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1. Metawebs, (networks of potential interactions within a species pool) are a powerful abstraction
to understand how large-scale species interaction networks are structured.

2. Becausemetawebs are typically expressed at large spatial and taxonomic scales, assembling them
is a tedious and costly process; predictive methods can help circumvent the limitations in data
deficiencies, by providing ‘draft’ metawebs.

3. Oneway to improve our ability to predictmetawebs is tomaximize available information by using
graph embeddings, instead of the list of species interactions. Graph embedding is an emerging
field in machine learning that holds great potential for ecological problems.

4. In this perspective, we outline how the challenges associated with inferring metawebs line-up
with the advantages of graph embeddings; as well as discuss how the choice of the species pool
has consequences on the reconstructednetwork, but also embeds hypotheses aboutwhichhuman-
made boundaries are ecologically meaningful.

Being able to infer potential interactions could serve as a significant breakthrough in our ability to start
thinking about species interaction networks over large spatial scales (Hortal et al., 2015). Understand-
ing species interactions holds enormous potential to not only understand and more rapidly learn about
species interactions andmetawebs, but also how changes inmanagement of a single speciesmay impact
non-target species. In a recent overview of the field of ecological network prediction, Strydom, Catchen,
et al. (2021) identified two challenges of interest to the prediction of interactions at large scales. First,
there is a relative scarcity of relevant data in most places globally – paradoxically, this restricts our abil-
ity to infer interactions for locations where inference is perhaps the least required (and leaves us unable
to make inference in regions without interaction data); second, accurate predictors are important for
accurate predictions, and the lack of methods that can leverage a small amount of accurate data is a
serious impediment to our predictive ability. In most places, our most reliable biodiversity knowledge

June 28, 2022 cb

https://orcid.org/0000-0001-6067-1349
https://orcid.org/0000-0003-0193-5441
https://orcid.org/0000-0001-9051-0597
https://orcid.org/0000-0003-4036-977X
https://orcid.org/0000-0002-2151-6693
https://orcid.org/0000-0003-0452-6993
https://orcid.org/0000-0003-0452-6993
https://orcid.org/0000-0002-9935-1366
https://orcid.org/0000-0003-3220-6161
https://orcid.org/0000-0002-4104-9463
https://orcid.org/0000-0002-6004-4027
https://orcid.org/0000-0001-5785-8321
https://orcid.org/0000-0002-3454-0633
https://orcid.org/0000-0002-0735-5184


is that of a species pool (i.e. a set of potentially interacting species in a given area): through the analysis
of databases like GBIF or IUCN, it is possible to construct a list of species in a region of interest; but
inferring the potential interactions between these species is difficult.

Following the definition of Dunne (2006), a metaweb is the ecological network analogue to the species
pool; specifically, it inventories all potential interactions between species for a spatially delimited area
(and so captures the 𝛾 diversity of interactions). The metaweb is not a prediction of the network at a
specific pointwithin the spatial area it covers: itwill have a different structure, notably byhaving a larger
connectance (see e.g. Wood et al., 2015) and complexity (see e.g. Galiana et al., 2022), from any of these
local networks. These local networks (which capture the 𝛼 diversity of interactions) are a subset of the
metaweb’s species and realized interactions, and have been called “metaweb realizations” (Poisot et al.,
2015). Differences between local networks and their metawebs are due to chance, species abundance
and co-occurrence, local environmental conditions, and local distribution of functional traits, among
others. Yet, recent results by Saravia et al. (2021) strongly suggest that the local (metaweb) realizations
only respond weakly to local conditions: instead, they reflect constraints inherited by the structure of
their metaweb. This establishes the metaweb structure as the core goal of predictive network ecology,
as it is a required information to accurately produce downscaled, local predictions.

