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Abstract 9 

Measuring parental care behaviour in the wild is central to the study of animal life-history trade-offs, 10 

but is often labour and time-intensive. More efficient machine learning-based video processing tools 11 

have recently emerged that allow parental nest visit rates to be measured using video cameras and 12 

computer processing. Here, we used open-source software to detect movement events from videos 13 

taken at the nest box of a wild passerine bird population. We show that visit numbers from our 14 

automatic data collection pipeline strongly correlate with human observations and predicts an 15 

increase in brood fitness. Using a machine learning-assisted annotation approach on a subset of 18 16 

videos, we show that the accuracy largely increased and cut annotation time by an average of 5.5x 17 

compared to that of a cohort of undergraduate students. Since our automatic pipeline collected 18 

biological-meaningful data that would have taken approximately 800 days by human observers, we 19 

encourage more researchers to apply existing open-source tools to assist data collection in animal 20 

behaviour studies.  21 
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Introduction 25 

Parental care behaviour is a life-history trait that is commonly studied in a wide range of animals (Royle 26 

et al., 2012). Parental care is defined as any behaviour that increases the fitness of offspring (Clutton-27 

Brock, 1991; Royle et al., 2012), but often decreases the survival probability of parents (Trivers, 1972) 28 

presenting as a life history trade-off (Stearns, 1992). While there are many forms of parental care (e.g., 29 

nest building, predator defence, incubation, and feeding; see Royle et al., 2012), parental care in the 30 

form of feeding of the young is traditionally considered as very costly for parents (Owens and Bennett, 31 

1994; Winkler and Wilkinson, 1988). As such, a large body of literature focuses on how nest visit 32 

frequency with dependent young is associated with aspects of an animal’s life history, with a focus on 33 

birds, where 90% of species engage in parental care (Cockburn, 2006). For example, work on life 34 

history trade-off in terms of parent and offspring fitness (Schroeder et al., 2013), parent coordination 35 

(see Ihle et al., 2019; Wojczulanis-Jakubas et al., 2018), parent-offspring conflict (Estramil et al., 2013), 36 

or ageing (Wilcoxen et al., 2010) all used the frequency of parental visits to nests (or provisioning) as 37 

a proxy of parental investment.  38 

 39 

However, measuring parental visitation rates in the wild is labour intensive and time-consuming. Data 40 

is traditionally collected by direct observations (e.g. Dunn and Cockburn, 1996), which can be invasive 41 

by disturbing animals in the vicinity of their nest (Rose, 2009). Less invasive methods include video 42 

recording (e.g., García‐Navas and Sanz, 2010; Nakagawa et al., 2007), radio tracking (see Mitchell et 43 

al., 2012), and the use of radio-frequency tags and antennas at the nest (RFID; Mariette et al., 2011; 44 

Ringsby et al., 2009). While automatic methods allow visitation rates to be quantified over long 45 

periods of time, the technology is prone to error (up to 20%; see Mariette et al., 2011). On the other 46 

hand, video analysis is more flexible and allows for other behaviours to be quantified, like nest defence, 47 

copulations or feeding load (Lendvai et al., 2015). Maybe most importantly, using video cameras also 48 

allows for visual confirmation of individual identity if colour rings are used. However, manual 49 
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annotation of video data is time-consuming and error-prone (Tuyttens et al., 2014), calling for more 50 

effective ways to extract data from videos (Conway et al., 2021; Weinstein, 2018a). 51 

 52 

Recent advances in deep learning (Borowiec et al., 2021) and computer vision (Weinstein, 2018a) 53 

allow quick and reliable information to be extracted from field data (Valletta et al., 2017). For example, 54 

machine learning methods have been successfully applied to solve problems with species 55 

identification (see Wäldchen and Mäder, 2018), bird song complexity measurement (see Pearse et al., 56 

2018; Priyadarshani et al., 2018), social behaviour measurement (see Robie et al., 2017), and individual 57 

identification (Bogucki et al., 2019; Ferreira et al., 2020; Körschens et al., 2018; Schofield et al., 2019). 58 

Since computing resources are much cheaper than human-labour, such approaches have immense 59 

potential in reducing the financial and time costs of data collection, evidenced by a recent increase in 60 

popularity for ecological applications (Borowiec et al., 2021; Tuia et al., 2022).  61 

 62 

Simultaneously, open-source tools were developed to aid data collection from video data. Examples 63 

include software on tracking animals and behaviours in captive settings (Harmer and Thomas, 2019; 64 

Pennington et al., 2019; Sridhar et al., 2019; Walter and Couzin, 2021), pose estimation (Graving et al., 65 

