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Background
Hedrick et al. (2016) reported on “negative-assortative mating for color in wolves” from Yellowstone National
Park, the “first documented case of significant negative-assortative mating in mammals.” Based on the
close correspondence of genotype and allele frequencies observed in the wild to that predicted by their
population genetic model, they conclude that “negative-assortative mating could be entirely responsible for
the maintenance of this well-known color polymorphism.” While researching examples of nonrandom mating
in the wild to teach in class I discovered that the results of their population genetic model are inconsistent
with their stated assumptions, as I understand them. In this paper, I revisit the model with the following
two objectives:

1. Demonstrate that the frequency of negative-assortative mating between gray and black pelage color
morphs in their model does not follow from their assumptions; and

2. Derive results that are consistent with their assumptions.

I am critiquing only their model, not the data analysis or conclusions. Both the original model and the new
model analyzed here lead to similar inferences about the maintenance of the pelage color polymorphism
because the equilibrium genotype and allele frequencies are nearly the same in both models. However, it
is important that the mathematical biology literature provide logically consistent analysis so that future
researchers may benefit most from its insights.

The frequency of assortative mating is inconsistent with the assumptions
Hedrick et al. (2016) assume that a proportion A matings are assortative, but the proportion they derive is
much less (see Fig. 1 for a graphical derivation). For consistency, I use the same symbols as Hedrick et al.
(2016) (Table 1 lists all symbols and their definitions). I infer three key assumptions from the two statements
on the bottom-left of pg. 758 of Hedrick et al. (2016):

“gray wolves have a genotype of kk and an assumed frequency of P and black wolves have
genotypes Kk and KK with frequencies H and Q, respectively (P + H + Q = 1).”

“Assume that A and 1−A are the proportions of negative-assortative mating and random mating,
respectively, in the population.”

From these statements, I infer that:

1. kk, Kk, and KK are mutually exclusive genotypes with frequencies P , H, and Q
2. Negative-assortative mating and random mating are mutually exclusive mating types with frequencies

A and 1−A
3. Genotype and mating type are independent (Pr[A ∩B] = Pr[A]× Pr[B])

Other standard population genetic assumptions such as infinite population size also apply.
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Table 1: Glossary of mathematical symbols, variable string used in
source code, and description.

Symbol Variable string Description
k k recessive beta-defensin variant
K K dominant beta-defensin variant
p p frequency of k allele
q q frequency of K allele
P P frequency of kk genotype
H H frequency of Kk genotype
Q Q frequency of KK genotype
A A proportion negative-assortatively mating

Based on these assumptions, I deduce that:

1. The probability of all genotype-mating type combinations must sum to 1
2. The probability of all genotypes in the assortative-mating subspace must sum to A
3. The probability of all genotypes in the random-mating subspace must sum to 1−A

There are six mutually exclusive genotype-mating type combinations in the population sample space (Fig.
1a). Since P + H + Q = 1, A + 1−A = 1, and genotype is independent of mating type, the probability of all
genotype-mating type combinations must sum to 1.

{kk,Kk,KK}∑
i

{assort,random}∑
j

Genotypei ∩Mating typej =

(kk ∩ assort) + (Kk ∩ assort) + (KK ∩ assort)+
(kk ∩ random) + (Kk ∩ random) + (KK ∩ random)

= PA + HA + QA + P (1−A) + H(1−A) + Q(1−A)
= A(P + H + Q) + (1−A)(P + H + Q)

= 1−A + A

= 1

Furthermore, we know that within the negative-assortative and random mating subspaces, the total probability
must sum to A and 1−A, respectively:

A =PA + HA + QA

1−A =P (1−A) + H(1−A) + Q(1−A)

The model in Hedrick et al. (2016) is internally inconsistent because the proportion of negative-assortative
matings does not equal A as defined (Fig. 1b).