Because the metaweb represents the joint effect of functional, phylogenetic, and macroecological pro-
cesses (Morales-Castilla et al., 2015), it holds valuable ecological information. Specifically, it represents
the “upper bounds” on what the composition of the local networks, given a local species pool, can be
(see e.g. McLeod et al., 2021); this information can help evaluate the ability of ecological assemblages
to withstand the effects of, for example, climate change (Fricke et al., 2022). These local networks may
be reconstructed given an appropriate knowledge of local species composition and provide information
on the structure of food webs at finer spatial scales. This has been done for example for tree-galler-
parasitoid systems (Gravel et al., 2018), fish trophic interactions (Albouy et al., 2019), tetrapod trophic
interactions (Braga et al., 2019; O’Connor et al., 2020), and crop-pest networks (Grünig et al., 2020).
In this contribution, we highlight the power in viewing (and constructing) metawebs as probabilistic
objects in the context of rare interactions, discuss how a family of machine learning tools (graph em-
beddings and transfer learning) can be used to overcome data limitations to metaweb inference, and
highlight how the use of metawebs introduces important questions for the field of network ecology.

1

A metaweb is an inherently probabilistic object

Treating interactions as probabilistic (as opposed to binary) events is a more nuanced and realistic way
to represent them. Dallas et al. (2017) suggested that most links in ecological networks are cryptic, i.e.
uncommon or hard to observe. This argument echoes Jordano (2016): sampling ecological interactions
is difficult because it requires first the joint observation of two species, and then the observation of their
interaction. In addition, it is generally expected weak or rare links to be more prevalent in networks
than common or strong links (Csermely, 2004), compared to strong, persistent links; this is notably
the case in food chains, wherein many weaker links are key to the stability of a system (Neutel et al.,
2002). In the light of these observations, we expect to see an over-representation of low-probability
(rare) interactions under a model that accurately predicts interaction probabilities. Yet the original
metaweb definition, and indeed most past uses of metawebs, was based on the presence/absence of
interactions. Moving towards probabilistic metawebs, by representing interactions as Bernoulli events
(see e.g. Poisot et al., 2016), offers the opportunity to weigh these rare interactions appropriately. The
inherent plasticity of interactions is important to capture: there have been documented instances of food
webs undergoing rapid collapse/recovery cycles over short periods of time (e.g. Pedersen et al., 2017).
These considerations emphasize why metaweb predictions should focus on quantitative (preferentially
probabilistic) predictions, and this should constrain the suite of appropriate models used to predict
them.

It is important to recall that a metaweb is intended as a catalogue of all potential interactions, which is
then filtered for a given application (Morales-Castilla et al., 2015). In a sense, that most ecological inter-
actions are elusive can call for a slightly different approach to sampling: once the common interactions
are documented, the effort required in documenting each rare interaction will increase exponentially.
Recent proposals suggest that machine learning algorithms, in these situations, can act as data genera-
tors (Hoffmann et al., 2019): high quality observational data can generate the core rules underpinning
the network structure, and be supplemented with synthetic data coming from predictive models, in-
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Figure 1 Overview of the embedding pro-
cess. A network (A), represented here as its
adjacency matrix, is converted into a lower-
dimensional object (B) where nodes, sub-
graphs, or edges have specific values (see tbl. 1
for an overview of methods and their use for
species interactions). For the purposes of pre-
diction, this low-dimensional object encodes
feature vectors for e.g. the nodes. Embed-
ding also allows to visualize the structure in
the data differently (see fig. 2), much like with
a principal component analysis. From a low-
dimensional feature vector, it is possible to
develop predictive approaches. Nodes in an
ecological network are usually species (C), for
which we can leverage phylogenetic related-
ness (e.g. Strydom et al., 2022) or functional
traits to fill the values of additional species we
would like to project in this space (here for
nodes I, J, K, and L) from the embedding of
known species (here, nodes A, B, C, and D).
Because embeddings can be projected back to
a graph, this allows us to reconstruct a net-
work with these new species (D). This entire
cycle constitutes an instance of transfer learn-
ing, where the transfered information is the
representation of graph A through its embed-
ding.

creasing the volume of information available for inference. Indeed, Strydom, Catchen, et al. (2021)
suggested that knowing the metaweb may render the prediction of local networks easier, because it
fixes an “upper bound” on which interactions can exist. In this context, a probabilistic metaweb repre-
sents an aggregation of informative priors on the interactions, elusive information with the potential to
boost our predictive ability (Bartomeus et al., 2016).