2019; Lauer et al., 2021; Pereira et al., 2019), or species identification (Falzon et al., 2020; Van Horn 66 

et al., 2015). Particularly, Weinstein (2018b) developed an open-source tool named Deep Meerkat 67 

which uses convolutional neural networks (CNNs) to capture movement events from wildlife 68 

monitoring videos. Despite the name, the software was initially designed for use with a hummingbird 69 

population (Marcot et al., 2019; Weinstein, 2018b), but the software has been adapted for use in 70 

marine (Sheehan et al., 2020) and insect (Mertens et al., 2021; Pegoraro et al., 2020) systems. To the 71 

best of our knowledge, no literature exists that documents the use of the software in avian systems 72 

other than the original hummingbird population.  73 

 74 
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Here, we applied Deep Meerkat (Weinstein, 2018b) to automatically process and extract visitation 75 

rates from parental provisioning videos collected in the house sparrow (Passer domesticus) population 76 

on Lundy Island, UK since 2004 (see Nakagawa et al., 2007). We first compared the results to manually-77 

collected data by trained individuals. Next, we compared the outputs from the automatic processing 78 

with alternative methods of annotation, including a machine learning-assisted approach and 79 

crowdsourced annotation by a cohort of undergraduate students. Lastly, we determined the biological 80 

relevance of the automatic data by testing the hypothesis that increased rates of feeding would lead 81 

to increased annual reproductive fitness of the parents – a classic life-history theory hypothesis from 82 

behavioural ecology (Trivers, 1972).  83 

 84 

  85 
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Materials and Methods 86 

Study System 87 

Data were collected from a population of house sparrows (Passer domesticus) on Lundy Island (51° 10’ 88 

N, 4°40’ W) located on the Bristol Channel, UK. The population is part of a long-term study and is 89 

monitored systematically since 2000, with >99% of individuals marked with a unique combination of 90 

coloured metal rings by the British Trust for Ornithology (Cleasby et al., 2011), and unique passive-91 

integrated transponders (Schroeder et al., 2011). Since house sparrows rarely fly over large bodies of 92 

water (Magnussen and Jensen, 2017) very little immigration or emigration has taken place in the 93 

population (Schroeder et al., 2015). As a result, the population has high recapture rates with no 94 

trapping bias (Simons et al. 2015) and reliable life history data for every individual (Schroeder et al., 95 

2015). 96 

 97 

Parental provisioning videos 98 

The Lundy sparrow population is situated within a 0.2km2 area around a small village, since that is the 99 

only viable habitat on the island (Schroeder et al., 2011). Nest boxes were put up for the sparrows, 100 

and every box is checked systematically to detect all breeding attempts throughout the summer 101 

breeding season (Cleasby et al., 2011). After eggs were found and the identity of the parents 102 

confirmed by their colour ring combination, 90-minute videos were recorded on the 7th and 11th day 103 

after egg hatching, with a video camera 2-5m away from the nest box and a field of view of 30cm 104 

radius (see Nakagawa et al., 2007a for detailed procedure) to measure parental visitations.  105 

 106 

When annotating the videos, birds were considered as feeding the young when entering and exiting 107 

the nest box, and when feeding behaviour could be seen through the nest box hole without entering 108 

the nest box. We recorded when birds are perching outside the nest box but as a separate behaviour 109 

such that it did not count towards feeding rate estimates. Feeding rates were then calculated from 110 

the first visit of either parent until the end of the video, or until 90 minutes had elapsed from the first 111 



6 
 

visit, whichever came first. We started counting from the first visit, and not the beginning of the video, 112 

to allow time for the birds to adjust to the disturbance possibly caused by the camera setup. The 113 

resulting time during which visits were scored was termed the effective observational time (Nakagawa 114 

et al., 2007a). The total number of visits by both parents was divided by the effective observational 115 

time to obtain the manual feed rate (feeds per hour) as a measure of parental provisioning.  116 

 117 

Between 2004 and 2015, videos (N=2112) were manually annotated by postgraduate students and 118 

researchers, which contributed to multiple publications (see Ihle et al., 2019; Nakagawa et al., 2007; 119 

Schroeder et al., 2019, 2016, 2013, 2012). We used these data as a baseline – the ‘manual feed rate’ 120 

– to be compared against the automatically-collected data (‘automatic feed rate’) outlined below. 121 