A := Assortative matings
Total matings = Assortative matings

Assortative + Random matings

Hedrick et al. (2016) state that the frequency of assortative matings is 2AP (H + Q) (cf top of pg. 759)
and the frequency of random matings is 1− A. Applying these frequencies reveals that the proportion of
assortative matings is not equal to A as assumed:

Assortative matings
Assortative + Random matings = 2AP (H + Q)

2AP (H + Q) + 1−A
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There are no solutions to the expression above where the proportion of negative-assortative mating would
equal A when genotype and mating proportions are between 0 and 1. With their model, the actual proportion
of negative-assortative would vary from 0 when P = 0 or P = 1 and A/(2−A) when P = 0.5.

To summarize, a proportion A should mate assortatively given the assumptions of their model, but only
2AP (H + Q) actually mate assortatively according to their results. In essence, they assign a proportion A
to mate assortatively, but then a proportion A− 2AP (H + Q) do not mate assortatively (the area of the
gray regions in Fig. 1b), and are therefore not counted among the total number of matings. This is why the
probabilities of all matings do not sum to 1. The logically consistent solution is to condition on the fact that
if a mating is negative-assortative it must by definition have one gray and one black parent (Fig. 1b). In the
next section, I use this approach to derive new results. In contrast, Hedrick et al. (2016) effectively impose
selection without ever stating that assumption. To deal with the fact that resulting genotype frequencies do
not sum to 1, they regularize the frequencies (cf equation 1a-b), as normally done in models of selection.
Regularization is appropriate with selection because selection shrinks or expands the sample space as long as
average fitness does not equal 1. Hedrick et al. (2016) impose selection because some of the assortative-mating
individuals do not mate assortatively and are therefore not counted among the matings that result in offspring.

Revised solutions consistent with model assumptions
The previous section showed that the frequency of assortative gray × black matings was not derived in a
manner logically consistent with the model’s assumptions. Here I derive new mating frequencies, genotype
frequencies, and equilibria. I used Sympy version 1.7.1 (Meurer et al. 2017) for symbolic derivations through
Python version 3.6 and the R package reticulate version 1.25 (Ushey et al. 2022). All other computations
were performed in R version 4.2.0 (R Core Team 2022). The source code is available in a public GitHub
repository and will be archived on Zenodo upon publication.

Table 2 derives the probabilities of all possible outcomes and Table 3 summarizes the frequency each mating
combination. This is the exact same process used to derive frequency of mating combinations in positive-
assortative mating models (e.g. Hedrick and Ritland 2012). Since I model random mating identically to the
previous model, the frequencies of gray × gray and black × black matings are identical; only the frequency of
gray × black matings differs between models (Table 3; Fig. @ref{fig:sample-space}c).

Code in the Supporting Information derives the expressions in (Table 3) analytically using a computer algebra
system, but one can also use the Law of Total Probability to prove it. The Law of Total Probability for
discrete probability distributions states that Pr[A] =

∑
i Pr[A|Bi]Pr[Bi] where Pr[A|Bi] is the probability of

outcome A conditional on outcome Bi. The total probability of A is the sum of conditional probabilities
across all outcomes for event B. Using the Law of Total Probability, the probability of a gray × black mating
is:

Pr[gray× black] = Pr[gray× black|assort]Pr[assort] + Pr[gray× black|random]Pr[random]

We already assume that Pr[assort] = A and Pr[random] = 1 − A. With random mating, I arrive at the
same expression as Hedrick et al. (2016), Pr[gray× black|random] = 2P (H + Q) (cf top of pg. 759). If the
mating is negative-assortative, then it must be a gray × black mating. Therefore, Pr[gray× black|assort] = 1.
Putting these together, I obtain:

Pr[gray× black] =1×A + 2P (H + Q)× (1−A)
=A + 2P (H + Q)(1−A)

This result diverges from that given in Hedrick et al. (2016), where they report the frequency of gray × black
matings is 2P (H + Q) (cf Table 1).
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Table 2: The probability of every mating outcome in the negative-
assortative mating model analyzed by Hedrick et al. (2016). For the
notation, the probability of event X is Pr[X ]. The total probabilities
for each row are derived from the product of all probabilities in the
same row, Pr[Total] = Pr[Parent 1] × Pr[Mating] × Pr[Parent 2].