2

Graph embedding offers promises for the inference of potential interactions

Graph (or Network) embedding (fig. 1) is a family of machine learning techniques, whose main task
is to learn a mapping function from a discrete graph to a continuous domain (Arsov & Mirceva, 2019;
Chami et al., 2022). Their main goal is to learn a low dimensional vector representations for the nodes
of the graph (embeddings), such that key properties of the graph (e.g. local or global structures) are re-
tained in the embedding space (Yan et al., 2005). Ecological networks are an interesting candidate for
the widespread application of embeddings, as they tend to possess a shared structural backbone (Bra-
mon Mora et al., 2018), which hints at structural invariants that can be revealed at lower dimensions.
Indeed, food webs are inherently low-dimensional objects, and can be adequately represented with less
than ten dimensions (Braga et al., 2019; Eklöf et al., 2013). Simulation results by Botella et al. (2022)
suggest that there is no best method to identify architectural similarities between networks, and that
multiple approaches need to be tested and compared to the network descriptor of interest. Thismatches
previous, more general results on graph embedding, which suggest that the choice of embedding algo-
rithmmatters for the results (Goyal & Ferrara, 2018). In tbl. 1, we present a selection of common graph
and node embedding methods, alongside examples of their use to predict species interactions; most of
these methods rely either on linear algebra, or on pseudo-random walks on graphs.

One prominent family of approaches we do not discuss in the present manuscript is Graph Neural
Networks (GNN; Zhou et al., 2020). GNN are, in a sense, a method to embed a graph into a dense
subspace, but belong to the family of deep learning methods, which has its own set of practices (see e.g.
Goodfellow et al., 2016). An important issue withmethods based on deep learning is that, because their
parameter space is immense, the sample size of the data fed into themmust be similarly large (typically
thousands of instances). This is a requirement for the model to converge correctly during training,
but this assumption is unlikely to be met given the size of datasets currently available for metawebs (or
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single time/location species interaction networks). This data volume requirement ismostly absent from
the techniques we list below. Furthermore, GNN still have some challenges related to their shallow
structure, and concerns related to scalability (see Gupta et al., 2021 for a review), which are mostly
absent from the methods listed in tbl. 1. Assuming that the uptake of next-generation biomonitoring
techniques does indeed deliver larger datasets on species interactions (Bohan et al., 2017), there is a
potential for GNN to become an applicable embedding/predictive technique in the coming years.

Table 1 Overview of some common graph embedding approaches, by type of embedded objects, alongside ex-
amples of their use in the prediction of species interactions. These methods have not yet been routinely used to
predict species interactions; most examples that we identified were either statistical associations, or analogues
to joint species distribution models. 𝑎 : statistical interactions; 𝑏 : joint-SDM-like approach. Note that the row for
PCA also applies to kernel/probabilistic PCA, which are variations on the more general method of SVD. Note
further that tSNE has been included because it is frequently used to embed graphs, including of species asso-
ciations/interactions, despite not being strictly speaking, a graph embedding technique (see e.g. Chami et al.,
2022)
Method Object Technique Reference Application
tSNE nodes statistical divergence Hinton &

Roweis (2002)
Gibb et al. (2021); Cieslak et
al. (2020) 𝑎

LINE nodes stochastic gradient
descent

Tang et al.
(2015)

SDNE nodes gradient descent D. Wang et al.
(2016)

node2vec nodes stochastic gradient
descent

Grover &
Leskovec
(2016)

HARP nodes meta-strategy H. Chen et al.
(2017)