 122 

Automatic Video Processing Pipeline 123 

We processed videos collected between 2011 and 2019 (N=2629) through the open-source 124 

programme Deep Meerkat, which uses convolution neural networks (CNNs) to classify moving frames 125 

and identify moving objects in wildlife monitoring videos (Weinstein, 2018b). Since the performance 126 

of the default model was satisfactory from initial tests, we did not further fine-tune the model using 127 

video frames from our study. We processed the output from Deep Meerkat to merge movement 128 

events detected fewer than 40 frames apart and more than 2 frames in length into the same event. 129 

We then further grouped the events into 7-second video clips, to allow effective post-processing 130 

annotation and matching with manual data. We then tallied the number of events for each video, then 131 

divided the tally by the effective observational time (see above) to obtain the automatic feed rate (in 132 

events per hour; Figure 1). Since most of the feeding events on Lundy sparrows were done by parents 133 

entering the nest box, we assume each feeding event broadly corresponds to 2 detected movement 134 

events by the pipeline (entering and exiting the nest box), hence the automatic feed rate was further 135 

divided by 2. Finally, since certain videos produced massively over-inflated feed rate measures due to 136 

filming environment (e.g camera shaking, continuous background movement), we removed any 137 
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videos that has an automatic feed rate of 72.7 events/hour or more (1.31% videos removed), since 138 

that is the max feed rate we have ever recorded from previous manual annotation, assuming any rate 139 

more extreme will be an anomaly.  140 

 141 

 142 

Figure 1: Automatic data collection pipeline for processing parental provisioning videos of house 143 

sparrows on Lundy Island, UK. Videos were processed using open source software Deep Meerkat 144 

(Weinstein, 2018b), outputting frames with movement detected. Events were then defined by 145 

grouping movement frames that were less than 40 frames apart and at least 2 frames long. Lastly, 146 

events for each provisioning video were tallied to obtain an automatic feed rate  147 

 148 

Validation 149 

After processing all videos using the automatic pipeline, we first tested the association between the 150 

automatic and manual feed rates using Pearson’s correlation test. We then chose 18 random videos 151 

to be used as a validation dataset, to compare the performance of three different methods of data 152 

collection. The first was the automatic feed rate as described above, where videos were processed 153 

through the pipeline (Figure 1) without human intervention. The second was a machine learning (ML)-154 

assisted approach, where video outputs of events from the pipeline were further annotated by hand 155 

to filter out non-feeding visits. The third was a crowd-sourcing approach, where a cohort of 36 156 

undergraduate students were given full-length videos to annotate from scratch. To compare the 157 

annotation time between the latter two methods, we also measured the annotation time per video 158 

for the ML-assisted and crowd-sourcing approaches.  159 
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 160 

To compare the methods quantitatively, we calculated three return rates corresponding to the three 161 

methods - the automatic pipeline, machine learning-assisted, and undergraduate return rates. We 162 

took the manual feed rate as a baseline value, then calculated return rates by dividing the number of 163 

events detected using each method over the manual feed rate for each video (e.g. for a given video, 164 

if manual feed rate has 10 feeding events and undergraduates found 7, the undergraduate return rate 165 

is 0.7). Since a return rate of 1 shows that a method detected the exact number of events as the 166 

manual feed rate baseline, we did one sampled t-tests to see whether each return rate was 167 

significantly different from this baseline (by setting the theoretical mean (µ) to 1). Lastly, we also 168 

compared all methods using pairwise t-tests between the return rates for each annotation method.  169 

 170 

Case study 171 

Finally, we used the automatic feed rate in a case study to test for the first part of the life-history 172 

trade-off predicted by Trivers (1972). We tested whether broods whose parents visited the nest more 173 

often had a higher fledgling and recruitment success, using the automatic feed rate. Since each brood 174 

was measured on the 7th and 11th day after hatching, we averaged both values to obtain an average 175 

feed rate for each brood. However, since feeding rates increases as a brood age (see Schroeder et al., 176 

2019), we also ran the models separately using Day 7 and 11 rates to ensure results are consistent.  177 

 178 

To test the prediction that increased automatic feed rate was associated with higher chick survival in 179 

a brood, we fitted generalised linear mixed models with the number of fledglings and the number of 180 

recruits for each brood as respective response variables, against automatic feed rates (events per hour) 181 

as explanatory variables, using a Poisson link function. A fledgling was defined as a sparrow chick that 182 

successfully fledged; recruits were defined as fledglings that produced at least one genetic offspring 183 

in their lifetime. To allow effect sizes to be compared, we z-transformed the feed rates. To control for 184 

other effects that might affect the fitness metrics, we added the age of the mother and father (see 185 
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Wiebe, 2018), and hatch date (Days after April 1st) as fixed effects. Since breeding success usually 186 

corresponds to peak food abundance (see Cresswell and Mccleery, 2003; Lack, 1968), we also added 187 

a quadratic fixed-effect term for hatch date. Next, the population has undergone routine cross-188 

fostering, which is associated with increased survival (see Winney et al., 2015), hence we added a fixed 189 

factor for fostered status (yes/no) in all models, however, note that the feed rate we used were always 190 

from the parents that did the actual feeding, which are not always the genetic parents of the young. 191 