Parent
1

Pr[Parent
1] Mating Pr[Mating]

Parent
2

Pr[Parent
2] Pr[Total] Color

kk P assortative A kk 0 0 Gray × gray
kk P random 1−A kk P P 2(1−A) Gray × gray
kk P assortative A K− 1 AP Gray × black
kk P random 1−A K− H + Q P (H +Q)(1−A) Gray × black
K− H + Q assortative A kk 1 A(H + Q) Gray × black
K− H + Q random 1−A kk P P (H +Q)(1−A) Gray × black
K− H + Q assortative A K− 0 0 Black × black
K− H + Q random 1−A K− H + Q (H + Q)2(1−A) Black × black

Table 3: Hedrick et al. (2016) incorrectly derive the frequency of
gray × black. The corrected expressions are provided here.

Color
Mating
Genotypes Frequency (Hedrick et al. 2016) Frequency (this paper)

Gray × gray kk × kk P 2(1−A) P 2(1−A)
Gray × black kk ×K− 2P (H + Q) A + 2P (H + Q)(1−A)
Black × black K −×K− (H + Q)2(1−A) (H + Q)2(1−A)

Despite the different frequency of gray × black matings resulting from each model, the equilibrium genotype
frequencies are very similar. In both models, P̂ = 0.5, implying 0.5 = Ĥ + Q̂. I find that Q̂ = (A/2 −√

2(A + 1) + 1.5)/(1−A), which is close to the equilibrium values obtained in Hedrick et al. (2016) through
recursion (Fig. 2). Next, I compared allele frequency change depicted in Figs. 3-4 of Hedrick et al. (2016) to
that predicted with the new model. The effect of A on change in the frequency of the K allele is qualitatively
similar, but much faster with the new model (Fig. 3). This is because the magnitude of allele frequency
change far from the equilibrium is much greater with the new model (Fig. 4). As a result, Hedrick et al.
(2016) overestimate how long it would take for K to reach equilibrium given observed levels of assortative
mating (A = 0.430). They conclude that K would reach equilibrium at q̂ = 0.278 in 25 generations with
A = 0.430. In the revised model, K would reach equilibrium at q̂ = 0.271 in only 15 generations with
A = 0.430 and a starting allele frequency q0 = 0.01. Hence, the revised model actually lends credence to their
conclusion that negative-assortative mating may be a better explanation than heterozygote advantage for
variation at the beta definsin locus.

In conclusion, the logical inconsistency in Hedrick et al. (2016) does not undermine their primary conclusion
that negative-assortative mating by color may explain the distribution of genotype frequencies at the beta
definsin locus in the Yellowstone population of wolves (Canis lupus). The new derivation here may prove
useful to future research on negative-assortative mating.
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Figure 1: (Caption next page.)
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Figure 1: (Previous page.) A graphical summary of the sample space that illustrates why this model arrives
at results that differ from Hedrick et al. (2016). (a) The sample space consists of six mutually exclusive
genotype-mating type combinations that must sum to 1 given the assumptions. (b) In this study we show
that the the probabilities in the assortative mating subspace sum to A, as assumed, if one conditions on
assortative mating consisting of a black and gray coat color parent. In contrast, Hedrick et al. (2016)
effectively assume that a proportion of assortatively mating individuals equal to the area of the gray boxes do
not contribute matings. This is why the models reach different conclusions. (c) Both models treat randomly
mating individuals identically.
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Figure 2: The equilibirum frequency of Q, the KK homozygote in this study (dashed line) and Hedrick et al.
(2016) (solid line) for possible values of A, the proportion of wolves mating assortatively by color.
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Figure 3: A comparison of the change in frequency of the black allele K between Hedrick et al. (2016)
and this study. K starts at a frequency 0.01 and the plots show the dynamics for three different levels of
negative-assortative mating A.
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Figure 4: A comparison of the change in frequency of the black allele K between Hedrick et al. (2016)
and this study. The initial frequency of K is along the x-axis and the change in K along the y-axis where
A = 0.430 as in Hedrick et al. (2016) Fig. 4. The models have the similar equilibrua where they cross the
gray dotted line at 0, but in this study the magnitude of change in allele frequency increases the system gets
further from this equilibrium.
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