DMSE joint nodes deep neural network D. Chen et al.
(2017)

D. Chen et al. (2017) 𝑏

graph2vec sub-graph skipgram network Narayanan et
al. (2017)

RDPG graph SVD Young &
Scheinerman
(2007)

Poisot et al. (2021); Dalla
Riva & Stouffer (2016)

GLEE graph Laplacian eigenmap Torres et al.
(2020)

DeepWalk graph stochastic gradient
descent

Perozzi et al.
(2014)

Wardeh et al. (2021)

GraphKKE graph stochastic differential
equation

Melnyk et al.
(2020)

Melnyk et al. (2020) 𝑎

FastEmbed graph eigen decomposition Ramasamy &
Madhow
(2015)

PCA graph eigen decomposition S &
Surendran
(2013)

Strydom, Catchen, et al.
(2021)

Joint
methods

multiple
graphs

multiple strategies S. Wang et al.
(2021)

The popularity of graph embedding techniques in machine learning is more than the search for struc-
tural invariants: graphs are discrete objects, and machine learning techniques tend to handle contin-
uous data better. Bringing a sparse graph into a continuous, dense vector space (Xu, 2020) opens up
a broader variety of predictive algorithms, notably of the sort that are able to predict events as proba-
bilities (Murphy, 2022). Furthermore, the projection of the graph itself is a representation that can be
learned; Runghen et al. (2021), for example, used a neural network to learn the embedding of a net-
work in which not all interactions were known, based on the nodes’ metadata. This example has many
parallels in ecology (see fig. 1 C), in which node metadata can be given by phylogeny or functional
traits. Rather than directly predicting biological rules (see e.g. Pichler et al., 2020 for an overview),
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which may be confounded by the sparse nature of graph data, learning embeddings works in the low-
dimensional space that maximizes information about the network structure. This approach is further
justified by the observation, for example, that themacro-evolutionary history of a network is adequately
represented by some graph embeddings (Random dot product graphs (RDPG); see Dalla Riva & Stouf-
fer, 2016). In a recent publication, Strydom et al. (2022) have used an embedding (based on RDPG) to
project a metaweb of trophic interactions between European mammals, and transferred this informa-
tion to mammals of Canada, using the phylogenetic distance between related clades to infer the values
in the latent sub-space into which the Europeanmetaweb was projected. By performing the RDPG step
on re-constructed values, this approach yields a probabilistic trophic metaweb for mammals of Canada
based on knowledge of European species, despite a limited (≈ 5%) taxonomic overlap.

Graph embeddings can serve as a dimensionality reduction method. For example, RDPG (Strydom et
al., 2022) and t-SVD (truncated Singular Value Decomposition; Poisot et al., 2021) typically embed net-
works using fewer dimensions than the original network (the original network has asmany dimensions
as species, and as many informative dimensions as trophically unique species; Strydom, Dalla Riva, et
al., 2021). But this is not necessarily the case – indeed, onemay perform a PCA (a special case of SVD) to
project the raw data into a subspace that improves the efficacy of t-SNE (t-distributed stochastic neigh-
bor embedding; Maaten, 2009). There are many dimensionality reductions (Anowar et al., 2021) that
can be applied to an embedded network should the need for dimensionality reduction (for example for
data visualisation) arise. In brief, many graph embeddings can serve as dimensionality reduction steps,
but not all do, neither do all dimensionality reduction methods provide adequate graph embedding ca-
pacities. In the next section (and fig. 2), we show how the amount of dimensionality reduction can
affect the quality of the embedding.