We added the social parent IDs and the year as random effects to control for environmental effects 192 

(see Rose et al., 1998) and repeatable feeding rates by individual parents (Nakagawa et al., 2007). The 193 

location of the nest box was added as a random effect to control for known environmental effects 194 

(Schroeder et al., 2012).  195 

 196 

We ran all models using the R packages MCMCglmm (Hadfield, 2010) on R version 3.6.1 (R Core Team, 197 

2013). The posterior distributions and autocorrelations were checked following Hadfield (2014) to 198 

ensure all fixed and random effects converged without violating any model assumptions. We defined 199 

a parameter estimate as statistically significant if the 95% credible interval did not overlap with zero.  200 

  201 
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Results 202 

Automatic Video Processing Pipeline 203 

Using the automatic pipeline, we processed a total of 2629 videos and so approximately 3900 hours 204 

(160 days) of recordings. We found a significant positive correlation between automatic and manual 205 

feed rates (r=0.62, 95%CI: 0.58-0.66, p < 0.001; Figure 2A).  206 

 207 

Validation  208 

From the 18 validation videos, the automatic pipeline return rate obtained without human 209 

intervention was significantly larger than 1 (Table 1), showing that the measure was inflated compared 210 

to the baseline set by manual feed rates (Figure 2B). However, the ML-assisted return rate showed 211 

that once the pipeline outputs were manually annotated to eliminate non-feeding events, the rate 212 

dropped and became not significantly different from 1 and comparable to the baseline (Table 1). The 213 

undergraduates performed similarly well, with return rates not significantly different from 1 (Table 1) 214 

and not significantly different from the ML-assisted return rate (Figure 2B). 215 

 216 

On average, undergraduate students took 65.4 minutes (min 25 minutes, max 100 minutes) to 217 

annotate each video, whereas the ML-assisted approach took an average of 12.0 minutes per video 218 

(min 4.6 minutes, max 31.0 minutes), equating to an average of 53.4 minutes saved per video by first 219 

processing the videos using the pipeline. 220 



11 
 

 221 

Figure 2: Validation results of automatic video processing pipeline and alternative annotation 222 

methods for data collection on house sparrow (Passer domesticus) parental provisioning videos on 223 

Lundy Island UK. A) Positive correlation between the automatic feed rate collected using the pipeline 224 

and manual feed rate collected manually. The red line shows a significant positive correlation, and the 225 

dotted line shows a 1:1 line if both rates were equal. B) Comparison of return rates for three separate 226 

data collection methods using return rate measures of 18 validation videos. 1) Automatic pipeline: 227 

derived from automatic feed rate 2) Machine learning-assisted: further manual annotation of output 228 

clips from the pipeline 3) Undergraduate annotation: annotation by a cohort of undergraduate 229 

students. The red dotted line represents the reference level of 1, brackets and labels represent the 230 

significance of t-test between all groups (N.S: not significant, *: p<0.05, **: p<0.01, ***: p<0.001). 231 

 232 

Table 1: Comparison of three annotation methods using a validation dataset of 18 provisioning 233 

videos of house sparrows (Passer domesticus) on Lundy Island, UK. The return rates were calculated 234 

by dividing the number of detected events using each method by the manual feed rate. Test statistics 235 

were obtained from a one-sampled t-test, with the theoretical mean (µ) set to 1.  236 

 237 
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Metrics Mean  95% Confidence Interval t p-value 

A) Automatic pipeline return rate 1.39 1.17-1.63 3.68 0.002 

B) Machine learning-assisted 

return rate 

0.94  0.88 – 1.01 -1.78 0.10 

C) Undergraduate return rate 1.01  0.97 – 1.06 1.13 0.52 

 238 

Case study 239 

The data that we used contained 658 unique broods, of 2116 individual chicks, of which 728 (34%) 240 

fledged and 328 (16%) were recruited. Automatic feed rates significantly predict an increase in the 241 

number of fledgelings and recruits for all models fitted (Figure 4; Supporting Information 1). We found 242 

a noticeable change in brood survival over the breeding season, with a significant negative quadratic 243 

effect for hatch date, showing that fitness is the highest in mid-breeding season (Supporting Table S1).  244 

