : joint-SDM-like approach.

Method Embedding approach Reference
Application in species

interactions
tSNE nodes through statistical

divergence
Hinton &

Roweis (2002)
Cieslak et al. (2020) 𝑎

RDPG graph through SVD Young &
Scheinerman

(2007)

Poisot et al. (2021); Dalla Riva &
Stouffer (2016)

DeepWalk graph walk Perozzi et al.
(2014)

Wardeh et al. (2021)

FastEmbed graph through PCA/SVD
analogue

Ramasamy &
Madhow (2015)

LINE nodes through statistical
divergence

Tang et al.
(2015)

SDNE nodes through auto-encoding D. Wang et al.
(2016)

node2vec nodes embedding Grover &
Leskovec (2016)

graph2vec sub-graph embedding Narayanan et al.
(2017)

DMSE joint nodes embedding D. Chen et al.
(2017)

D. Chen et al. (2017) 𝑏

HARP nodes through a meta-strategy H. Chen et al.
(2017)

GraphKKE graph embedding Melnyk et al.
(2020)

Melnyk et al. (2020) 𝑎

Joint
methods

multiple graphs S. Wang et al.
(2021)

The popularity of graph embedding techniques in machine learning is more than the search for struc-
tural invariants: graphs are discrete objects, and machine learning techniques tend to handle contin-
uous data better. Bringing a sparse graph into a continuous, dense vector space (Xu, 2020) opens up
a broader variety of predictive algorithms, notably of the sort that are able to predict events as prob-
abilities (Murphy, 2022). Furthermore, the projection of the graph itself is a representation that can
be learned; Runghen et al. (2021), for example, used a neural network to learn the embedding of a
network in which not all interactions were known, based on nodes metadata. This example has many
parallels in ecology (see fig. 2), in which node metadata can be given by phylogeny or functional traits.
Rather than directly predicting biological rules (see e.g. Pichler et al., 2020 for an overview), which may
be confounded by the sparse nature of graph data, learning embeddings works in the low-dimensional
space thatmaximizes information about the network structure. This approach is further justified by the
observation, for example, that the macro-evolutionary history of a network is adequately represented
by some graph embeddings (RDPG; see Dalla Riva & Stouffer, 2016).

3

The metaweb embeds ecological hypotheses and practices

The goal of metaweb inference is to provide information about the interactions between species at a
large spatial scale. But as Herbert (1965) rightfully pointed out, “[y]ou can’t draw neat lines around
planet-wide problems”; any inference of a metaweb at large scales must contend with several novel,
and interwoven, families of problems.

The first is the taxonomic and spatial limit of the metaweb to embed and transfer. If the initial metaweb
is too narrow in scope, notably from a taxonomic point of view, the chances of finding another area with
enough related species (through phylogenetic relatedness or similarity of functional traits) to make a
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Figure 2 From a low-dimensional feature
vector (see fig. 1), it is possible to develop pre-
dictive approaches. Nodes in an ecological
network are species, for which we can lever-
age phylogenetic relatedness (e.g. Strydom,
Bouskila, et al., 2021) or functional traits to fill
the values of additional species we would like
to project in this space (here, I, J, K, and L)
from the embedding of known species (here,
A, B, C, and D). Because embeddings can be
projected back to a graph, this allows us to re-
construct a network with these new species.
This approach constitutes an instance of trans-
fer learning.

reliable inference decreases; this would likely be indicated by large confidence intervals during estima-
tion of the values in the low-rank space, or by non-overlapping trait distributions in the known and
unknown species. Alternatively a metaweb is too large (taxonomically), then the resulting embeddings
would have interactions relative to taxonomic groups that not present in the new location, resulting
in the potential under or over estimation of the strength of new predicted interactions. The lack of
well documented metawebs is currently preventing the development of more concrete guidelines. The
question of phylogenetic relatedness and dispersal is notably true if themetaweb is assembled in an area
with mostly endemic species (e.g. a system that has undergone recent radiation and might not have an
analogous system with which to draw knowledge from), and as with every predictive algorithm, there
is room for the application of our best ecological judgement.

The second series of problems relate to determiningwhich area should be used to infer the newmetaweb
in, as this determines the species pool that must be used. Metawebs can be constructed by assigning
interactions in a list of species within geographic boundaries. The upside of this approach is that infor-
mation at the country level is likely to be required for biodiversity assessments, as countries set goals at
the national level (Buxton et al., 2021), and as quantitative instruments are designed to work at these
scales (Turak et al., 2017); specific strategies are often enacted at smaller scales, nested within a specific
country (Ray et al., 2021). But there is no guarantee that these boundaries are meaningful. In fact, we
do not have a satisfying answer to the question of “where does a food web stop?”; the most promising
solutions involve examining the spatial consistency of network area relationships (Fortin et al., 2021;
see e.g. Galiana et al., 2018, 2019, 2021), which is impossible in the absence of enough information
about the network itself. This suggests that inferred metawebs should be further downscaled to allow
for a posteriori analyses.

The final family of problems relates less to ecological concepts and more to the praxis of ecological
research. Operating under the context of national divisions, in large parts of the world, reflects nothing
more than the legacy of settler colonialism, which not only drive a disparity in available ecological
data, but can entrench said biases with the machine learning models that make predictions with them.
Indeed, the use of ecological data is not an apolitical act (Nost &Goldstein, 2021), as data infrastructures
tend to be designed to answer questions within national boundaries, and their use often draws upon
and reinforces territorial statecraft. As per Machen & Nost (2021), this is particularly true when the
output of “algorithmic thinking” (e.g. relying on machine learning to generate knowledge) can be re-
used for governance (e.g. enacting conservation decisions at the national scale). We therefore recognize
that predictive approaches deployed at the continental scale, no matter their intent, originate in the
framework that contributed to the ongoing biodiversity crisis (Adam, 2014), reinforced environmental
injustice (Choudry, 2013; Domínguez & Luoma, 2020), and e.g. as on Turtle Island, should be replaced
by Indigenous principles of land management (Eichhorn et al., 2019; No’kmaq et al., 2021). As we
see artificial intelligence/machine learning being increasingly mobilized to generate knowledge that is
lacking for conservation decisions (e.g. Lamba et al., 2019; Mosebo Fernandes et al., 2020) and drive
policy decisions (Weiskopf et al., 2022), our discussion of these tools need to go beyond the technical,
and into the governance consequences they can have.
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