3

An illustration of metaweb embedding

In this section, we illustrate the embedding of a collection of bipartite networks collected by Hadfield
et al. (2014), using t-SVD and RDPG (see Strydom et al., 2022 for the full details). Briefly, an RDPG
decomposes a network into two subspaces (left and right), which are matrices that when multiplied
give an approximation of the original network. The code to reproduce this example is available as sup-
plementary material (note, for the sake of comparison, that Strydom, Catchen, et al., 2021 have an
example using embedding through PCA followed by prediction using a deep neural network on the
same dataset). The resulting (binary) metawebℳ has 2131 interactions between 206 parasites and 121
hosts, and its adjacency matrix has full rank (i.e. it represents a space with 121 dimensions). All analy-
ses were done using Julia (Bezanson et al., 2017) version 1.7.2,Makie.jl (Danisch & Krumbiegel, 2021),
and EcologicalNetworks.jl (Poisot et al., 2019).

The embedding of the metaweb holds several pieces of information (fig. 2). In panel A, we show that
the 𝐿2 loss (i.e. the sum of squared errors) between the empirical and reconstructed metaweb decreases
when the number of dimensions (rank) of the subspace increases, with an inflection point around 25
dimensions. As discussed by Runghen et al. (2021), there is often a trade-off between the number
of dimensions to use (more dimensions are more computationally demanding) and the quality of the
representation. In this instance, accepting 𝐿2 = 500 as an approximation of the network means that
the error for every position in the metaweb is ≈ (500∕(206 × 121))1∕2. In fig. 2, panel B, we show the
positions of hosts and parasites on the first two dimensions of the left and right subspaces. Note that
these values largely skew negative, because the first dimensions capture the coarse structure of the
network: most pairs of species do not interact, and therefore have negative values. In fig. 2, panel C,
we show the predicted weight (i.e. the result of the multiplication of the RDGP subspaces at a rank of
25) as a function of whether the interactions are observed, not-observed, or unknown due to lack of co-
occurrence. This reveals that the observed interactions have higher predicted weights, although there
is some overlap; the usual approach to identify potential interactions based on this information would
be a thresholding analysis, which is outside the scope of this manuscript (and is done in the papers
cited in this illustration). Note that the values are not bound to the unit interval, which emphasizes
the need for either scaling or clamping (although thresholding analyses are insensitive to this choice).
Finally, in fig. 2, panel D, we show that the embedding, as it captures structural information about the
network, holds ecological information; indeed, the position of the parasite on the first dimension of the
left sub-space is a linear predictor of its number of hosts.
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Figure 2 Illustration of an embedding for
an host-parasite metaweb, using Random Dot
Product Graphs. A, decrease in approxima-
tion error as the number of dimensions in the
subspaces increases. B, position of hosts and
parasites in the first two dimensions of their
respective subspaces. C, predicted interaction
weight from the RDPG based on the status of
the species pair in the metaweb. D, relation-
ship between the position on the first dimen-
sion and parasite generalism.

4

The metaweb embeds both ecological hypotheses and practices

The goal of metaweb inference is to provide information about the interactions between species at a
large spatial scale. But as Herbert (1965) rightfully pointed out, “[y]ou can’t draw neat lines around
planet-wide problems”; any inference of ametaweb at large scalesmust contendwith several novel, and
interwoven, families of problems. In this section, we list some of the most pressing research priorities
(i.e. problems that can be adressed with subsequent data analysis or simulations), as well as issues
related to the application of these methods at the science-policy interface.

The first open research problem is the taxonomic and spatial limit of the metaweb to embed and trans-
fer. If the initial metaweb is too narrow in scope, notably from a taxonomic point of view, the chances
of finding another area with enough related species (through phylogenetic relatedness or similarity of
functional traits) to make a reliable inference decreases; this would likely be indicated by large confi-
dence intervals during estimation of the values in the low-rank space, meaning that the representation
of the original graph is difficult to transfer to the new problem. Alternatively, if the initial metaweb is
too large (taxonomically), then the resulting embeddings would need to represent interactions between
taxonomic groups that are not present in the new location. This would lead to a much higher variance
in the starting dataset, and to under-dispersion in the target dataset, resulting in the potential under or
over estimation of the strength of new predicted interactions. The lack of well documentedmetawebs is
currently preventing the development of more concrete guidelines. The question of phylogenetic relat-
edness and distribution is notably relevant if the metaweb is assembled in an area with mostly endemic
species (e.g. a system that has undergone recent radiation or that has remained in isolation for a long
period of time might not have an analogous system with which to draw knowledge from), and as with
every predictive algorithm, there is room for the application of our best ecological judgement. Because
this problem relates to distribution of species in the geographic or phylogenetic space, it can certainly
be approached through assessing the performance of embedding transfer in simulated starting/target
species pools.