 245 

 246 

Figure 4: Increase in the number of (A) fledglings and (B) recruits as average automatic feed rates 247 

increase in house sparrows (Passer domesticus) on Lundy Island, UK Automatic feed rates were 248 

obtained from the pipeline without human intervention. Feed rates were further z_transformed to 249 

allow effect sizes to be comparable, with 0 representing the mean and each unit representing one 250 

standard deviation away from the mean.  251 
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Discussion 252 

Using an automatic data collection pipeline based on Deep Meerkat (Weinstein, 2018b), we extracted 253 

visitation rates from parental provisioning videos of house sparrows and found that automatic feed 254 

rates positively correlated with manual annotation, and can reproduce biological results, equivalent 255 

to ~800 hours (~100 8-hour workdays) of human labour work. Even though the computational time 256 

for Deep Meerkat is 1:1 (1 hour video takes ~1 hour to process; see Marcot et al., 2019), computing 257 

time is much cheaper than human labour time, especially when techniques like parallel computing 258 

were used to further speed up processing. As such, we processed a huge backlog of unprocessed 259 

videos from the Lundy sparrow system that would have been infeasible without the use of machine 260 

learning methods.   261 

 262 

When applying machine learning methods, there is often a trade-off between the variance and bias of 263 

a trained model (Geman et al., 1992; but see Neal, 2019). Here, the 18 test videos showed that the 264 

pipeline produced biased results, since the obtained automatic feed rate produced overinflated 265 

estimates compared to manual feed rates, likely due to over-detection of non-feeding events when 266 

birds are still present within the video frame. However, the bias was complemented with low variance 267 

(or high consistency), with automatic feed rate correlating well with manual feed rates and predicting 268 

an increase in fledgelings and recruits within broods in our case study. Although not comparable with 269 

manual feed rates, the automatic feed rate can hence be considered as another proxy of parental 270 

investment (see Schroeder et al., 2013; Trivers, 1972) allowing more biological hypotheses to be 271 

tested with increased sample size and statistical power. Moreover, the motion detection algorithm of 272 

Deep Meerkat is not species-specific, allowing the same method to be applied to other study systems 273 

or species, opening a new avenue of research for newly established systems or large video datasets. 274 

 275 

In this study, we also tested other methods for data collection, including crowdsourcing 276 

undergraduate students and adopting a ML-assisted approach. Manual annotation by undergraduate 277 
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students was accurate, with mean event return rates slightly higher than the manual feed rates, 278 

possibly due to the multiple observer effect (e.g. Guay et al., 2013), but can also be due to inflation in 279 

detected events due to misidentifications. We also showed that there were no significant differences 280 

between the undergraduate and ML-assisted return rates, highlighting the value of using an ML-281 

assisted approach, which was 5.5x faster. Given sex-specific hypotheses on parental investment are 282 

often tested in the population (e.g. Schroeder et al., 2016), adopting a ML-assisted approach can be 283 

useful for collecting additional sex or behavioural data within the feeding clips. Further development 284 

using deep learning and computer vision techniques can also classify the sex (see Ferreira et al., 2020) 285 

and behaviour (see Conway et al., 2021; Ditria et al., 2021) automatically, which has potential to fully 286 

replace human annotation in the future.  287 

 288 

Machine learning approaches are becoming widely used in ecology in recent years (Borowiec et al., 289 

2021). Here, we presented an excellent case study of machine learning assisted data collection that 290 

can obtain biologically meaningful results in existing datasets without further manual intervention. 291 

With the increase in open-source tools that are being developed in the field to reduce manual 292 

annotation efforts (e.g. Van Horn et al., 2015; Walter and Couzin, 2021; Weinstein, 2018b), and the 293 

increase in computing literacy of ecology graduates (Farrell and Carey, 2018), we encourage 294 

researchers to make use of such tools to be adapted to their own existing datasets. This would not 295 

only unlock the bottleneck of unanalysed data that would otherwise go to waste, but also allow more 296 

interesting hypotheses to be tested.   297 

 298 

Conclusion 299 

In this study, we used a data collection pipeline based on Deep Meerkat to automatically process 300 

parental provisioning videos on Lundy sparrows. Automatic feed rates collected from the machine 301 

learning pipeline correlated well with manual annotation, as well as predicting recruitment and 302 

fledging success in broods. The pipeline also acts as an effective pre-processing step to allow 303 
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annotation time to be largely reduced, as we encourage researchers to adopt similar methods in their 304 

study systems. Machine learning techniques and open-source tools are becoming widespread in 305 

ecology, we provide here a successful case study of the use of such tools to eliminate the bottleneck 306 

of laborious manual data collection.  307 

 308 
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