The second series of problems relate to determiningwhich area should be used to infer the newmetaweb
in, as this determines the species pool that must be used. Metawebs can be constructed by assigning in-
teractions in a list of species within geographic boundaries. The upside of this approach is that informa-
tion at the country level is likely to be required for biodiversity assessments, as countries set conservation
goals at the national level (Buxton et al., 2021), and as quantitative instruments are designed to work
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at these scales (Turak et al., 2017); specific strategies are often enacted at smaller scales, nested within
a specific country (Ray et al., 2021). But there is no guarantee that these boundaries are meaningful.
In fact, we do not have a satisfying answer to the question of “where does a food web stop?”; the most
promising solutions involve examining the spatial consistency of network area relationships (Fortin et
al., 2021; see e.g. Galiana et al., 2018, 2019, 2021), which is impossible in the absence of enough infor-
mation about the network itself. This suggests that inferred metawebs should be further downscaled to
allow for a posteriori analyses. The methodology for metaweb downscaling is currently limited, and it
is likely that the sustained effort to characterize the spatial dependency of food web structure will lead
to more prescriptive guidelines about the need for prediction downscaling.

The final family of problems relates less to ecological methods than to the praxis of ecological research.
Operating under the context of national divisions, in large parts of theworld, reflects nothingmore than
the legacy of settler colonialism, which drives a disparity in available ecological data. Applying any em-
bedding to biased data does not debias them, but instead embeds these very same biases, propagating
them to the machine learning models using embeddings to make predictions. Indeed, the use of eco-
logical data is not an apolitical act (Nost & Goldstein, 2021), as data infrastructures tend to be designed
to answer questions within national boundaries (therefore placing contingencies on what is available
to be embedded), and their use often draws upon and reinforces territorial statecraft. As per Machen &
Nost (2021), this is particularly true when the output of “algorithmic thinking” (e.g. relying onmachine
learning to generate knowledge) can be re-used for governance (e.g. enacting conservation decisions at
the national scale). As information on species interaction networks structure is increasingly leveraged
as a tool to guide conservation actions (see e.g. recent discussions for food-web based conservation;
Eero et al., 2021; Naman et al., 2022; Stier et al., 2017), the need to appraise and correct biases that
are unwittingly propagated to algorithms when embedded from the original data is paramount. Predic-
tive approaches deployed at the continental scale, no matter their intent, originate in the framework
that contributed to the ongoing biodiversity crisis (Adam, 2014) and reinforced environmental injustice
(Choudry, 2013; Domínguez & Luoma, 2020). Particularly on Turtle Island and other territories that
were traditionally stewarded by Indigenous people, these approaches should be replaced (or at least
guided and framed) by Indigenous principles of land management (Eichhorn et al., 2019; No’kmaq et
al., 2021), as part of an “algorithm-in-the-loop” approach. Human-algorithm interactions are notori-
ously difficult and can yield adverse effect (Green & Chen, 2019; Stevenson &Doleac, 2021), suggesting
the need to systematically study them for the specific purpose of biodiversity governance, as well as to
improve the algorithmic literacy of decision makers. As we see artificial intelligence/machine learn-
ing being increasingly mobilized to generate knowledge that is lacking for conservation decisions (e.g.
Lamba et al., 2019; Mosebo Fernandes et al., 2020) and drive policy decisions (Weiskopf et al., 2022),
our discussion of these tools need to go beyond the technical and statistical, and into the governance
consequences they can have.
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